AI Agents Archives - gettectonic.com

Mastering the AI Agent Revolution

Mastering the AI Agent Revolution: Boomi’s Blueprint for Enterprise Success The AI Imperative: Transform or Fall Behind AI is reshaping business at unprecedented speed – from automating routine tasks to enabling breakthrough innovations. Yet most enterprises struggle to harness its full potential, trapped by what Boomi identifies as “the data problem everyone ignores.” “AI is only as effective as the data foundation it’s built on,” warns Chris Hallenbeck, Boomi’s SVP of AI & Platform. “Without addressing data quality, integration and governance, AI initiatives are doomed to underdeliver.” The Rise of Agentic AI: Opportunity Meets Complexity Agentic AI represents the next evolutionary leap – autonomous digital workers that: “Within two years, we won’t be logging into systems – AI agents will handle everything,” predicts Boomi CEO Steve Lucas. “Enterprises will manage millions of agents, creating unprecedented scale.” But this power comes with profound challenges: The Governance Imperative: Beyond “Nice-to-Have” As AI agents enter production environments, robust governance becomes non-negotiable. Organizations must track:✔ Model versions and approval chains✔ Decision rationale with explainable AI✔ Comprehensive activity logging✔ Confidence scoring for autonomous actions “Auditors will demand full visibility into agent operations,” Hallenbeck emphasizes. “Retrofitting governance is exponentially harder than building it in from the start.” Boomi’s Agent Lifecycle Solution Boomi’s AI Agent Management Platform provides an enterprise-grade framework for agent orchestration: “We’re creating the connective tissue for the agent ecosystem,” explains Lucas. “Our platform unifies fragmented frameworks from Google, Amazon and Microsoft while preventing vendor lock-in.” Building Trust Through Measured Adoption Successful AI integration requires more than technology – it demands organizational trust. Boomi’s proven approach: “Our sales teams achieved 50% productivity lifts using AI agents,” shares CMO Alison Biggan. “When employees see tangible benefits, adoption follows naturally.” The Competitive Divide Enterprises face a stark choice: “The question isn’t whether to adopt agentic AI,” concludes Lucas. “It’s whether your organization has the vision and discipline to do it right.” Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Agentic AI Race

Transforming Business Operations Through Autonomous Intelligence

Understanding Agentic AI Agentic AI represents a paradigm shift in artificial intelligence, moving beyond static automation to dynamic systems capable of independent decision-making and real-time adaptation. Unlike traditional rule-based automation, these AI agents can: According to Thadeous Goodwyn of Booz Allen Hamilton, agentic AI achieves objectives by breaking them into subtasks delegated to specialized AI models. This capability is accelerating rapidly due to advances in large language models and generative AI. 10 Transformative Use Cases of Agentic AI 1. Cybersecurity & Risk Management AI agents are revolutionizing security operations by: 2. Supply Chain Optimization Agentic AI transforms logistics by: 3. Advanced Customer Service Beyond basic chatbots, agentic AI enhances support by: 4. Call Center Automation Modern contact centers leverage agentic AI to: 5. Scientific Discovery & R&D In research applications, AI agents: 6. Defense Logistics Planning Military applications include: 7. Smart Manufacturing Agentic systems streamline production by: 8. Utility Infrastructure Management Energy providers use agentic AI for: 9. Multimedia Content Creation Beyond basic generation, agentic AI: 10. Knowledge Management Modern retrieval systems: Implementation Considerations While 26% of enterprises are actively exploring agentic AI (per Deloitte), adoption requires addressing: The Future of Autonomous Operations As noted by industry experts, agentic AI represents more than incremental improvement – it enables fundamentally new ways of working. Organizations that successfully implement these systems will gain: ✔ Enhanced operational resilience✔ Improved decision velocity✔ Greater process efficiency✔ New competitive advantages The transition requires careful planning but offers transformative potential across virtually every industry sector. As the technology matures, agentic AI will increasingly become the cornerstone of intelligent business operations. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Why Domain-Specific AI Models Are Outperforming Generic LLMs in Enterprise Applications

Salesforce Hits One Million AI Agent-Customer Conversations, Revealing Key Insights

