OpenAI Archives - gettectonic.com
B2B Customer Service with Agentforce

Agents are the Future of Customer Engagement

Agentic Customer Engagement is Here There was a time when customer service meant going into a brick and mortar building and talking to a person face to face. It was time consuming and did not guarantee a solution. The mail order business brought on the need for the 800 number to contact a merchant. The dot com boom brought customer engagement opportunities directly to our homes. Ios and Android apps brought customer engagement to our fingertips. Yet we still were dependent upon the availability of humans or at least chatbots. Customer service often repressed customer engagement, not enhanced it. Agents, like Salesforce Agentforce, brought 24 7 customer engagement to us no matter where we are, when it is, or how complicated our issue is. And agents improved customer service! What’s next? Robots and drones who deliver our items and answer our questions? Who knows. AI bots are transforming client relationships and customer service. To achieve unparalleled efficiency, these intelligent systems plan and automate difficult activities, make deft decisions, and blend in seamlessly with current workflows. Yes, it’s widely believed that AI agents will play a crucial role in the future of customer engagement, offering personalized, efficient, and consistent experiences across various channels.  Here’s why AI agents are poised to be a key driver in customer engagement: AI agents are becoming smarter every day, using machine learning and natural language processing to predict customer needs, handle complex queries with empathy and offer real-time, personalized assistance. How AI Agents Are Redefining Customer Engagement Marketing is undergoing a seismic transformation. Tectonic shift, if you will. The past decade was dominated by complex tech stacks and data integration—now, AI is shifting the focus back to what truly matters: crafting impactful content and campaigns. Welcome to the era of agentic customer engagement and marketing. The Rise of Marketing Agents Unlike traditional customer service agents handling one-to-one interactions, marketing agents amplify human expertise to engage audiences at scale—whether targeting broad segments or hyper-personalized personas. They ensure consistent, high-quality messaging across every channel while automating the intricate backend work of delivering the right content to the right customer at the right time. This shift is powered by rapid AI advancements: How Agentic Engagement Amplifies Marketing Marketing agents don’t replace human creativity—they extend it. Once strategists set guidelines, approve messaging, and define brand voice, agents execute with precision across channels. At Typeface, for example, AI securely learns brand tones and styles to generate on-brand imagery, text, and videos—ensuring every asset aligns with the company’s identity. Key Capabilities of Marketing Agents The Human-Agent Partnership AI agents don’t replace marketers—they empower them. Humans bring creativity, emotional intelligence, and strategic decision-making; agents handle execution, data processing, and scalability. Marketers will evolve into “agent wranglers”, setting objectives, monitoring performance, and ensuring alignment with business goals. Meanwhile, agents will work in interconnected ecosystems—where a content agent’s blog post triggers a social agent’s promotion, while a performance agent optimizes distribution, and a brand agent tracks reception. Preparing for the Agent Era To stay ahead, businesses should:✅ Start small, think big – Pilot agents in low-risk areas before scaling.✅ Train teams – Ensure marketers understand agent management.✅ Build governance frameworks – Define oversight and intervention protocols.✅ Strengthen data infrastructure – Clean, structured data fuels agent effectiveness.✅ Maintain human oversight – Regularly audit agent outputs for quality and alignment. Work with a Salesforce partner like Tectonic to prepare for the Agent Era. The Future is Agentic The age of AI-driven marketing isn’t coming—it’s here. Companies that embrace agentic engagement will unlock unprecedented efficiency, personalization, and impact. The question isn’t if you’ll adopt AI agents—it’s how soon. Ready to accelerate your strategy? Discover how Agentforce (Salesforce’s agentic layer) can cut deployment time by 16x while boosting accuracy by 70%. The future of marketing isn’t just automated—it’s autonomous, adaptive, and agentic. Are you prepared? The Future of Customer Experience: AI-Driven Efficiency and Innovation Businesses have long understood the connection between operational efficiency and superior customer experience (CX). However, the rapid advancement of AI-powered technologies, including next-generation hardware and virtual agents, is transforming this connection into a measurable driver of value creation. Increasingly well-documented use cases for generative AI (GenAI) demonstrate that companies can simultaneously deliver a vastly superior customer experience at a significantly lower cost-to-serve, resulting in substantial financial gains. From Customer Journeys to Autonomous Customer Missions To achieve this ideal balance, companies are shifting from traditional customer journeys—where users actively manage their own experiences via apps—to a more comprehensive approach driven by trusted autonomous agents. These agents are designed to complete specific tasks with minimal human involvement, creating an entirely new paradigm for customer engagement. While early implementations may be rudimentary, the convergence of hardware and AI will lead to sophisticated, seamless experiences far beyond current capabilities. AI-Enabled Internal and External Transformation AI is already driving transformation both internally and externally. Internally, it streamlines processes, enhances employee experiences, and significantly boosts productivity. In customer service operations, for example, GenAI has driven productivity improvements of 15% to 30%, with some companies targeting up to 80% efficiency gains. Externally, AI is reshaping customer interactions, making them more personalized, efficient, and intuitive. Virtual co-pilots assist customers by answering inquiries, processing returns, and curating tailored offers—freeing human employees to focus on complex issues that require nuanced decision-making. Linking Operational Efficiency to Customer Experience Leading organizations are demonstrating how AI-driven efficiencies translate into enhanced CX. Despite these gains, companies must raise the bar even further to fully capitalize on AI’s potential. The convergence of next-generation hardware with AI-driven automation presents an unprecedented opportunity to redefine customer engagement. From App-Driven Experiences to Autonomous Agents At Dreamforce 2024, Salesforce CEO Marc Benioff highlighted that service employees waste over 40% of their time on repetitive, low-value tasks. Similarly, customers face friction in making significant purchases or planning events. Google research indicates that travelers may engage in over 700 digital touchpoints when planning a trip—a fragmented and often frustrating experience. Imagine instead a network of proprietary and third-party agents seamlessly executing customer missions—such as purchasing a car or planning a vacation—without requiring constant user input. These AI agents could: This “agentic AI” model represents a shift from passive app-based assistance to proactive, intelligent automation, significantly reducing

