Blend Archives - gettectonic.com

Taiba Investments Partners with Salesforce to Revolutionize Saudi Hospitality with AI-Driven Customer Experience

Saudi Hospitality Leader Embarks on Digital Transformation Journey Riyadh, Saudi Arabia – Taiba Investments, a premier hospitality and real estate company in the Kingdom, has announced a strategic partnership with Salesforce, the global leader in AI-powered customer relationship management (CRM) solutions. The collaboration will implement Salesforce Customer 360 across Taiba’s extensive portfolio, elevating guest experiences and operational efficiency through cutting-edge digital transformation. Redefining Hospitality Through Technology As part of this landmark agreement, Taiba Investments will work with Horizontal Digital, a top-tier Salesforce Summit Partner, to deploy an integrated CRM platform that will: Leadership Perspectives: A New Era for Saudi Hospitality Hassan Ahdab, Chief Hospitality Operations Officer at Taiba Investments, stated:“Our partnership with Salesforce reflects Taiba’s commitment to operational excellence and guest-centric innovation. By leveraging world-class CRM solutions, we’re poised to deliver unmatched, personalized hospitality experiences across Saudi Arabia.” Mohammed Al Khotani, SVP & Managing Director at Salesforce Middle East, added:*”We’re proud to support Taiba Investments in setting new industry benchmarks. Salesforce Customer 360 will empower them to blend Saudi hospitality traditions with AI-driven innovation, redefining guest experiences in the region.”* Strategic Growth & Industry Leadership The Road Ahead: AI, Personalization & Seamless Guest Experiences This digital transformation positions Taiba Investments to:✔ Anticipate guest needs with predictive analytics✔ Streamline operations through automation✔ Deliver hyper-personalized stays via AI-powered engagement By integrating Salesforce Customer 360, Taiba is not just modernizing its operations—it’s shaping the future of Saudi hospitality. About Taiba InvestmentsA pioneer in Saudi Arabia’s hospitality and real estate sectors, Taiba Investments combines local expertise with global partnerships to deliver exceptional guest experiences across its diverse portfolio. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AI Interface Paradox

AI Interface Paradox

The AI Interface Paradox: Why the Search Box is Failing Generative AI The Google Legacy: How Search Conditioned Our Digital Behavior Google’s revolutionary insight wasn’t algorithmic—it was psychological. By stripping away all complexity from search interfaces (remember AltaVista’s cluttered filters?), they created what became the most ingrained digital behavior pattern of the internet age: This elegant simplicity made Google the gateway to the internet. But it also created an unshakable mental model that now hampers AI adoption. The Cognitive Dissonance of AI Interfaces Today’s AI tools present users with a cruel irony: The exact same empty text box that promised effortless answers now demands programming-like precision. The Fundamental Mismatch Google Search Generative AI Works with fragments (“weather paris”) Requires structured prompts (“Act as a meteorologist…”) Delivers finished results Needs iterative refinement Single interaction Requires multi-turn conversations Predictable outcomes Wildly variable quality This explains why: Why the Search Metaphor Fails AI 1. The Blank Canvas Problem The same empty box is asked to handle: Without interface cues, users experience choice paralysis—like being handed a single blank sheet of paper when you need both a spreadsheet and a paintbrush. 2. The Conversation Illusion Elizabeth Laraki’s Madrid itinerary struggle reveals the flaw: human collaboration isn’t linear. We: Current chat UIs force all interaction through a sequential text tunnel, losing the richness of real collaboration. 3. The Hidden Grammar Requirement Effective prompting requires skills most users lack: This creates a participation gap where only power users benefit. Blueprint for the Post-Search Interface Emerging solutions point to five key principles for next-gen AI interfaces: 1. Context-Aware Launchpads Instead of blank slates, interfaces should offer: Example: Notion AI’s “/” command menu that suggests context-appropriate actions. 2. Adaptive Input Modalities Task Type Optimal Input Visual design Image upload + text Data analysis File import + natural language Creative writing Voice dictation Programming Code snippet + comments 3. Collaborative Workspaces Moving beyond chat streams to: Example: Vercel’s v0 design mode that blends generation with direct manipulation. 4. Guided Co-Creation Instead of silent processing, interfaces should: 5. Specialized Agents Ecosystem A shift from monolithic AI to: The Coming Interface Revolution The companies that crack this will do for AI what Google did for search—not by improving what exists, but by reimagining interaction from first principles. Early signs suggest: As NN/g’s research confirms, the future belongs to outcome-oriented interfaces that adapt to goals rather than forcing users through static workflows. What This Means for Adoption Until interfaces evolve, we’ll remain in the “early adopter phase” where: The breakthrough will come when AI interfaces stop pretending to be search boxes and start embracing their true nature—dynamic collaboration spaces. When that happens, we’ll see the real AI revolution begin. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Data Governance for the AI Enterprise