Since launching AI agents on the Salesforce Help site in October 2024, Salesforce has facilitated over one million AI-powered customer interactions. The platform, which receives more than 60 million annual visits, offers users a streamlined, intuitive support experience. These AI agents have handled everything from routine queries like “How do I cook spaghetti?” to unconventional requests such as “Only answer in hip-hop lyrics.” Through these interactions, Salesforce has gained a crucial insight: For AI to excel in customer service, it must combine intelligence with empathy—mirroring the best qualities of human support teams. 3 Best Practices for AI-Powered Customer Service 1. Content is King, Variety is Queen An AI agent’s effectiveness depends entirely on the quality, accuracy, and diversity of its data. Salesforce’s AI agents leverage 740,000+ structured and unstructured content pieces, including: However, not all content is useful. Salesforce discovered outdated materials, conflicting terminology, and poorly formatted data. To address this, the company implemented continuous content reviews with human experts, ensuring AI responses remain accurate, relevant, and context-aware. Key Takeaway: AI agents must integrate structured data (CRM records, transaction history) with unstructured data (customer interactions, forums) to deliver personalized, intelligent responses. Salesforce’s zero-copy network enables seamless data access without duplication, enhancing efficiency. 2. A Smart AI Agent Needs a Dynamic Brain and a Caring Heart AI agents must learn and adapt continuously, not rely on static scripts. Salesforce’s “knowledge cycle” includes: But intelligence alone isn’t enough—empathy matters. Early restrictions (e.g., blocking competitor mentions) sometimes backfired. Salesforce shifted to high-level guidance (e.g., “Prioritize Salesforce’s best interests”), allowing AI to navigate nuance. Key Learnings: 3. Prioritize Empathy from the Start The best technical answer falls flat without emotional intelligence. Salesforce trains its AI agents to lead with empathy, especially in high-stress scenarios like outages. Example: Instead of jumping to troubleshooting, AI agents now: This approach builds trust and reassurance, proving AI can be both smart and compassionate. The Future: A Hybrid Workforce of Humans & AI Salesforce’s journey highlights that AI success requires balance: Final Lesson: “Go fast, but don’t hurry.” AI adoption demands experimentation, iteration, and a commitment to both efficiency and humanity. The result? Better experiences for customers, employees, and partners alike. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
OpenAI and the Agentic Race

AI Adoption Soars Among Desk Workers, Boosting Productivity and Job Satisfaction

The daily use of AI among desk workers has surged by 233% in just six months, according to the latest Slack Workforce Index report released by Salesforce. The study, conducted by research firm Qualtrics, surveyed 5,156 desk workers across Australia, France, Germany, Japan, the UK, and the US between April 9 and May 1. Notably, the survey did not target Slack or Salesforce employees or customers. The findings reveal a significant shift in how workers leverage AI—they are now 154% more likely to use it for creative and strategic tasks rather than just automation. Daily AI users report higher productivity and job satisfaction, with 64% rating their productivity as “very good” and 81% experiencing very high job satisfaction. Millennials Lead AI Adoption, AI Expands Skillsets Millennials are the most active AI adopters in the workplace, with 33% using AI daily, slightly ahead of Gen Z at 28%. Remarkably, 96% of AI users say the technology has helped them complete tasks beyond their existing skillsets. “AI adoption is accelerating rapidly, transforming work for the better,” said Peter Doolan, Slack’s EVP and Chief Customer Officer. “As more workers embrace AI, businesses can unlock greater productivity while empowering employees to focus on high-impact work.” Trust in AI Grows with Frequent Use The study highlights increasing confidence in AI tools, particularly among daily users. Workers who interact with AI agents daily are twice as likely to trust the technology compared to infrequent or non-users. “As workers experiment with AI, their trust and enthusiasm grow,” said Lucas Puente, Slack’s VP of Research. “They’re not only unlocking new capabilities but discovering fresh opportunities in their daily work.” AI Enhances Connection, Not Isolation Contrary to fears that AI might reduce human interaction, the data suggests the opposite. Daily AI users are 246% more likely to feel connected to colleagues and report a 62% higher sense of belonging at work. Additionally: AI also boosts performance in key areas:✔ Reducing the need for extensive research✔ Enhancing writing and communication✔ Supporting brainstorming and overcoming creative blocks Workers Want AI for Strategic Tasks The report also found strong demand for AI assistance in: Implications for South Africa’s Digital Transformation Linda Saunders, Salesforce’s Country Manager and Senior Director of Solution Engineering for Africa, noted that the findings offer insights for South Africa’s evolving AI landscape. “The global shift toward AI-driven creativity and strategy reflects what we can expect locally,” Saunders said. “As South Africa advances in digital transformation, AI will be crucial in unlocking productivity. Forward-thinking organizations must invest in skills and infrastructure now to stay competitive.” The report underscores AI’s growing role in reshaping work, fostering collaboration, and driving efficiency—signaling a transformative shift in the modern workplace. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Building the Intelligent Enterprise Network