Read More
Balancing Security with Operational Flexibility

Balancing Security with Operational Flexibility

Security measures for AI agents must strike a balance between protection and the flexibility required for effective operation in production environments. As these systems advance, several key challenges remain unresolved. Practical Limitations 1. Tool Calling 2. Multi-Step Execution 3. Technical Infrastructure 4. Interaction Challenges 5. Access Control 6. Reliability & Performance The Road Ahead Scaling AI Through Test-Time Compute The future of AI agent capabilities hinges on test-time compute, or the computational resources allocated during inference. While pre-training faces limitations due to finite data availability, test-time compute offers a path to enhanced reasoning. Industry leaders suggest that large-scale reasoning may require significant computational investment. OpenAI’s Sam Altman has stated that while AGI development is now theoretically understood, real-world deployment will depend heavily on compute economics. Near-Term Evolution (2025) Core Intelligence Advancements Interface & Control Improvements Memory & Context Expansion Infrastructure & Scaling Constraints Medium-Term Developments (2026) Core Intelligence Enhancements Interface & Control Innovations Memory & Context Strengthening Current AI systems struggle with basic UI interactions, achieving only ~40% success rates in structured applications. However, novel learning approaches—such as reverse task synthesis, which allows agents to infer workflows through exploration—have nearly doubled success rates in GUI interactions. By 2026, AI agents may transition from executing predefined commands to autonomously understanding and interacting with software environments. Conclusion The trajectory of AI agents points toward increased autonomy, but significant challenges remain. The key developments driving progress include: ✅ Test-time compute unlocking scalable reasoning ✅ Memory architectures improving context retention ✅ Planning optimizations enhancing task decomposition ✅ Security frameworks ensuring safe deployment ✅ Human-AI collaboration models refining interaction efficiency While we may be approaching AGI-like capabilities in specialized domains (e.g., software development, mathematical reasoning), broader applications will depend on breakthroughs in context understanding, UI interaction, and security. Balancing computational feasibility with operational effectiveness remains the primary hurdle in transitioning AI agents from experimental technology to indispensable enterprise tools. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Shift From AI Agents to AI Agent Tool Use

Building Scalable AI Agents

Building Scalable AI Agents: Infrastructure, Planning, and Security The key building blocks of AI agents—planning, tool integration, and memory—demand sophisticated infrastructure to function effectively in production environments. As the technology advances, several critical components have emerged as essential for successful deployments. Development Frameworks & Architecture The ecosystem for AI agent development has matured, with several key frameworks leading the way: While these frameworks offer unique features, successful agents typically share three core architectural components: Despite these strong foundations, production deployments often require customization to address high-scale workloads, security requirements, and system integrations. Planning & Execution Handling complex tasks requires advanced planning and execution flows, typically structured around: An agent’s effectiveness hinges on its ability to: ✅ Generate structured plans by intelligently combining tools and knowledge (e.g., correctly sequencing API calls for a customer refund request).✅ Validate each task step to prevent errors from compounding.✅ Optimize computational costs in long-running operations.✅ Recover from failures through dynamic replanning.✅ Apply multiple validation strategies, from structural verification to runtime testing.✅ Collaborate with other agents when consensus-based decisions improve accuracy. While multi-agent consensus models improve accuracy, they are computationally expensive. Even OpenAI finds that running parallel model instances for consensus-based responses remains cost-prohibitive, with ChatGPT Pro priced at $200/month. Running majority-vote systems for complex tasks can triple or quintuple costs, making single-agent architectures with robust planning and validation more viable for production use. Memory & Retrieval AI agents require advanced memory management to maintain context and learn from experience. Memory systems typically include: 1. Context Window 2. Working Memory (State Maintained During a Task) Key context management techniques: 3. Long-Term Memory & Knowledge Management AI agents rely on structured storage systems for persistent knowledge: Advanced Memory Capabilities Standardization efforts like Anthropic’s Model Context Protocol (MCP) are emerging to streamline memory integration, but challenges remain in balancing computational efficiency, consistency, and real-time retrieval. Security & Execution As AI agents gain autonomy, security and auditability become critical. Production deployments require multiple layers of protection: 1. Tool Access Control 2. Execution Validation 3. Secure Execution Environments 4. API Governance & Access Control 5. Monitoring & Observability 6. Audit Trails These security measures must balance flexibility, reliability, and operational control to ensure trustworthy AI-driven automation. Conclusion Building production-ready AI agents requires a carefully designed infrastructure that balances:✅ Advanced memory systems for context retention.✅ Sophisticated planning capabilities to break down tasks.✅ Secure execution environments with strong access controls. While AI agents offer immense potential, their adoption remains experimental across industries. Organizations must strategically evaluate where AI agents justify their complexity, ensuring that they provide clear, measurable benefits over traditional AI models. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
agetnforce for nonprofits