A Strategic Approach to Governing Enterprise AI Systems

The Imperative of AI Governance in Modern Enterprises Effective data governance is widely acknowledged as a critical component of deploying enterprise AI applications. However, translating governance principles into actionable strategies remains a complex challenge. This article presents a structured approach to AI governance, offering foundational principles that organizations can adapt to their needs. While not exhaustive, this framework provides a starting point for managing AI systems responsibly. Defining Data Governance in the AI Era At its core, data governance encompasses the policies and processes that dictate how organizations manage data—ensuring proper storage, access, and usage. Two key roles facilitate governance: Traditional data systems operate within deterministic governance frameworks, where structured schemas and well-defined hierarchies enable clear rule enforcement. However, AI introduces non-deterministic challenges—unstructured data, probabilistic decision-making, and evolving models—requiring a more adaptive governance approach. Core Principles for Effective AI Governance To navigate these complexities, organizations should adopt the following best practices: Multi-Agent Architectures: A Governance Enabler Modern AI applications should embrace agent-based architectures, where multiple AI models collaborate to accomplish tasks. This approach draws from decades of distributed systems and microservices best practices, ensuring scalability and maintainability. Key developments facilitating this shift include: By treating AI agents as modular components, organizations can apply service-oriented governance principles, improving oversight and adaptability. Deterministic vs. Non-Deterministic Governance Models Traditional (Deterministic) Governance AI (Non-Deterministic) Governance Interestingly, human governance has long managed non-deterministic actors (people), offering valuable lessons for AI oversight. Legal systems, for instance, incorporate checks and balances—acknowledging human fallibility while maintaining societal stability. Mitigating AI Hallucinations Through Specialization Large language models (LLMs) are prone to hallucinations—generating plausible but incorrect responses. Mitigation strategies include: This mirrors real-world expertise—just as a medical specialist provides domain-specific advice, AI agents should operate within bounded competencies. Adversarial Validation for AI Governance Inspired by Generative Adversarial Networks (GANs), AI governance can employ: This adversarial dynamic improves quality over time, much like auditing processes in human systems. Knowledge Management: The Backbone of AI Governance Enterprise knowledge is often fragmented, residing in: To govern this effectively, organizations should: Ethics, Safety, and Responsible AI Deployment AI ethics remains a nuanced challenge due to: Best practices include: Conclusion: Toward Responsible and Scalable AI Governance AI governance demands a multi-layered approach, blending:✔ Technical safeguards (specialized agents, adversarial validation).✔ Process rigor (knowledge certification, human oversight).✔ Ethical foresight (bias mitigation, risk-aware automation). By learning from both software engineering and human governance paradigms, enterprises can build AI systems that are effective, accountable, and aligned with organizational values. The path forward requires continuous refinement, but with strategic governance, AI can drive innovation while minimizing unintended consequences. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Future of Hyper-Personalization