Building the Intelligent Enterprise Network

Blueprint for the Agentic AI Era: Building the Intelligent Enterprise Network The Next Frontier: Agentic AI Demands a New Network Paradigm At Cisco Live 2024, company executives unveiled a strategic vision for enterprise AI that goes beyond today’s generative capabilities. As Jeetu Patel, Cisco’s Chief Product Officer, stated: “We’re witnessing one of the most consequential technological shifts in history—the move from reactive AI assistants to autonomous agentic systems that execute complex workflows.” This transition requires fundamental changes to enterprise infrastructure. Where generative AI focused on content creation, agentic AI introduces self-directed software agents that:✅ Operate autonomously across systems✅ Make real-time decisions without human intervention✅ Coordinate multi-step business processes Cisco’s Three Pillars for Agentic AI Success 1. Simplified Network Operations with AI Cisco is unifying its Catalyst and Meraki platforms into a single AI-powered management console featuring: “The future isn’t just AI-assisted ops—it’s agentic ops where AI systems autonomously maintain network health,” noted DJ Sampath, SVP of AI Platform at Cisco. 2. AI-Optimized Hardware Infrastructure New product releases specifically designed for AI workloads:🔹 Catalyst 9800-X Series – 400Gbps switches with AI-optimized ASICs🔹 Silicon One G200 Routers – Built-in NGFW and SD-WAN for distributed AI🔹 Wi-Fi 7 Access Points – 320MHz channels for high-density AI agent traffic 3. Security-Infused Network Fabric Cisco’s “Zero Trust by Design” approach incorporates: Why Networking is AI’s Make-or-Break Factor Patel highlighted a critical insight: “GPUs are only as good as their data pipelines. An idle GPU waiting for packets is like burning cash.” Cisco’s internal benchmarks show: 📉 30% GPU utilization on poorly configured networks📈 92% utilization on Cisco’s AI-optimized infrastructure The difference comes from: The Agentic AI Future: Beyond Hype to Transformation While some dismiss AI as overhyped, Cisco executives argue the true revolution is just beginning: “Agentic AI won’t just answer questions—it will create original insights and solve problems we couldn’t approach before. But this requires rethinking every layer of infrastructure.”— Jeetu Patel, EVP & Chief Product Officer, Cisco Early adopters are already seeing results: Preparing Your Enterprise Cisco recommends three immediate actions: “The companies that win will be those that build networks where AI agents thrive as first-class citizens,” Patel concluded. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
agentforce testing center