TDX Announcements for Agentforce

Salesforce Expands Agentforce AI, Strengthening Its Lead in Agentic AI Salesforce’s latest updates to its agentic AI platform, Agentforce, are set to elevate its position in the competitive AI market, potentially outpacing enterprise application rivals and hyperscalers like AWS, Google, IBM, ServiceNow, and Microsoft. The updates, introduced under Agentforce 2dx, enhance orchestration, development, testing, and deployment capabilities. According to Arnal Dayaratna, vice president of research at IDC, these advancements could propel Salesforce ahead of its competition in a manner similar to OpenAI’s early dominance in large language models (LLMs). Agentforce API Expands Platform Extensibility A key enhancement in Agentforce 2dx is the Agentforce API, designed to improve extensibility and facilitate the seamless integration of agentic AI technologies into digital solutions. “Without an API, all AI agentic capabilities remain locked into the Agentforce platform,” explained Jason Andersen, principal analyst at Moor Insights & Strategy. “The API allows enterprises to build apps and agents with whatever they want.” Dion Hinchcliffe, CIO practice lead at The Futurum Group, sees this as a strategic move to drive adoption by removing usage constraints. While companies like Google and Microsoft have already introduced similar APIs, Salesforce differentiates itself by leveraging its deep CRM expertise, customer data, and business logic integration. “AI agents need contextual data to act effectively,” said Hinchcliffe. “While competitors will likely improve their integrations, Salesforce’s extensive background in business logic and automation will be difficult to match quickly.” Accelerating Enterprise Adoption with New Features Beyond the API, Agentforce 2dx includes enhancements like the Topic Center, MuleSoft integrations, Tableau Semantics, and Slack integrations, aimed at simplifying custom agent development, workflow integration, and deployment. Empowering Developers to Scale Agentic AI Salesforce is also focusing on developers with tools that provide greater control over agent creation, testing, and deployment. Key updates include: “Salesforce is encouraging hands-on experimentation, a strategy commonly used by cloud service providers,” said Cameron Marsh, senior analyst at Nucleus Research. Andersen sees this as a bold move in the SaaS market, positioning Salesforce as a direct competitor to Azure, AWS, and Google Cloud, which also offer developer-centric AI tools. Additionally, Salesforce introduced Testing Center, a low-code tool for enterprises to test agents before deployment. Scaling AI Agent Deployments with Confidence Hyoun Park, chief analyst at Amalgam Insights, emphasized the importance of these tools for scaling AI deployments. “One of the biggest challenges in agentic AI is simulating and testing interactions at scale,” Park noted. “With these capabilities, companies no longer need to manually test or build custom tools to manage AI agents.” Proven Market Traction Salesforce reports it has secured 5,000 deals with Agentforce, with customers like The Adecco Group, Engine, OpenTable, Oregon Humane Society, Precina, and Vivint already seeing immediate value. With Agentforce 2dx, Salesforce is reinforcing its leadership in agentic AI, giving enterprises more control, scalability, and integration capabilities to drive innovation in AI-powered automation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Shift From AI Agents to AI Agent Tool Use

AI Agent Dilemma

The AI Agent Dilemma: Hype, Confusion, and Competing Definitions Silicon Valley is all in on AI agents. OpenAI CEO Sam Altman predicts they will “join the workforce” this year. Microsoft CEO Satya Nadella envisions them replacing certain knowledge work. Meanwhile, Salesforce CEO Marc Benioff has set an ambitious goal: making Salesforce the “number one provider of digital labor in the world” through its suite of AI-driven agentic services. But despite the enthusiasm, there’s little consensus on what an AI agent actually is. In recent years, tech leaders have hailed AI agents as transformative—just as AI chatbots like OpenAI’s ChatGPT redefined information retrieval, agents, they claim, will revolutionize work. That may be true. But the problem lies in defining what an “agent” really is. Much like AI buzzwords such as “multimodal,” “AGI,” or even “AI” itself, the term “agent” is becoming so broad that it risks losing all meaning. This ambiguity puts companies like OpenAI, Microsoft, Salesforce, Amazon, and Google in a tricky spot. Each is investing heavily in AI agents, but their definitions—and implementations—differ wildly. An Amazon agent is not the same as a Google agent, leading to confusion and, increasingly, customer frustration. Even industry insiders are growing weary of the term. Ryan Salva, senior director of product at Google and former GitHub Copilot leader, openly criticizes the overuse of “agents.” “I think our industry has stretched the term ‘agent’ to the point where it’s almost nonsensical,” Salva told TechCrunch. “[It is] one of my pet peeves.” A Definition in Flux The struggle to define AI agents isn’t new. Former TechCrunch reporter Ron Miller raised the question last year: What exactly is an AI agent? The challenge is that every company building them has a different answer. That confusion only deepened this past week. OpenAI published a blog post defining agents as “automated systems that can independently accomplish tasks on behalf of users.” Yet in its developer documentation, it described agents as “LLMs equipped with instructions and tools.” Adding to the inconsistency, OpenAI’s API product marketing lead, Leher Pathak, stated on X (formerly Twitter) that she sees “assistants” and “agents” as interchangeable—further muddying the waters. Microsoft attempts to make a distinction, describing agents as “the new apps” for an AI-powered world, while reserving “assistant” for more general task helpers like email drafting tools. Anthropic takes a broader approach, stating that agents can be “fully autonomous systems that operate independently over extended periods” or simply “prescriptive implementations that follow predefined workflows.” Salesforce, meanwhile, has perhaps the widest-ranging definition, describing agents as AI-driven systems that can “understand and respond to customer inquiries without human intervention.” It categorizes them into six types, from “simple reflex agents” to “utility-based agents.” Why the Confusion? The nebulous nature of AI agents is part of the problem. These systems are still evolving, and major players like OpenAI, Google, and Perplexity have only just begun rolling out their first versions—each with vastly different capabilities. But history also plays a role. Rich Villars, GVP of worldwide research at IDC, points out that tech companies have “a long history” of using flexible definitions for emerging technologies. “They care more about what they are trying to accomplish on a technical level,” Villars told TechCrunch, “especially in fast-evolving markets.” Marketing is another culprit. Andrew Ng, founder of DeepLearning.ai, argues that the term “agent” once had a clear technical meaning—until marketers and a few major companies co-opted it. The Double-Edged Sword of Ambiguity The lack of a standardized definition presents both opportunities and challenges. Jim Rowan, head of AI at Deloitte, notes that while the ambiguity allows companies to tailor agents to specific needs, it also leads to “misaligned expectations” and difficulty in measuring value and ROI. “Without a standardized definition, at least within an organization, it becomes challenging to benchmark performance and ensure consistent outcomes,” Rowan explains. “This can result in varied interpretations of what AI agents should deliver, potentially complicating project goals and results.” While a clearer framework for AI agents would help businesses maximize their investments, history suggests that the industry is unlikely to agree on a single definition—just as it never fully defined “AI” itself. For now, AI agents remain both a promising innovation and a marketing-driven enigma. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Rise of AI Agents: 2024 and Beyond

