ADA Archives - gettectonic.com
Agentic AI Race

Transforming Business Operations Through Autonomous Intelligence

Understanding Agentic AI Agentic AI represents a paradigm shift in artificial intelligence, moving beyond static automation to dynamic systems capable of independent decision-making and real-time adaptation. Unlike traditional rule-based automation, these AI agents can: According to Thadeous Goodwyn of Booz Allen Hamilton, agentic AI achieves objectives by breaking them into subtasks delegated to specialized AI models. This capability is accelerating rapidly due to advances in large language models and generative AI. 10 Transformative Use Cases of Agentic AI 1. Cybersecurity & Risk Management AI agents are revolutionizing security operations by: 2. Supply Chain Optimization Agentic AI transforms logistics by: 3. Advanced Customer Service Beyond basic chatbots, agentic AI enhances support by: 4. Call Center Automation Modern contact centers leverage agentic AI to: 5. Scientific Discovery & R&D In research applications, AI agents: 6. Defense Logistics Planning Military applications include: 7. Smart Manufacturing Agentic systems streamline production by: 8. Utility Infrastructure Management Energy providers use agentic AI for: 9. Multimedia Content Creation Beyond basic generation, agentic AI: 10. Knowledge Management Modern retrieval systems: Implementation Considerations While 26% of enterprises are actively exploring agentic AI (per Deloitte), adoption requires addressing: The Future of Autonomous Operations As noted by industry experts, agentic AI represents more than incremental improvement – it enables fundamentally new ways of working. Organizations that successfully implement these systems will gain: ✔ Enhanced operational resilience✔ Improved decision velocity✔ Greater process efficiency✔ New competitive advantages The transition requires careful planning but offers transformative potential across virtually every industry sector. As the technology matures, agentic AI will increasingly become the cornerstone of intelligent business operations. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AI and UX Design

The AI Frontier Code: Laws for Taming the Wild West of UX

The digital frontier is lawless. Interfaces without intelligence. Intelligence without empathy. Designers building for yesterday while AI reshapes tomorrow. Teams drowning in possibility, paralyzed by complexity, lost in the noise of a thousand AI snake oil salesmen peddling confusion. The old rulebooks are ashes. The familiar trails have vanished. We stand at the edge of a new territory, watching the very nature of human-machine interaction transform before our eyes. But from chaos comes order. Just as the Code of the West brought structure to the untamed frontier, the AI era demands new ironclad laws—unyielding principles to guide us through this uncharted land. These aren’t suggestions. These aren’t guidelines. These are the Laws of the AI Frontier—the difference between those who’ll shape the future and those who’ll be left in the dust. As trailblazer Rob Chappell observes: “The future ain’t about guiding users from point A to B. It’s about forging bonds between people and thinking machines.” These laws are your survival guide for that journey. Branded in silicon, etched in circuits, sworn by the pioneers who’ll build tomorrow. I. The Interface IS the Intelligence The First Law: In AI territory, your UI is your brain Forget pretty wrappers around dumb tools. In this new land, every pixel shapes how the AI thinks. Every interaction teaches it how to behave. Every design choice forges its character. When you craft a notification, you’re not picking colors—you’re setting when the AI interrupts. When you design a conversation, you’re not writing words—you’re teaching metal minds how to speak human. As scout Rachel Kobetz warns: “Intelligence ain’t hidden behind the interface no more—it IS the interface. When systems learn and adapt, experience ain’t downstream from strategy. It IS the strategy.” How to stay lawful: The punishment for lawbreakers: Interfaces that feel fake, AI that seems alien, and users who’ll never trust your metal partner enough to ride together. II. Scout Tomorrow’s Trails Today The Second Law: Pioneers blaze trails—settlers just follow ruts While greenhorns debate whether AI changes design, you should be building that change. The future belongs to those who see past the horizon, who bridge to lands that don’t exist yet, who turn raw possibility into working reality. Don’t wait for briefs—write ’em. Don’t wait for strategy—create it. Don’t wait for permission—plant your flag. How to stay lawful: The punishment for lawbreakers: Eternal catch-up, always reacting instead of leading, watching others claim the future you could’ve owned. III. Show Your Hand The Third Law: Trust is the only currency that matters Users need to know more than what happened—they need confidence in what’ll happen next. In a land of black-box algorithms, transparency is the bridge between human doubt and digital trust. But clarity beats raw disclosure. Your duty is to reveal AI’s workings in ways that enlighten, not overwhelm. Think control maps—not journey maps. Don’t just chart what users do. Show who’s holding the reins—human, AI, or both—and when that changes. As Chappell notes: “The question ain’t ‘What’s the user doing?’ It’s ‘Who’s calling the shots right now, and how does that change?’” How to stay lawful: The punishment for lawbreakers: Users who never fully trust your AI, limiting its potential, dooming it to be just another broken promise in this wild land. IV. Ride Together The Fourth Law: The future’s human AND AI—not human OR AI Your job ain’t to protect humans from machines or replace cowboys with automatons. Your mission is to choreograph the dance between human gut and machine logic—partnerships that bring out the best in both. Design for the “autonomy slider”—a fluid scale where control flows between: This ain’t an on-off switch—it’s a continuous flow, creating what the wise call “co-agency.” How to stay lawful: The punishment for lawbreakers: AI that feels threatening instead of helpful, users who fight your “improvements,” and missing the magic of true partnership. The Oath: Living by the Code These laws ain’t gentle suggestions—they’re the bedrock of tomorrow’s AI UX. Every designer who’ll matter in the intelligence era lives by them. Every product that truly transforms human potential reflects them. To follow this code is to: To ignore them is to: The choice is yours, pioneer. Every designer today faces a decision that’ll define not just their career, but how humans and machines will work together for generations. You can cling to the old ways—the comfortable rules of pre-AI UX, the safety of known patterns, the ease of reactive design. Or you can swear by this new code, strap on your tools, and help write the next chapter of human-digital history. The laws are carved. The trail awaits. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Why Domain-Specific AI Models Are Outperforming Generic LLMs in Enterprise Applications