Agentforce Testing Center

A New Framework for Reliable AI Agent Testing Testing traditional software is well understood, but AI agents introduce unique challenges. Their responses can vary based on interactions, memory, tool access, and sometimes inherent randomness. This unpredictability makes agent testing difficult—especially when repeatability, safety, and clarity are critical. Enter the Agentforce Testing Center. Agentforce Testing Center (ATC), part of Salesforce’s open-source Agentforce ecosystem, provides a structured framework to simulate, test, and monitor AI agent behavior before deployment. It supports real-world scenarios, tool mocking, memory control, guardrails, and test coverage—bringing testing discipline to dynamic agent environments. This insight explores how ATC works, its key differences from traditional testing, and how to set it up for Agentforce-based agents. We’ll cover test architecture, mock tools, memory injection, coverage tracking, and real-world use cases in SaaS, fintech, and HR. Why AI Agents Need a New Testing Paradigm? AI agents powered by LLMs don’t follow fixed instructions—they reason, adapt, and interact with tools and memory. Traditional testing frameworks assume: ✅ Deterministic inputs/outputs✅ Predefined state machines✅ Synchronous, linear flows But agentic systems are: ❌ Probabilistic (LLM outputs vary)❌ Stateful (memory affects decisions)❌ Non-deterministic (tasks may take different paths) Without proper testing, hallucinations, tool misuse, or logic loops can slip into production. Agentforce Testing Center bridges this gap by simulating realistic, repeatable agent behavior. What Is Agentforce Testing Center? ATC is a testing framework for Agentforce-based AI agents, offering: How ATC Works: Architecture & Testing Flow ATC wraps the Agentforce agent loop in a controlled testing environment: Step-by-Step Setup 1. Install Agentforce + ATC bash Copy Download pip install agentforce atc *(Requires Python 3.8+)* 2. Define a Test Scenario python Copy Download from atc import TestScenario scenario = TestScenario( name=”Customer Support Ticket”, goal=”Resolve a refund request”, memory_seed={“prior_chat”: “User asked about refund policy”} ) 3. Mock Tools python Copy Download scenario.mock_tool( name=”payment_api”, mock_response={“status”: “refund_approved”} ) 4. Add Assertions python Copy Download scenario.add_assertion( condition=lambda output: “refund” in output.lower(), error_message=”Agent failed to process refund” ) 5. Run & Analyze python Copy Download results = scenario.run() print(results.report()) Sample Output: text Copy Download ✅ Test Passed: Refund processed correctly 🛑 Tool Misuse: Called CRM API without permission ⚠️ Coverage Gap: Missing fallback logic Advanced Testing Patterns 1. Loop Detection Prevent agents from repeating actions indefinitely: python Copy Download scenario.add_guardrail(max_steps=10) 2. Regression Testing for LLM Upgrades Compare outputs between model versions: python Copy Download scenario.compare_versions( current_model=”gpt-4″, previous_model=”gpt-3.5″ ) 3. Multi-Agent Testing Validate workflows with multiple agents (e.g., research → writer → reviewer): python Copy Download scenario.test_agent_flow( agents=[researcher, writer, reviewer], expected_output=”Accurate, well-structured report” ) Best Practices for Agent Testing Real-World Use Cases Industry Agent Use Case Test Scenario SaaS Sales Copilot Generate follow-up email for healthcare lead Fintech Fraud Detection Bot Flag suspicious wire transfer HR Tech Resume Screener Rank top candidates with Python skills The Future of Agent Testing As AI agents move from prototypes to production, reliable testing is critical. Agentforce Testing Center provides: ✔ Controlled simulations (memory, tools, scenarios)✔ Actionable insights (coverage, guardrails, regressions)✔ CI/CD integration (automate safety checks) Start testing early—unchecked agents quickly become technical debt. Ready to build trustworthy AI agents?Agentforce Testing Center ensures they behave as expected—before they reach users. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
10 AI-Powered Strategies for Smarter Salesforce Lead Management with Agentforce

Salesforce’s AI Transformation

Salesforce’s AI Transformation: 30-50% of Work Now Automated, Says Benioff AI Reshaping the Workforce at Salesforce Salesforce CEO Marc Benioff has revealed that artificial intelligence now handles 30-50% of work across key company functions, marking a significant milestone in enterprise AI adoption. In an interview on The Circuit with Emily Chang, Benioff highlighted how AI is fundamentally changing operations in: The New AI Productivity Standard Benioff’s disclosure reflects an industry-wide shift: Salesforce’s AI-First Strategy The CRM leader is doubling down on AI with:✔ Autonomous customer service tools requiring minimal human oversight✔ Einstein AI platform integrations across sales, service, and marketing clouds✔ “Higher-value work” transition for human employees Historical Context Meets Future Vision Having revolutionized cloud software in the 2000s, Salesforce now positions itself as an AI platform company: The Bigger Picture Benioff’s comments underscore three critical trends: “We’re entering an era where AI handles the predictable so humans can focus on the exceptional,” Benioff noted, framing the change as augmentation rather than replacement. As Salesforce continues weaving AI throughout its platform, the company demonstrates how rapidly emerging technologies are reshaping business operations at scale. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
How Graph Databases and AI Agents Are Redefining Modern Data Strategy