The Rise of AI Agents: 2024 and Beyond

In 2024, we witnessed major breakthroughs in AI agents. OpenAI’s o1 and o3 models demonstrated the ability to deconstruct complex tasks, while Claude 3.5 showcased AI’s capacity to interact with computers like humans—navigating interfaces and running software. These advancements, alongside improvements in memory and learning systems, are pushing AI beyond simple chat interactions into the realm of autonomous systems. AI agents are already making an impact in specialized fields, including legal analysis, scientific research, and technical support. While they excel in structured environments with defined rules, they still struggle with unpredictable scenarios and open-ended challenges. Their success rates drop significantly when handling exceptions or adapting to dynamic conditions. The field is evolving from conversational AI to intelligent systems capable of reasoning and independent action. Each step forward demands greater computational power and introduces new technical challenges. This article explores how AI agents function, their current capabilities, and the infrastructure required to ensure their reliability. What is an AI Agent? An AI agent is a system designed to reason through problems, plan solutions, and execute tasks using external tools. Unlike traditional AI models that simply respond to prompts, agents possess: Understanding the shift from passive responders to autonomous agents is key to grasping the opportunities and challenges ahead. Let’s explore the breakthroughs that have fueled this transformation. 2024’s Key Breakthroughs OpenAI o3’s High Score on the ARC-AGI Benchmark Three pivotal advancements in 2024 set the stage for autonomous AI agents: AI Agents in Action These capabilities are already yielding practical applications. As Reid Hoffman observed, we are seeing the emergence of specialized AI agents that extend human capabilities across various industries: Recent research from Sierra highlights the rapid maturation of these systems. AI agents are transitioning from experimental prototypes to real-world deployment, capable of handling complex business rules while engaging in natural conversations. The Road Ahead: Key Questions As AI agents continue to evolve, three critical questions for us all emerge: The next wave of AI innovation will be defined by how well we address these challenges. By building robust systems that balance autonomy with oversight, we can unlock the full potential of AI agents in the years ahead. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Build Launch and Track Campaigns

How to Create Professional Meeting Minutes Without MS Co-Pilot

Ever wondered how to draft professional meeting minutes without relying on MS Co-Pilot? While tools like Microsoft Teams can record meetings and generate transcripts, they often come with limitations. For instance, MS Teams requires an MS Co-Pilot subscription to analyze transcripts and create meeting minutes, and even with that, crafting effective prompts for such tools is essential for generating useful outputs. Recently, a colleague sent a meeting recording—without a transcript—and asked us to create the minutes. Here’s how we accomplished this task, step by step. Step 1: Transcribing the Meeting Recording Since AI models cannot directly process audio or video, the first step was to generate a text transcript of the recording. I used Microsoft Word’s Dictate → Transcribe feature, but encountered a roadblock: the recording exceeded the tool’s 300MB file size limit (it was 550MB). To bypass this, I extracted the audio from the video using VLC Media Player, a versatile media tool: With the audio file ready, I returned to Microsoft Word. This time, the smaller file successfully transcribed into a 45-page text document of decent quality. Step 2: Crafting a Prompt for Meeting Minutes Creating effective meeting minutes with an AI model requires a detailed, structured prompt. Think of it as giving precise instructions to a chef—vagueness leads to unsatisfactory results. I started with a simple XML-style prompt for ChatGPT (GPT-4), using tags to organize key elements: plaintextCopyEditYou are an expert in creating meeting minutes from a given transcript. Analyze the provided transcript and generate professional meeting minutes with the specified structure. <transcript> {{meeting_transcript.docx}} </transcript> <structure> – Main Points Discussed – Decisions, Resolutions, and Agreements – Summary of Differing Opinions (if any) – Action Items: Tasks assigned, responsible parties, and deadlines – Follow-Ups: Topics to revisit in future meetings </structure> <instructions> – Stick strictly to the transcript content. – Do not invent or infer information. – Keep the minutes objective, factual, and concise. – Ensure clarity and self-containment for future reference. </instructions> This prompt acted as a baseline, providing clarity and structure for the model to extract and summarize relevant details from the transcript. Step 3: Refining the Prompt Using Anthropic’s Workbench To improve the clarity and effectiveness of the prompt, I used Anthropic’s Workbench, which offers an automatic prompt enhancement tool. The goal was to refine the structure and optimize the instructions. Here’s the improved version generated by Anthropic: plaintextCopyEditYou are an expert in creating professional meeting minutes from transcripts. Analyze the provided transcript and organize the information systematically before drafting the minutes. <meeting_transcript> {{meeting_transcript.docx}} </meeting_transcript> <analysis_structure> 1. Main Points Discussed: – Key topics with relevant quotes from the transcript. 2. Decisions and Agreements: – Summary of resolutions with supporting quotes. 3. Differing Opinions (if any): – Notable disagreements or alternative viewpoints. 4. Action Items: – Tasks, responsible parties, and deadlines. 5. Follow-Up Topics: – Issues or items to revisit in future meetings. </analysis_structure> <guidelines> – Follow the analysis structure before drafting the final minutes. – Use clear, concise language and a professional tone. – Avoid unnecessary details and stick to transcript content. – Ensure the minutes are self-contained and explanatory. </guidelines> This enhanced prompt incorporated a “chain-of-thought” methodology, guiding the model to analyze and organize the information step by step before drafting the final minutes. Exploring Other Tools: OpenAI’s Prompt Improver I also tested OpenAI’s Prompt Improver in its Chat Playground, which generated a similarly refined prompt: plaintextCopyEditCreate professional meeting minutes from the provided transcript. Use the following structure and guidelines to ensure accuracy and clarity: **Transcript:** – File: {{meeting_transcript.docx}} **Structure:** – Main Points Discussed – Decisions and Agreements – Differing Opinions (if any) – Action Items – Follow-Up Topics **Instructions:** – Maintain objectivity and stick to the transcript content. – Use concise yet explanatory language. – Adhere strictly to the structure for clarity and reference. – Avoid unnecessary embellishments or personal insights. **Output Format:** – Use bullet points for clarity, with no more than one level of indentation. – Ensure the minutes are self-contained and useful for future reference. While effective, OpenAI’s output lacked the chain-of-thought methodology and example formatting provided by Anthropic’s tool, which resulted in less structured meeting minutes. Key Takeaways By following this approach, you can produce professional meeting minutes efficiently—no MS Co-Pilot subscription required. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
$15 Million to AI Training for U.S. Government Workforce