Salesforce Hits One Million AI Agent-Customer Conversations, Revealing Key Insights

Since launching AI agents on the Salesforce Help site in October 2024, Salesforce has facilitated over one million AI-powered customer interactions. The platform, which receives more than 60 million annual visits, offers users a streamlined, intuitive support experience. These AI agents have handled everything from routine queries like “How do I cook spaghetti?” to unconventional requests such as “Only answer in hip-hop lyrics.” Through these interactions, Salesforce has gained a crucial insight: For AI to excel in customer service, it must combine intelligence with empathy—mirroring the best qualities of human support teams. 3 Best Practices for AI-Powered Customer Service 1. Content is King, Variety is Queen An AI agent’s effectiveness depends entirely on the quality, accuracy, and diversity of its data. Salesforce’s AI agents leverage 740,000+ structured and unstructured content pieces, including: However, not all content is useful. Salesforce discovered outdated materials, conflicting terminology, and poorly formatted data. To address this, the company implemented continuous content reviews with human experts, ensuring AI responses remain accurate, relevant, and context-aware. Key Takeaway: AI agents must integrate structured data (CRM records, transaction history) with unstructured data (customer interactions, forums) to deliver personalized, intelligent responses. Salesforce’s zero-copy network enables seamless data access without duplication, enhancing efficiency. 2. A Smart AI Agent Needs a Dynamic Brain and a Caring Heart AI agents must learn and adapt continuously, not rely on static scripts. Salesforce’s “knowledge cycle” includes: But intelligence alone isn’t enough—empathy matters. Early restrictions (e.g., blocking competitor mentions) sometimes backfired. Salesforce shifted to high-level guidance (e.g., “Prioritize Salesforce’s best interests”), allowing AI to navigate nuance. Key Learnings: 3. Prioritize Empathy from the Start The best technical answer falls flat without emotional intelligence. Salesforce trains its AI agents to lead with empathy, especially in high-stress scenarios like outages. Example: Instead of jumping to troubleshooting, AI agents now: This approach builds trust and reassurance, proving AI can be both smart and compassionate. The Future: A Hybrid Workforce of Humans & AI Salesforce’s journey highlights that AI success requires balance: Final Lesson: “Go fast, but don’t hurry.” AI adoption demands experimentation, iteration, and a commitment to both efficiency and humanity. The result? Better experiences for customers, employees, and partners alike. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Salesforce