How Graph Databases and AI Agents Are Redefining Modern Data Strategy

The Data Tightrope: How Graph Databases and AI Agents Are Redefining Modern Data Strategy The Data Leader’s Dilemma: Speed vs. Legacy Today’s data leaders face an impossible balancing act: The gap between expectation and reality is widening. Businesses demand faster insights, deeper connections, and decisions that can’t wait—yet traditional databases weren’t built for this dynamic world. The Problem with Traditional Databases Relational databases force data into predefined tables, stripping away context and relationships. Need to analyze new connections? Prepare for:✔ Schema redesigns✔ Costly ETL pipelines✔ Slow, complex joins Result: Data becomes siloed, insights are delayed, and innovation stalls. Graph Databases: The Flexible Future of Data What Makes Graphs Different? Unlike rigid tables, graph databases store data as: Example: An e-commerce graph instantly reveals: No joins. No schema redesigns. Just direct, real-time traversal. Why Graphs Are Winning Now The Next Leap: AI-Powered, Self-Evolving Graphs Static graphs are powerful—but AI agents make them intelligent. How AI Agents Supercharge Graphs From Static Data to Living Knowledge Traditional graphs:❌ Manually updated❌ Fixed structure❌ Limited to known queries AI-augmented graphs:✅ Self-learning (adds/removes connections dynamically)✅ Adapts to new questions✅ Gets smarter with every query The Business Impact: Smarter, Faster, Cheaper 1. Break Down Silos Without Rebuilding Pipelines 2. Autonomous Decision-Making 3. Democratized Intelligence The Future: Graphs as Invisible Infrastructure In 2–3 years, AI-powered graphs will be as essential as cloud storage—ubiquitous, self-maintaining, and silently powering:✔ Hyper-personalized customer experiences✔ Real-time risk mitigation✔ Cross-functional insights How to Start Today The Bottom Line Static data is dead. The future belongs to dynamic, self-learning graphs powered by AI. The question isn’t if you’ll adopt this approach—it’s how fast you can start. → Innovators will leverage graphs as competitive moats.→ Laggards will drown in unconnected data. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More

Agentforce AI Platform Expands with 200+ Prebuilt Agents

Salesforce has rapidly scaled its Agentforce AI platform, now offering over 200 prebuilt AI agents—a significant leap from the handful available at its October 2024 launch. This expansion addresses a critical challenge for businesses: how to effectively deploy AI automation without extensive technical overhead. Solving the AI Implementation Challenge Enterprises are eager to adopt AI but often struggle with execution. Martin Kihn, SVP of Market Strategy at Salesforce Marketing Cloud, explains: “Customers were excited about AI’s potential but asked, ‘Can I really make this work?’ We took that feedback and built ready-to-use agents that simplify adoption.” Rather than leaving businesses to build AI solutions from scratch, Salesforce’s strategy focuses on preconfigured, customizable agents that accelerate deployment across industries. Proven Business Impact Early adopters of Agentforce are already seeing measurable results: According to Slack’s upcoming Workforce Index, AI agent adoption has surged 233% in six months, with 8,000+ Salesforce clients now using Agentforce. Adam Evans, EVP & GM of Salesforce AI, states: “Agentforce unifies AI, data, and apps into a digital labor platform—helping companies realize agentic AI’s potential today.” Agentforce 3: Scaling AI with Transparency In June 2025, Salesforce launched Agentforce 3, introducing key upgrades for enterprise-scale AI management: Kihn notes: “Most prebuilt agents are a starting point—helping customers overcome hesitation and envision AI’s possibilities.” Once businesses embrace the technology, the use cases become limitless. The Human vs. AI Agent Debate A major challenge for enterprises is how human-like AI agents should appear. Early chatbots attempted to mimic people, but Kihn warns: “Humans excel at detecting non-humans. If an AI pretends to be human, then transfers you to a real agent, it erodes trust.” Salesforce’s Approach: Clarity Over Imitation Kihn illustrates the risk: “Imagine confiding in a ‘sympathetic’ AI agent about a health issue, only to learn it’s not human. That damages trust.” What’s Next for Agentforce? With thousands of AI agents already deployed, Salesforce continues refining the platform. Kihn compares the rapid evolution to “learning to drive an F1 car while racing.” As businesses increasingly adopt AI automation, Agentforce’s library of prebuilt solutions positions Salesforce as a leader in practical, scalable AI deployment. The future? More agents, smarter workflows, and seamless enterprise AI integration. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
The Rise of Conceptual AI