AI Adoption in the Federal Government

AI Adoption in the Federal Government: A New Era Under the Trump Administration With a new administration in Washington and a $500 billion AI infrastructure initiative underway, the U.S. federal government may be entering a phase of accelerated AI adoption. Federal AI Expansion AI adoption grew under the Biden administration, with agencies leveraging it for fraud detection, workflow automation, and data analysis. However, experts predict that the Trump administration will further expand federal AI use. “Trump and his advisers have spoken about ‘unleashing AI,’ signaling a push for broader adoption within government agencies,” said Darrell West, a senior fellow at the Brookings Institution’s Center for Technology Innovation. As the administration scales back AI safety regulations and deepens ties with major tech firms, federal AI usage is expected to rise. However, ensuring transparency and educating the public remain crucial for building trust in government AI applications. AI Governance Framework The foundation for federal AI governance was established under Trump’s first term, with executive orders EO 13859 (2019) and EO 13960 (2020). EO 13960 mandated an annual AI use case inventory, significantly expanding under Biden—from 710 cases in 2023 to 2,133 in 2024. Reggie Townsend, VP of Data Ethics at SAS and a National AI Advisory Committee (NAIAC) member, emphasized the importance of this transparency: “The inventory was a crucial first step in building public trust.” Biden’s EO 14110 (2023) introduced stronger AI guardrails, requiring agencies to designate chief AI officers, disclose safety-related AI use cases, and implement risk management guidelines. However, on his first day in office, Trump rescinded EO 14110, signaling a shift toward deregulation. AI Applications in Government The 2024 federal AI inventory reported 2,133 AI use cases across 41 agencies. The Department of Health and Human Services (HHS) led with 271 cases, reflecting a 66% increase from the previous year. Key applications include: Harvard Kennedy School adjunct lecturer Bruce Schneier anticipates even broader AI integration in government, from automating reports to drafting legislation and conducting audits. Despite growing interest, the federal government lags behind the private sector in AI adoption, especially for generative AI, due to concerns over bias, reliability, and transparency. AI Under a Second Trump Term Trump’s return to office in 2025 signals an AI policy shift favoring reduced oversight and enhanced global AI leadership. “Federal AI adoption will accelerate under Trump,” West said, citing efforts to integrate major tech figures into federal initiatives. Notably, Trump appointed xAI owner Elon Musk to lead the newly rebranded Department of Government Efficiency, formerly the U.S. Digital Service. This agency is tasked with modernizing federal technology, reducing costs, and driving deregulation. With EO 14110 rescinded, the scope of AI governance under Trump remains uncertain. “Will he eliminate all guardrails, or keep some protections? That’s something to watch,” West noted. Big Tech’s Role in Federal AI Trump’s inauguration underscored tech industry influence, with Elon Musk, Mark Zuckerberg, Jeff Bezos, and Sundar Pichai in attendance. Major tech firms, including Amazon, Google, and Microsoft, each contributed $1 million to the event, while OpenAI CEO Sam Altman made a personal $1 million donation. Some companies are aligning with the administration’s stance on AI and content moderation. Meta, for instance, has replaced its fact-checking services with a community-driven model similar to X’s Community Notes and relaxed its moderation policies. A deregulated AI landscape could benefit big tech, particularly in areas like AI safety standards and data copyright issues, while advancing the administration’s vision for U.S. AI dominance. AI’s Future in Government On his second day in office, Trump announced a $500 billion AI infrastructure investment, forming Stargate—a coalition of OpenAI, SoftBank, MGX, and Oracle—to expand AI infrastructure nationwide. “This will be the largest AI infrastructure project in history,” Trump declared, emphasizing the need for AI leadership against global competitors like China. However, West warned that accelerated adoption must be managed carefully: “It’s critical that AI is implemented fairly, with privacy and security safeguards in place.” Building AI Literacy Effective AI deployment requires education within federal agencies. “Many government workers lack AI expertise, making it difficult to procure and implement AI solutions effectively,” West said. NAIAC’s Townsend advocates for structured AI training, tailored to different federal roles. Public AI literacy is also crucial, with initiatives like the National AI Research Resource (NAIRR) promoting equitable access to AI education and development. “The public must be informed enough to hold the government accountable on AI issues,” Townsend concluded. As AI adoption accelerates, striking a balance between innovation, oversight, and public trust will define the next phase of federal AI policy. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
ChatGPT 5.0 is Coming

ChatGPT Search

OpenAI’s ChatGPT Search: Everything You Need to Know ChatGPT Search is OpenAI’s generative AI-powered search engine, designed to provide real-time information while eliminating the limitations of traditional language models’ knowledge cutoffs. It combines conversational AI with real-time web search, offering up-to-date insights, summaries, and more. Here’s a deep dive into what makes ChatGPT Search unique and how it compares to existing solutions like Google. Overcoming Knowledge Cutoffs Earlier iterations of OpenAI’s models, like GPT-4 (October 2023 cutoff) and GPT-3 (September 2021 cutoff), lacked the ability to access real-time data, a significant drawback for users seeking the latest information. By integrating live search capabilities, ChatGPT Search resolves this issue. Unlike traditional search engines like Google, which continuously crawl and update web indexes, ChatGPT combines the strengths of its GPT-4o model with live web access, bridging the gap between generative AI and real-time search. What Is ChatGPT Search? Launched on October 31, 2024, after being prototyped as “SearchGPT,” ChatGPT Search pairs OpenAI’s advanced language models with live web search. Initially available to ChatGPT Plus and Team users, it will expand to Enterprise, Education, and free-tier users by early 2025. Key Features of ChatGPT Search How Does It Work? ChatGPT Search leverages the following technologies: Accessing ChatGPT Search ChatGPT Search is accessible through multiple platforms: Why ChatGPT Search Challenges Google While Google dominates the search market, OpenAI’s ChatGPT Search introduces key differentiators: AI-Powered Search Engine Comparison Search Engine Platform Integration Publisher Collaboration Ads Cost ChatGPT Search OpenAI infrastructure Strong media partnerships Ad-free Free (Premium tiers planned) Google AI Overviews Google infrastructure SEO-focused partnerships Ads included Free Bing AI Microsoft infrastructure SEO-focused partnerships Ads included Free Perplexity AI Independent, standalone Basic attribution Ad-free Free; $20/month premium You.com Multi-mode AI assistant Basic attribution Ad-free Free; premium available Brave Search Independent index Basic attribution Ad-free Free The Roadmap for ChatGPT Search OpenAI has ambitious plans to refine and expand ChatGPT Search, including: Conclusion ChatGPT Search marks a pivotal shift in how users interact with AI and access information. By combining the generative power of GPT-4o with real-time search, OpenAI has created a tool that rivals traditional search engines with conversational AI, summarized insights, and ad-free functionality. As OpenAI continues to refine the platform, ChatGPT Search is poised to redefine the way we find and interact with information—offering a glimpse into the future of search. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
copilots and agentic ai