How Salesforce Powers Next-Gen B2C Experiences

Tectonic Shift: How Salesforce Powers Next-Gen B2C Experiences The Modern B2C Imperative In today’s instant-gratification economy, medium and large B2C brands face unprecedented pressure to deliver hyper-personalized, seamless experiences across retail, fashion, electronics, and beyond. Customers now expect: Yet many brands remain trapped by fragmented systems that create disjointed experiences. The solution? A tectonic shift to unified platforms that break down silos between sales, marketing, commerce, and service. Why Traditional Approaches Fail 1. The Silo Syndrome 2. Analytics Black Holes 3. The Retention Paradox The Salesforce Advantage Salesforce B2C solutions create seismic improvements by unifying the entire customer journey: 1. The Data Foundation 2. AI-Powered Personalization 3. Commerce Reimagined B2C Commerce Cloud enables: Proven Impact: The YETI Story Challenge: Launch immersive drinkware campaign fastSolution: Salesforce Composable StorefrontResults: The Tectonic Difference Where other consultancies offer incremental improvements, Tectonic delivers ground-shifting transformations: Make Your Move The landscape is shifting. Brands that adapt will dominate; those clinging to legacy systems risk being left behind. Ready to transform your B2C experience?Tectonic’s Salesforce experts can help you: The future belongs to connected experiences. Start building yours today. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
agentforce testing center

Agentforce Testing Center

A New Framework for Reliable AI Agent Testing Testing traditional software is well understood, but AI agents introduce unique challenges. Their responses can vary based on interactions, memory, tool access, and sometimes inherent randomness. This unpredictability makes agent testing difficult—especially when repeatability, safety, and clarity are critical. Enter the Agentforce Testing Center. Agentforce Testing Center (ATC), part of Salesforce’s open-source Agentforce ecosystem, provides a structured framework to simulate, test, and monitor AI agent behavior before deployment. It supports real-world scenarios, tool mocking, memory control, guardrails, and test coverage—bringing testing discipline to dynamic agent environments. This insight explores how ATC works, its key differences from traditional testing, and how to set it up for Agentforce-based agents. We’ll cover test architecture, mock tools, memory injection, coverage tracking, and real-world use cases in SaaS, fintech, and HR. Why AI Agents Need a New Testing Paradigm? AI agents powered by LLMs don’t follow fixed instructions—they reason, adapt, and interact with tools and memory. Traditional testing frameworks assume: ✅ Deterministic inputs/outputs✅ Predefined state machines✅ Synchronous, linear flows But agentic systems are: ❌ Probabilistic (LLM outputs vary)❌ Stateful (memory affects decisions)❌ Non-deterministic (tasks may take different paths) Without proper testing, hallucinations, tool misuse, or logic loops can slip into production. Agentforce Testing Center bridges this gap by simulating realistic, repeatable agent behavior. What Is Agentforce Testing Center? ATC is a testing framework for Agentforce-based AI agents, offering: How ATC Works: Architecture & Testing Flow ATC wraps the Agentforce agent loop in a controlled testing environment: Step-by-Step Setup 1. Install Agentforce + ATC bash Copy Download pip install agentforce atc *(Requires Python 3.8+)* 2. Define a Test Scenario python Copy Download from atc import TestScenario scenario = TestScenario( name=”Customer Support Ticket”, goal=”Resolve a refund request”, memory_seed={“prior_chat”: “User asked about refund policy”} ) 3. Mock Tools python Copy Download scenario.mock_tool( name=”payment_api”, mock_response={“status”: “refund_approved”} ) 4. Add Assertions python Copy Download scenario.add_assertion( condition=lambda output: “refund” in output.lower(), error_message=”Agent failed to process refund” ) 5. Run & Analyze python Copy Download results = scenario.run() print(results.report()) Sample Output: text Copy Download ✅ Test Passed: Refund processed correctly 🛑 Tool Misuse: Called CRM API without permission ⚠️ Coverage Gap: Missing fallback logic Advanced Testing Patterns 1. Loop Detection Prevent agents from repeating actions indefinitely: python Copy Download scenario.add_guardrail(max_steps=10) 2. Regression Testing for LLM Upgrades Compare outputs between model versions: python Copy Download scenario.compare_versions( current_model=”gpt-4″, previous_model=”gpt-3.5″ ) 3. Multi-Agent Testing Validate workflows with multiple agents (e.g., research → writer → reviewer): python Copy Download scenario.test_agent_flow( agents=[researcher, writer, reviewer], expected_output=”Accurate, well-structured report” ) Best Practices for Agent Testing Real-World Use Cases Industry Agent Use Case Test Scenario SaaS Sales Copilot Generate follow-up email for healthcare lead Fintech Fraud Detection Bot Flag suspicious wire transfer HR Tech Resume Screener Rank top candidates with Python skills The Future of Agent Testing As AI agents move from prototypes to production, reliable testing is critical. Agentforce Testing Center provides: ✔ Controlled simulations (memory, tools, scenarios)✔ Actionable insights (coverage, guardrails, regressions)✔ CI/CD integration (automate safety checks) Start testing early—unchecked agents quickly become technical debt. Ready to build trustworthy AI agents?Agentforce Testing Center ensures they behave as expected—before they reach users. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
How Graph Databases and AI Agents Are Redefining Modern Data Strategy