Emerging AI Interface Paradigms

The 7 Emerging AI Interface Paradigms Shaping the Future of UX The rise of LLMs and AI agents has supercharged traditional UI patterns like chatbots—but the real breakthrough lies in embedding AI into sophisticated, task-driven interfaces. From right-panel assistants to semantic spreadsheets, these spatial layouts aren’t just design choices—they fundamentally shape how users discover, trust, and interact with AI. This article explores seven emerging AI interface layouts, analyzing how each influences user expectations, discoverability, and agent capabilities. 1. The Customer Service Agent (Chatbot Widget) Example: Zendesk, IntercomLayout: Floating bottom-right chat window Key Traits: ✅ Discoverability: Subtle yet persistent, avoiding disruption.✅ Interaction Pattern: Asynchronous, lightweight support—users open/close as needed.✅ Agent’s Role: Reactive helper—handles FAQs, order lookups, password resets. Modern AI adds memory, personalization, and automation.❌ Limitations: Not built for proactive, multi-step reasoning or deep collaboration. 2. The Precision Assistant (Inline Overlay Prompts) Example: Notion AI, GrammarlyLayout: Context-aware suggestions within text (underlines, hovers, popovers) Key Traits: ✅ Discoverability: Triggered by user actions (typing, selecting).✅ Interaction Pattern: Micro-level edits—accept, tweak, or regenerate instantly.✅ Agent’s Role: A surgical editor—rephrases sentences, completes code snippets, adjusts tone.❌ Limitations: Struggles with open-ended creativity or multi-step logic. 3. The Creative Collaborator (Infinite Canvas) Example: TLDraw, Figma, MiroLayout: Boundless 2D workspace with AI-triggered element enhancements Key Traits: ✅ Discoverability: AI surfaces when hovering/selecting objects (stickies, shapes, text).✅ Interaction Pattern: Parallel AI calls—generate, rename, or refine canvas elements without breaking flow.✅ Agent’s Role: A visual co-creator—suggests layouts, refines ideas, augments sketches.❌ Limitations: Weak at version control or document-wide awareness. 4. The General-Purpose Assistant (Center-Stage Chat) Example: ChatGPT, Perplexity, MidjourneyLayout: Full-width conversational pane with prompt-first input Key Traits: ✅ Discoverability: Minimalist—focused on the input box.✅ Interaction Pattern: Freeform prompting—iterative refinements via follow-ups.✅ Agent’s Role: A broad-knowledge helper—answers questions, writes, codes, designs.❌ Limitations: Poor for structured workflows (e.g., app building, form filling). 5. The Strategic Partner (Left-Panel Co-Creator) Example: ChatGPT Canvas, LovableLayout: Persistent left-side chat panel + right-side workspace Key Traits: ✅ Discoverability: Aligns with F-shaped scanning—keeps AI always accessible.✅ Interaction Pattern: Multi-turn ideation—users refine outputs in real time.✅ Agent’s Role: A thought partner—structures complex projects (code, docs, designs).❌ Limitations: Overkill for lightweight tasks; vague prompts risk errors. 6. The Deep-Context Expert (Right-Panel Assistant) Example: GitHub Copilot, Microsoft Copilot, Gmail GeminiLayout: Collapsible right-hand panel for on-demand help Key Traits: ✅ Discoverability: Non-intrusive but available—stays out of the way until needed.✅ Interaction Pattern: Just-in-time assistance—debugs code, drafts emails, summarizes docs.✅ Agent’s Role: A specialist—understands deep context (coding, legal, enterprise).❌ Limitations: Not ideal for AI-first experiences; novices may overlook it. 7. The Distributed Research Agent (Semantic Spreadsheet) Example: AnswerGrid, ElicitLayout: AI-powered grid where each cell acts as a mini-agent Key Traits: ✅ Discoverability: Feels familiar (rows, columns) but autofills intelligently.✅ Interaction Pattern: Prompt-to-grid—AI scrapes data, synthesizes research, populates cells.✅ Agent’s Role: A data synthesis engine—automates research, compiles reports.❌ Limitations: Requires structured thinking; spreadsheet-savvy users only. Conclusion: AI Interfaces Are a New Design Frontier LLMs aren’t just tools—they’re a new computing medium. Just as GUIs and mobile reshaped UX decades ago, AI demands rethinking where intelligence lives in our products. Key Takeaways: 🔹 Spatial layout dictates perceived AI role (assistant vs. co-creator vs. expert).🔹 Discoverability & trust depend on placement (left/right/center).🔹 The best AI interfaces feel invisible—enhancing workflows, not disrupting them. The future belongs to context-aware, embedded AI—not just chatbots. Which paradigm will dominate your product? Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More