Transforming Industries and Redefining Workflows

The Rise of Agentic AI: Transforming Industries and Redefining Workflows Artificial Intelligence (AI) is evolving faster than we anticipated. No longer limited to predicting outcomes or generating content, AI systems are now capable of handling complex tasks and making autonomous decisions. This new era—driven by Agentic AI—is set to redefine the workplace and transform industries. From Prediction to Autonomy: The Three Waves of AI To understand where we’re headed, it’s important to see how far AI has come. Arun Parameswaran, SVP & MD of Salesforce India, describes it as a fundamental shift: “What has changed with agents is their ability to handle complex reasoning… and, most importantly, to take action.” Unlike previous AI models that recommend or predict, Agentic AI executes tasks, reshaping customer experiences and operational workflows. Agentic AI in Action: Industry Applications At a recent Mint x Salesforce India deep-dive event on AI, industry leaders explored how Agentic AI is driving transformation across sectors. The panel featured: Here’s how Agentic AI is already making an impact: 1. Revolutionizing Customer Support Traditional chatbots have limited capabilities. Agentic AI, however, understands urgency and context. 2. Accelerating Business Decisions In finance and supply chain management, AI agents analyze vast amounts of data and execute decisions autonomously. 3. Transforming Travel & Aviation Airlines are leveraging AI to optimize booking systems, reduce costs, and enhance efficiency. 4. Automating Wealth Management AI agents in financial services monitor markets, adjust strategies, and offer personalized investment recommendations in real time. The Risks & Responsibilities of Agentic AI With great autonomy comes great responsibility. The potential of Agentic AI is vast—but so are the challenges: The Future of Work: AI as a Partner, Not a Replacement Despite concerns about job displacement, AI is more likely to reshape rather than replace roles. What Are AI Agents? AI agents go beyond traditional models like ChatGPT or Gemini. They are proactive, self-learning systems that: They fall into two categories: “AI agents don’t just wait for commands; they anticipate needs and act,” says Dr. Tomer Simon, Chief Scientist at Microsoft Research Israel. AI Agents in the Workplace: A Shift in Roles AI agents streamline processes, but they don’t eliminate the need for human oversight. Salesforce’s Agentforce is a prime example: “Companies need to integrate AI, not fear it. Those who fail to adopt AI tools risk drowning in tasks AI can handle,” warns Dr. Omri Allouche, Chief Scientist at Gong. The Road Ahead: AI-Driven Business Growth Agentic AI is not about replacing people—it’s about empowering them. As organizations re-evaluate workflows and embrace AI collaboration, the companies that act early will gain a competitive edge in efficiency and innovation. Final Thought The AI revolution is here, and Agentic AI is at its forefront. The key question isn’t whether AI will transform industries—it’s how organizations will adapt and thrive in this new era. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Market Heat

AI Market Heat

Alibaba Feels the Heat as DeepSeek Shakes Up AI Market Chinese tech giant Alibaba is under pressure following the release of an AI model by Chinese startup DeepSeek that has sparked a major reaction in the West. DeepSeek claims to have trained its model—comparable to advanced Western AI—at a fraction of the cost and with significantly fewer AI chips. In response, Alibaba launched Qwen 2.5-Max, its latest AI language model, on Tuesday—just one day before the Lunar New Year, when much of China’s economy typically slows down for a 15-day holiday. A Closer Look at Qwen 2.5-Max Qwen 2.5-Max is a Mixture of Experts (MoE) model trained on 20 trillion tokens. It has undergone supervised fine-tuning and reinforcement learning from human feedback to enhance its capabilities. MoE models function by using multiple specialized “minds,” each focused on a particular domain. When a query is received, the model dynamically routes it to the most relevant expert, improving efficiency. For instance, a coding-related question would be processed by the model’s coding expert. This MoE approach reduces computational requirements, making training more cost-effective and faster. Other AI vendors, such as France-based Mistral AI, have also embraced this technique. DeepSeek’s Disruptive Impact While Qwen 2.5-Max is not a direct competitor to DeepSeek’s R1 model—the release of which triggered a global selloff in AI stocks—it is similar to DeepSeek-V3, another MoE-based model launched earlier this month. Alibaba’s swift release underscores the competitive threat posed by DeepSeek. As the world’s fourth-largest public cloud vendor, Alibaba, along with other Chinese tech giants, has been forced to respond aggressively. In the wake of DeepSeek R1’s debut, ByteDance—the owner of TikTok—also rushed to update its AI offerings. DeepSeek has already disrupted the AI market by significantly undercutting costs. In 2023, the startup introduced V2 at just 1 yuan ($0.14) per million tokens, prompting a price war. By comparison, OpenAI’s GPT-4 starts at $10 per million tokens—a staggering difference. The timing of Alibaba and ByteDance’s latest releases suggests that DeepSeek has accelerated product development cycles across the industry, forcing competitors to move faster than planned. “Alibaba’s cloud unit has been rapidly advancing its AI technology, but the pressure from DeepSeek’s rise is immense,” said Lisa Martin, an analyst at Futurum Group. A Shifting AI Landscape DeepSeek’s rapid growth reflects a broader shift in the AI market—one driven by leaner, more powerful models that challenge conventional approaches. “The drive to build more efficient models continues,” said Gartner analyst Arun Chandrasekaran. “We’re seeing significant innovation in algorithm design and software optimization, allowing AI to run on constrained infrastructure while being more cost-competitive.” This evolution is not happening in isolation. “AI companies are learning from one another, continuously reverse-engineering techniques to create better, cheaper, and more efficient models,” Chandrasekaran added. The AI industry’s perception of cost and scalability has fundamentally changed. Sam Altman, CEO of OpenAI, previously estimated that training GPT-4 cost over $100 million—but DeepSeek claims it built R1 for just $6 million. “We’ve spent years refining how transformers function, and the efficiency gains we’re seeing now are the result,” said Omdia analyst Bradley Shimmin. “These advances challenge the idea that massive computing power is required to develop state-of-the-art AI.” Competition and Data Controversies DeepSeek’s success showcases the increasing speed at which AI innovation is happening. Its distillation technique, which trains smaller models using insights from larger ones, has allowed it to create powerful AI while keeping costs low. However, OpenAI and Microsoft are now investigating whether DeepSeek improperly used their models’ data to train its own AI—a claim that, if true, could escalate into a major dispute. Ironically, OpenAI itself has faced similar accusations, leading some enterprises to prefer using its models through Microsoft Azure, which offers additional compliance safeguards. “The future of AI development will require stronger security layers,” Shimmin noted. “Enterprises need assurances that using models like Qwen 2.5 or DeepSeek R1 won’t expose their data.” For businesses evaluating AI models, licensing terms matter. Alibaba’s Qwen 2.5 series operates under an Apache 2.0 license, while DeepSeek uses an MIT license—both highly permissive, allowing companies to scrutinize the underlying code and ensure compliance. “These licenses give businesses transparency,” Shimmin explained. “You can vet the code itself, not just the weights, to mitigate privacy and security risks.” The Road Ahead The AI arms race between DeepSeek, Alibaba, OpenAI, and other players is just beginning. As vendors push the limits of efficiency and affordability, competition will likely drive further breakthroughs—and potentially reshape the AI landscape faster than anyone anticipated. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agent Rivalry