How Graph Databases and AI Agents Are Redefining Modern Data Strategy

The Data Tightrope: How Graph Databases and AI Agents Are Redefining Modern Data Strategy The Data Leader’s Dilemma: Speed vs. Legacy Today’s data leaders face an impossible balancing act: The gap between expectation and reality is widening. Businesses demand faster insights, deeper connections, and decisions that can’t wait—yet traditional databases weren’t built for this dynamic world. The Problem with Traditional Databases Relational databases force data into predefined tables, stripping away context and relationships. Need to analyze new connections? Prepare for:✔ Schema redesigns✔ Costly ETL pipelines✔ Slow, complex joins Result: Data becomes siloed, insights are delayed, and innovation stalls. Graph Databases: The Flexible Future of Data What Makes Graphs Different? Unlike rigid tables, graph databases store data as: Example: An e-commerce graph instantly reveals: No joins. No schema redesigns. Just direct, real-time traversal. Why Graphs Are Winning Now The Next Leap: AI-Powered, Self-Evolving Graphs Static graphs are powerful—but AI agents make them intelligent. How AI Agents Supercharge Graphs From Static Data to Living Knowledge Traditional graphs:❌ Manually updated❌ Fixed structure❌ Limited to known queries AI-augmented graphs:✅ Self-learning (adds/removes connections dynamically)✅ Adapts to new questions✅ Gets smarter with every query The Business Impact: Smarter, Faster, Cheaper 1. Break Down Silos Without Rebuilding Pipelines 2. Autonomous Decision-Making 3. Democratized Intelligence The Future: Graphs as Invisible Infrastructure In 2–3 years, AI-powered graphs will be as essential as cloud storage—ubiquitous, self-maintaining, and silently powering:✔ Hyper-personalized customer experiences✔ Real-time risk mitigation✔ Cross-functional insights How to Start Today The Bottom Line Static data is dead. The future belongs to dynamic, self-learning graphs powered by AI. The question isn’t if you’ll adopt this approach—it’s how fast you can start. → Innovators will leverage graphs as competitive moats.→ Laggards will drown in unconnected data. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More