Agentic AI

Agentic AI: The Next Frontier in Business Transformation The AI Maturity Gap: A Wake-Up Call for Businesses Despite massive investments in AI, only 1% of companies believe they’ve reached full maturity, according to recent data. Even with billions poured into Generative AI, Capgemini reports that just 24% of organizations have scaled it across most functions—meaning 76% are still experimenting without significant impact. Enter Agentic AI—the next evolution in artificial intelligence. Unlike today’s reactive, prompt-dependent AI, Agentic AI systems operate autonomously, making decisions, adapting to changes, and executing workflows with minimal human intervention. These agents combine reasoning with automation, transforming not just customer experience (CX) but also revolutionizing how employees work. From firsthand experience in developing proof-of-concepts (PoCs) for incident management, we’ve seen how Agentic AI enhances employee experience (EX), which in turn drives better customer outcomes. The link between EX and CX has never been stronger—improvements in one directly fuel progress in the other. The Internal Revolution: Elevating Employee Experience Agentic AI shifts from rule-based automation to goal-driven autonomy. These agents learn from outcomes, adapt in real time, and make decisions within defined parameters—freeing employees from repetitive tasks and enabling strategic work. Transforming Incident Management We recently worked with a client to develop an Agentic AI solution for Major Incident Management (MIM)—a critical process where delays can lead to revenue loss and reputational damage. The goal? Reduce root-cause identification and resolution time for high-priority incidents (P1/P2). While full results remain confidential, early indicators show: Technical Gains ✔ Faster detection & response✔ Consistent troubleshooting✔ Preserved institutional knowledge✔ Parallel task processing Efficiency Improvements ✔ Reduced Mean Time to Resolution (MTTR)✔ 24/7 operations without fatigue✔ Automated documentation✔ Optimized human resource allocation Business Impact ✔ Better EX & CX✔ Lower operational costs✔ Reduced risk exposure Beyond Incident Management: Vodafone’s AI Leap Vodafone’s hybrid GenAI strategy is already unlocking efficiencies in network management, with AI agents like VINA enabling autonomous operations. Partnering with Google Cloud, Vodafone uses GenAI for network automation, including image-based site assessments for solar panel installations. Additionally, Vodafone is deploying Agentic AI with ServiceNow to predict and mitigate service disruptions, improving both employee workflows and customer service. The CX Cascade Effect: How Internal AI Elevates Customer Experience When internal processes become smarter and faster, customers reap the benefits—through faster resolutions, proactive support, and seamless service. The Cascade in Action Vodafone’s £140M investment in SuperTOBi (a GenAI-powered chatbot built on Microsoft Azure OpenAI) has cut response times and enhanced answer quality. Meanwhile, AI tools analyzing call success rates are helping create “super agents” who improve with each interaction. Other companies seeing success: This shift toward anticipatory service—where AI predicts issues before they arise—is becoming a competitive necessity. The Future: Orchestrating AI Agents at Scale The next frontier is connecting multiple AI agents across internal and customer-facing workflows, enabling end-to-end automation. A Framework for Orchestration Real-World Success Stories Lessons from the Field: How to Succeed with Agentic AI While enthusiasm is high, most companies struggle to extract real business value from GenAI. Agentic AI requires a new mindset. Here’s what works: ✅ Start with well-defined processes (high-volume, measurable tasks)✅ Maintain human oversight (security, compliance, risk mitigation)✅ Prioritize change management (training, communication, overcoming resistance)✅ Build governance frameworks (role-based access, audit trails) Preparing for the Agentic Future: Strategy Over Scale Agentic AI adoption is accelerating fast (Slack reports 233% growth in AI usage in six months). Companies must act strategically: 🔹 Pilot First: Vodafone & Google Cloud’s 2024 hackathon generated 13 real-world use cases—proving rapid experimentation works.🔹 Invest in Platform Capabilities: Pre-built agent skills speed deployment.🔹 Focus on Business Outcomes: This is not just efficiency—it’s transformation. Some firms are even exploring “zero-FTE” departments (fully AI-operated). But the real opportunity lies in human-AI collaboration, not replacement. Final Thoughts: The Competitive Edge Goes to Early Movers Agentic AI isn’t just an incremental upgrade—it’s a paradigm shift toward autonomous, intelligent workflows. Companies that adopt early will outperform competitors in both employee productivity and customer satisfaction. The future isn’t about managing AI—it’s about collaborating with AI agents that think, act, and optimize in real time. The Choice Is Yours: Lead or Follow? The Agentic AI revolution has begun. Will your organization pioneer the change—or play catch-up? Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Ensuring Trust in AI Agent Deployment