Future of Hyper-Personalization

The Future of Hyper-Personalization: Salesforce’s AI-Powered Revolution From Static Campaigns to Real-Time Individualization In today’s digital interaction world, 73% of customers expect companies to understand their unique needs (based on Salesforce Research). Salesforce is answering this demand with a transformative approach to personalization, blending AI, real-time data, and cross-channel orchestration into a seamless system. The Future of Hyper-Personalization is here! The Evolution of Salesforce Personalization From Evergage to AI-Native: A Timeline Key Limitations of Legacy Solutions Introducing Salesforce Personalization: AI at the Core 3 Breakthrough Capabilities How It Works: The Technical Magic Core Components Head-to-Head: Legacy vs. Next-Gen Feature Marketing Cloud Personalization Salesforce Personalization AI Foundation Rules-based Generative + Predictive Data Source Primarily 1st-party Unified (1st/2nd/3rd-party) Channel Coverage Web-centric Omnichannel Setup Complexity High (IT-dependent) Low-code Optimization Manual A/B testing Autonomous AI Proven Impact: Early Results Implementation Roadmap For New Adopters For Existing Marketing Cloud Personalization Users The Future Vision Salesforce is advancing toward: “We’re moving from ‘right message, right time’ to ‘right message before they ask’”— Salesforce CPO Your Next Steps “The last decade was about collecting customer data. This decade is about activating it with intelligence.” Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AI-Powered Analytics

AI-Powered Analytics

Tableau Next: AI-Powered Analytics That Works Alongside You Businesses today are drowning in data but burning alive in search of insights. With 75% of business leaders pressured to prove data’s value, the need for fast, trustworthy intelligence has never been greater. Enter Tableau Next—Salesforce’s evolution of its analytics platform, now supercharged with agentic analytics. This isn’t just another dashboard tool. It’s an AI collaborator that speeds up the entire data-to-action process, automating tedious tasks and delivering insights in plain language. What Is Agentic Analytics? Instead of static reports, Tableau Next lets users work with AI agents to: How It Works Built on Salesforce Data Cloud, Tableau Next connects securely to enterprise data while keeping it consistent and reliable. Key features: Why It Matters “We’re moving from static reports to AI as a decision-making partner,” says Ryan Aytay, CEO of Tableau. By blending AI with trusted data, Tableau Next makes analytics faster, more proactive, and accessible to everyone—not just data experts. The result? Smarter decisions, less manual work, and real business impact—without the usual data headaches. Key Takeaways:✅ AI does the grunt work – Automates data prep, analysis, and monitoring.✅ Ask questions, get answers – Natural language queries deliver instant insights.✅ Built for trust – Salesforce’s secure, unified data layer keeps AI accurate.✅ From insight to action – Automated workflows help teams respond faster. Tableau Next isn’t just an upgrade—it’s a new way to work with data. And for businesses racing to stay ahead, that could be a game-changer. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AI in Networking

The AI Workforce Revolution

The AI Workforce Revolution: How to Lead in the Age of Agentic Automation The Blended Workforce Era is Here AI agent adoption is projected to surge 327% in the next two years, transforming every industry. Managers will soon oversee teams where AI agents work alongside humans—handling tasks from customer service to data analysis. But success isn’t just about deploying AI—it’s about leading a high-performing hybrid workforce. Here’s how to prepare. 1. Address Employee Concerns Early AI anxiety is real. Proactively:✔ Communicate AI’s role—it’s for repetitive tasks (scheduling, data processing), not replacements.✔ Upskill teams for AI-augmented roles (creativity, judgment, strategy).✔ Follow Salesforce’s model: Host Agentforce Learning Days to train employees on AI collaboration. “The future of work isn’t humans vs. AI—it’s humans with AI.” — Jenny Simmons, VP of Learning, Salesforce 2. Onboard AI Agents Like a Pro Forget HR paperwork—AI integration is technical: Human Onboarding AI Agent Onboarding Training & mentorship Configuration & data setup Adapts to ambiguity Needs precise guardrails Needs motivation Requires monitoring & KPIs Key Steps: 3. Master AI Workforce Management Essential Skills for Hybrid Leaders 🔹 AI Delegation – Assign tasks based on strengths (AI = speed, humans = judgment).🔹 Data Literacy – Understand what fuels AI (data sources, biases, gaps).🔹 Ethical Oversight – Know when to override AI (e.g., financial advice for retirees). Example: An AI suggests a high-risk investment—but a human advisor knows the client prefers stability. 4. Build a Culture of Co-Creation ✅ Involve employees in AI rollout—make them co-pilots, not bystanders.✅ Celebrate AI-human wins (e.g., faster service, better insights).✅ Position AI as an enhancer—not a replacement. The Bottom Line The best leaders won’t just manage people—they’ll orchestrate human-AI symphonies. By upskilling teams, refining oversight, and fostering collaboration, you’ll unlock unprecedented productivity and innovation. 🚀 Next Steps: “The companies that thrive won’t just adopt AI—they’ll reimagine work around it.” Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Real-World AI