Agentforce AI Platform Expands with 200+ Prebuilt Agents

Salesforce has rapidly scaled its Agentforce AI platform, now offering over 200 prebuilt AI agents—a significant leap from the handful available at its October 2024 launch. This expansion addresses a critical challenge for businesses: how to effectively deploy AI automation without extensive technical overhead. Solving the AI Implementation Challenge Enterprises are eager to adopt AI but often struggle with execution. Martin Kihn, SVP of Market Strategy at Salesforce Marketing Cloud, explains: “Customers were excited about AI’s potential but asked, ‘Can I really make this work?’ We took that feedback and built ready-to-use agents that simplify adoption.” Rather than leaving businesses to build AI solutions from scratch, Salesforce’s strategy focuses on preconfigured, customizable agents that accelerate deployment across industries. Proven Business Impact Early adopters of Agentforce are already seeing measurable results: According to Slack’s upcoming Workforce Index, AI agent adoption has surged 233% in six months, with 8,000+ Salesforce clients now using Agentforce. Adam Evans, EVP & GM of Salesforce AI, states: “Agentforce unifies AI, data, and apps into a digital labor platform—helping companies realize agentic AI’s potential today.” Agentforce 3: Scaling AI with Transparency In June 2025, Salesforce launched Agentforce 3, introducing key upgrades for enterprise-scale AI management: Kihn notes: “Most prebuilt agents are a starting point—helping customers overcome hesitation and envision AI’s possibilities.” Once businesses embrace the technology, the use cases become limitless. The Human vs. AI Agent Debate A major challenge for enterprises is how human-like AI agents should appear. Early chatbots attempted to mimic people, but Kihn warns: “Humans excel at detecting non-humans. If an AI pretends to be human, then transfers you to a real agent, it erodes trust.” Salesforce’s Approach: Clarity Over Imitation Kihn illustrates the risk: “Imagine confiding in a ‘sympathetic’ AI agent about a health issue, only to learn it’s not human. That damages trust.” What’s Next for Agentforce? With thousands of AI agents already deployed, Salesforce continues refining the platform. Kihn compares the rapid evolution to “learning to drive an F1 car while racing.” As businesses increasingly adopt AI automation, Agentforce’s library of prebuilt solutions positions Salesforce as a leader in practical, scalable AI deployment. The future? More agents, smarter workflows, and seamless enterprise AI integration. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More

From Ancient Oracles to Modern AI

The Science and Limits of Predicting the Future: From Ancient Oracles to Modern AI The Enduring Human Fascination with Prediction Throughout human history, the ability to foresee future events has held immense cultural and practical value. In ancient Greece, individuals ranging from kings to common citizens sought guidance from oracles like the Pythia at Delphi, whose cryptic pronouncements shaped military campaigns and personal decisions. The 16th century saw Nostradamus gain fame for prophecies that appeared remarkably accurate—until closer examination revealed their retrospective flexibility. Modern society has replaced divination with data-driven forecasting, yet fundamental challenges persist. As Nobel laureate Niels Bohr observed, “Prediction is very difficult, especially when it comes to the future.” This axiom holds true whether examining: The Mechanics of Modern Forecasting Scientific prediction relies on five key principles: When these conditions align—as in weather forecasting—predictions achieve notable accuracy. The European Centre for Medium-Range Weather Forecasts’ 5-day predictions now match the accuracy of 1-day forecasts from 1980. Similarly, climate models consistently project global warming trends despite annual variability. Predictive Breakdowns: When Models Fail Structural changes create what machine learning experts call “concept drift,” where historical data becomes irrelevant. The COVID-19 pandemic demonstrated this dramatically: The financial sector faces even greater challenges due to reflexivity—where predictions influence the behaviors they attempt to forecast. As George Soros noted, “Market prices are always wrong in the sense that they present a biased view of the future.” The AI Revolution in Prediction Large language models (LLMs) like ChatGPT represent a predictive breakthrough by mastering sequential word prediction. Their success stems from: Recent advances suggest even chaotic systems may become partially predictable through neural networks. University of Maryland researchers demonstrated how machine learning can forecast aspects of chaotic systems without explicit equations—though fundamental limits remain. Quantum Uncertainty and the Future of Forecasting Two 20th century scientific revolutions reshaped our understanding of predictability: While machine learning can optimize probabilistic predictions, current evidence suggests it cannot overcome quantum uncertainty’s ontological barriers. As physicist Richard Feynman observed, “Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical.” Conclusion: The Evolving Frontier of Prediction From Delphi to deep learning, humanity’s quest to foresee the future continues evolving. Modern tools have replaced mystical pronouncements with statistical models, yet essential limitations persist. The most accurate predictions occur in systems where: As machine learning advances, new predictive frontiers emerge—from protein folding to economic tipping points. Yet the fundamental truth remains: the future retains its essential unpredictability, ensuring our continued need for both scientific rigor and adaptive resilience. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
gettectonic.com