Generative AI in CX

Generative AI in CX: Opportunities and Challenges Generative AI offers the promise of transformative efficiency and innovation in customer experience (CX). However, businesses face significant hurdles in adopting the technology, including budget constraints, compliance challenges, and internal alignment issues. A Growing Gap Between Innovation and AdoptionCX technology vendors often outpace their customers in releasing advanced features. With generative AI, this gap feels wider than ever. For example, Zendesk’s CX Trends 2025 report revealed that over 25% of surveyed businesses have delayed AI adoption due to budgetary, knowledge, or organizational support barriers. Similarly, an October survey by NTT Data found that more than half of senior IT decision-makers had yet to align generative AI strategies with business goals. While only 39% of respondents reported significant investments in generative AI, most companies remain in early phases, such as pilots and trials. Some businesses, however, have no plans to invest at all. Early Adoption in CXDespite these challenges, early adopters are exploring generative AI applications in customer service and contact centers. AI-powered bots, or “agents,” are proving effective in summarizing answers and improving efficiency. However, deploying these agents requires substantial preparation, such as organizing customer data and defining roles and processes—a significant task for many IT teams. John Seeds, CMO at TTEC Digital, emphasized the importance of using generative AI internally first:“We start by addressing inconsistencies and cleaning up data. Once that’s done, businesses can present it effectively to reduce inbound calls and enhance self-service in contact centers.” Expanding Beyond Customer ServiceGenerative AI is also being embraced by marketing and e-commerce teams. Platforms like Salesforce, Google, and Sitecore have introduced tools that assist with campaign ideation and content creation. While these tools don’t always produce polished outputs, they serve as powerful starting points for creatives. The Generative AI RevolutionAI has been a staple in CX for years, powering analytics, natural language processing, and automation. But the release of OpenAI’s ChatGPT in late 2022 revolutionized the field. John Ball, SVP at ServiceNow, noted:“Generative AI has removed the need for handcrafting every dialogue or intent model. It opens up possibilities for chat and email recommendations without requiring as much manual setup.” Similarly, Salesforce AI executives, including Silvio Savarese, highlighted the technology’s unprecedented adoption:“It was incredible to see how quickly generative AI captured global attention,” Savarese said. Questions of Autonomy and TrustThe rise of AI agents introduces questions about trust and autonomy. Can bots make decisions that keep customers happy? What happens if they make mistakes? As companies explore these possibilities, many are focusing on augmenting human workflows rather than replacing them entirely. For example, Trimedx plans to use ServiceNow’s generative AI to automate report generation for its clinical hardware in hospitals. This application aims to save time while supporting human decision-making. Similarly, Siemens has deployed its own AI “bionic agent” to handle tasks like supply chain management, with generative AI accelerating customization and productivity. Regulatory and Ethical ConsiderationsAs adoption grows, so do concerns around compliance and copyright. The Biden administration’s recent CX-related regulations, including a ban on junk fees, could influence how AI is integrated into business processes. Additionally, initiatives like Adobe’s Content Authenticity Initiative aim to ensure transparency in AI-generated content by providing tools to verify the origins and editing history of digital assets. The Road AheadGenerative AI holds immense potential to transform CX by improving efficiency, reducing costs, and driving innovation. However, businesses must address challenges in data readiness, compliance, and ethical usage to fully realize its benefits. While early adopters are making strides, widespread success will depend on thoughtful implementation and alignment with organizational goals. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentic AI is Here