AI in the Travel Industry

AI in Travel: How the Industry is Transforming with Intelligent Technology The travel sector has long been at the forefront of AI adoption, with airlines, hotels, and cruise lines leveraging advanced analytics for decades to optimize pricing and operations. Now, as artificial intelligence evolves—particularly with the rise of generative AI—the industry is entering a new era of smarter automation, hyper-personalization, and seamless customer experiences. “AI and generative AI have emerged as truly disruptive forces,” says Kartikey Kaushal, Senior Analyst at Everest Group. “They’re reshaping how travel businesses operate, compete, and serve customers.” According to Everest Group, AI adoption in travel is growing at 14-16% annually, driven by demand for efficiency and enhanced customer engagement. But as adoption accelerates, the industry must balance automation with the human touch that travelers still value. 10 Key AI Use Cases in Travel & Tourism 1. Dynamic Pricing Optimization Travel companies pioneered AI-driven dynamic pricing, adjusting fares based on demand, competitor rates, weather, and events. Now, AI takes it further with hyper-personalized pricing—tracking user behavior (like repeated searches) to offer tailored deals. 2. Customer Sentiment Analysis AI evaluates traveler emotions through voice tone, reviews, and social media, enabling real-time adjustments. Hotels and airlines use sentiment tracking to improve service before complaints escalate. 3. Automated Office Tasks Travel agencies use generative AI (like ChatGPT) to draft emails, marketing content, and customer onboarding materials, freeing staff for high-value interactions. 4. Self-Service & Customer Empowerment AI-powered chatbots, itinerary builders, and booking tools let travelers plan trips independently. Some even bring AI-generated plans to agents for refinement—blending automation with human expertise. 5. Operational Efficiency & Asset Management Airlines and cruise lines deploy AI for:✔ Predictive maintenance (reducing downtime)✔ Route optimization (cutting fuel costs)✔ Staff scheduling (improving productivity) 6. AI-Powered Summarization Booking platforms use generative AI to summarize hotel reviews, local attractions, and FAQs—delivering concise, personalized travel insights. 7. Frictionless Travel Experiences From contactless hotel check-ins to AI-driven real-time recommendations (restaurants, shows, transport), AI minimizes hassles and enhances convenience. 8. AI Agents for Problem-Solving Agentic AI autonomously resolves disruptions—like rebooking flights, rerouting luggage, and updating hotels—without human intervention. 9. Enhanced Personalization Without “Creepiness” AI tailors recommendations based on past behavior but must avoid overstepping. The challenge? “A customer segment of one”—balancing customization with privacy. 10. Risk & Compliance Management AI helps navigate data privacy laws (GDPR, CCPA) and detects fraud, but companies must assign clear accountability for AI-driven decisions. Challenges in AI Adoption for Travel The Future: AI + Human Collaboration The most successful travel companies will blend AI efficiency with human empathy, ensuring technology enhances—not replaces—the art of travel. “The goal isn’t full automation,” says McKinsey’s Alex Cosmas. “It’s using AI to make every journey smoother, smarter, and more personal.” As AI evolves, so will its role in travel—ushering in an era where smarter algorithms and human expertise work together to create unforgettable experiences. What’s Next? The journey has just begun. Like1 Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Salesforce Code Genie