Ensuring Trust in AI Agent Deployment

Ensuring Trust in AI Agent Deployment: A Secure Approach to Business Transformation The Imperative for Trustworthy AI Agents AI agents powered by platforms like Agentforce represent a significant advancement in business automation, offering capabilities ranging from enhanced customer service to intelligent employee assistance. However, organizations face a critical challenge in adopting this technology: establishing sufficient trust to deploy AI agents with sensitive data and core business operations. Recent industry research highlights prevalent concerns: Salesforce has maintained trust as its foundational value throughout its 25-year history, adapting this principle across technological evolutions from cloud computing to generative AI. The company now applies this same rigorous approach to AI agent deployment through a comprehensive trust framework. The Four Essential Components of Trusted AI Implementation 1. Comprehensive Data Governance Framework The reliability of AI agents depends fundamentally on data quality and security. The Salesforce platform addresses this through: Data Protection Systems Advanced Data Management Industry experts emphasize that robust AI systems require equally robust data foundations. 2. Secure Integration Architecture AI agents require safe interaction channels with other systems: 3. Built-in Development Safeguards The platform incorporates multiple layers of protection throughout the AI lifecycle: 4. Proprietary Trust Layer A specialized security interface between users and large language models offers: Case Study: Healthcare Transformation with Precina Precina’s implementation demonstrates the platform’s capabilities in a regulated environment. By unifying patient records through Agentforce while maintaining HIPAA compliance, the organization achieved: Precina’s CTO noted that Salesforce’s cybersecurity standards enabled trust equivalent to their own care standards when handling patient information. Enterprise AI: Balancing Innovation and Responsibility Salesforce leadership emphasizes that the company’s quarter-century of experience in secure solutions uniquely positions it to guide enterprises through AI adoption. The integration of unified data management, intuitive development tools, and embedded governance enables organizations to deploy AI solutions that are both transformative and responsible. The recommended implementation approach includes: In the evolving landscape of enterprise AI, Salesforce positions trust not just as a corporate value but as a critical competitive differentiator for organizations adopting these technologies. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
gettectonic.com