On Premise Gen AI

In 2025, enterprises transitioning generative AI (GenAI) into production after years of experimentation are increasingly considering on-premises deployment as a cost-effective alternative to the cloud. Since OpenAI ignited the AI revolution in late 2022, organizations have tested large language models powering GenAI services on platforms like AWS, Microsoft Azure, and Google Cloud. These experiments demonstrated GenAI’s potential to enhance business operations while exposing the substantial costs of cloud usage. To avoid difficult conversations with CFOs about escalating cloud expenses, CIOs are exploring on-premises AI as a financially viable solution. Advances in software from startups and packaged infrastructure from vendors such as HPE and Dell are making private data centers an attractive option for managing costs. A survey conducted by Menlo Ventures in late 2024 found that 47% of U.S. enterprises with at least 50 employees were developing GenAI solutions in-house. Similarly, Informa TechTarget’s Enterprise Strategy Group reported a rise in enterprises considering on-premises and public cloud equally for new applications—from 37% in 2024 to 45% in 2025. This shift is reflected in hardware sales. HPE reported a 16% revenue increase in AI systems, reaching $1.5 billion in Q4 2024. During the same period, Dell recorded a record .6 billion in AI server orders, with its sales pipeline expanding by over 50% across various customer segments. “Customers are seeking diverse AI-capable server solutions,” noted David Schmidt, senior director of Dell’s PowerEdge server line. While heavily regulated industries have traditionally relied on on-premises systems to ensure data privacy and security, broader adoption is now driven by the need for cost control. Fortune 2000 companies are leading this trend, opting for private infrastructure over the cloud due to more predictable expenses. “It’s not unusual to see cloud bills exceeding 0,000 or even million per month,” said John Annand, an analyst at Info-Tech Research Group. Global manufacturing giant Jabil primarily uses AWS for GenAI development but emphasizes ongoing cost management. “Does moving to the cloud provide a cost advantage? Sometimes it doesn’t,” said CIO May Yap. Jabil employs a continuous cloud financial optimization process to maximize efficiency. On-Premises AI: Technology and Trends Enterprises now have alternatives to cloud infrastructure, including as-a-service solutions like Dell APEX and HPE GreenLake, which offer flexible pay-per-use pricing for AI servers, storage, and networking tailored for private data centers or colocation facilities. “The high cost of cloud drives organizations to seek more predictable expenses,” said Tiffany Osias, vice president of global colocation services at Equinix. Walmart exemplifies in-house AI development, creating tools like a document summarization app for its benefits help desk and an AI assistant for corporate employees. Startups are also enabling enterprises to build AI applications with turnkey solutions. “About 80% of GenAI requirements can now be addressed with push-button solutions from startups,” said Tim Tully, partner at Menlo Ventures. Companies like Ragie (RAG-as-a-service) and Lamatic.ai (GenAI platform-as-a-service) are driving this innovation. Others, like Squid AI, integrate custom AI agents with existing enterprise infrastructure. Open-source frameworks like LangChain further empower on-premises development, offering tools for creating chatbots, virtual assistants, and intelligent search systems. Its extension, LangGraph, adds functionality for building multi-agent workflows. As enterprises develop AI applications internally, consulting services will play a pivotal role. “Companies offering guidance on effective AI tool usage and aligning them with business outcomes will thrive,” Annand said. This evolution in AI deployment highlights the growing importance of balancing technological innovation with financial sustainability. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Autonomy, Architecture, and Action

Redefining AI Agents: Autonomy, Architecture, and Action AI agents are reshaping how technology interacts with us and executes tasks. Their mission? To reason, plan, and act independently—following instructions, making autonomous decisions, and completing actions, often without user involvement. These agents adapt to new information, adjust in real time, and pursue their objectives autonomously. This evolution in agentic AI is revolutionizing how goals are accomplished, ushering in a future of semi-autonomous technology. At their foundation, AI agents rely on one or more large language models (LLMs). However, designing agents is far more intricate than building chatbots or generative assistants. While traditional AI applications often depend on user-driven inputs—such as prompt engineering or active supervision—agents operate autonomously. Core Principles of Agentic AI Architectures To enable autonomous functionality, agentic AI systems must incorporate: Essential Infrastructure for AI Agents Building and deploying agentic AI systems requires robust software infrastructure that supports: Agent Development Made Easier with Langflow and Astra DB Langflow simplifies the development of agentic applications with its visual IDE. It integrates with Astra DB, which combines vector and graph capabilities for ultra-low latency data access. This synergy accelerates development by enabling: Transforming Autonomy into Action Agentic AI is fundamentally changing how tasks are executed by empowering systems to act autonomously. By leveraging platforms like Astra DB and Langflow, organizations can simplify agent design and deploy scalable, effective AI applications. Start building the next generation of AI-powered autonomy today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Generative AI Energy Consumption Rises

Generative AI Tools

Generative AI Tools: A Comprehensive Overview of Emerging Capabilities The widespread adoption of generative AI services like ChatGPT has sparked immense interest in leveraging these tools for practical enterprise applications. Today, nearly every enterprise app integrates generative AI capabilities to enhance functionality and efficiency. A broad range of AI, data science, and machine learning tools now support generative AI use cases. These tools assist in managing the AI lifecycle, governing data, and addressing security and privacy concerns. While such capabilities also aid in traditional AI development, this discussion focuses on tools specifically designed for generative AI. Not all generative AI relies on large language models (LLMs). Emerging techniques generate images, videos, audio, synthetic data, and translations using methods such as generative adversarial networks (GANs), diffusion models, variational autoencoders, and multimodal approaches. Here is an in-depth look at the top categories of generative AI tools, their capabilities, and notable implementations. It’s worth noting that many leading vendors are expanding their offerings to support multiple categories through acquisitions or integrated platforms. Enterprises may want to explore comprehensive platforms when planning their generative AI strategies. 1. Foundation Models and Services Generative AI tools increasingly simplify the development and responsible use of LLMs, initially pioneered through transformer-based approaches by Google researchers in 2017. 2. Cloud Generative AI Platforms Major cloud providers offer generative AI platforms to streamline development and deployment. These include: 3. Use Case Optimization Tools Foundation models often require optimization for specific tasks. Enterprises use tools such as: 4. Quality Assurance and Hallucination Mitigation Hallucination detection tools address the tendency of generative models to produce inaccurate or misleading information. Leading tools include: 5. Prompt Engineering Tools Prompt engineering tools optimize interactions with LLMs and streamline testing for bias, toxicity, and accuracy. Examples include: 6. Data Aggregation Tools Generative AI tools have evolved to handle larger data contexts efficiently: 7. Agentic and Autonomous AI Tools Developers are creating tools to automate interactions across foundation models and services, paving the way for autonomous AI. Notable examples include: 8. Generative AI Cost Optimization Tools These tools aim to balance performance, accuracy, and cost effectively. Martian’s Model Router is an early example, while traditional cloud cost optimization platforms are expected to expand into this area. Generative AI tools are rapidly transforming enterprise applications, with foundational, cloud-based, and domain-specific solutions leading the way. By addressing challenges like accuracy, hallucination, and cost, these tools unlock new potential across industries and use cases, enabling enterprises to stay ahead in the AI-driven landscape. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com