Salesforce Code Genie

How Salesforce’s Agentforce Is Reshaping Development—Saving 30,000 Hours a Month “AI agents are transforming my role—shifting me from pure technical execution to strategic leadership,” says one Salesforce developer. Instead of spending hours on repetitive tasks like code reviews or debugging, she now focuses on designing scalable architectures, optimizing workflows, and driving innovation. This shift reflects a broader evolution in software development: Developers are becoming AI supervisors, guiding autonomous agents, refining outputs, and ensuring alignment with business goals. Success in this new paradigm requires systems thinking, context management, and strategic oversight—not just coding expertise. Agentforce: The AI-Powered Developer Revolution Salesforce is already leading this transition with Agentforce, its digital labor platform, which has saved 30,000 developer hours per month—equivalent to 15 full-time engineers—by automating routine tasks. Key tools powering this transformation include: Unlike traditional AI coding assistants (which suggest snippets or autocomplete boilerplate), Agentforce agents act autonomously. For example, a developer can simply prompt: “Create a component that calls this API, processes these parameters, and returns success/failure status.” The AI then: The developer’s role? Review, refine, and ensure alignment with broader system goals. CodeGenie: Salesforce’s Internal AI Powerhouse Behind Agentforce lies CodeGenie, Salesforce’s internal AI assistant, built on its proprietary CodeGen model. The results speak for themselves: ✅ 7M+ lines of code accepted✅ 500K+ developer questions answered✅ 30K+ hours saved monthly✅ Seamless integration (IDEs, GitHub, Slack, CLI) “CodeGenie handles repetitive work, freeing me to solve complex problems,” says NaveenKumar Namachivayam, Senior Software Engineer at Salesforce. “It’s like having an expert collaborator—making coding faster, smarter, and more efficient.” Lessons from Salesforce’s AI Journey These insights don’t just benefit Salesforce—they directly shape Agentforce’s external offerings. CodeGenie’s success, for example, informed Agentforce for Developers, ensuring enterprise users get battle-tested AI assistance. The Bottom Line: AI Won’t Replace Developers—It Will Elevate Them Just as cloud computing didn’t kill IT jobs, AI won’t make developers obsolete—it will redefine their roles. The future belongs to those who: 🔹 Embrace AI as a force multiplier🔹 Shift from writing code to orchestrating AI agents🔹 Focus on architecture, strategy, and innovation For organizations, this demands investment in training, culture, and tools that empower teams to lead in the agentic era. The message is clear: Developers who adapt will thrive—not as coders, but as AI-powered strategists. Salesforce’s Agentforce is proving it’s possible today. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Salesforce sfr-guard

SFR-Guard

Responsible AI isn’t just about regulatory requirements. SFR-Guard assist in aligning technology with your company’s values and mission. From the Salesforce 360 Blog – https://www.salesforce.com/blog/sfr-guard-ensuring-llm-safety-and-integrity-in-crm-applications/ Securing the Future of AI: Salesforce’s SFR-Guard for Safe, Trusted Generative AI The Critical Need for AI Safety in the Age of Autonomous Agents As generative AI becomes deeply embedded in business workflows—from CRM interactions to code generation—ensuring these systems operate safely and ethically is paramount. At Salesforce AI Research, we’re pioneering advanced guardrail technologies that protect users while maintaining AI’s transformative potential. Understanding the Risks: Why LLM Agents Need Protection Modern AI agents act as autonomous assistants capable of: Three key threat vectors emerge: Introducing SFR-Guard: Salesforce’s AI Safety Framework Our SFR-Guard model family provides enterprise-grade protection specialized for CRM workflows, outperforming alternatives: Model Parameters Fine-Grained Detection Explanations Severity Levels Public Benchmark Private CRM Benchmark SFR-Guard 0.05B-8B ✅ ✅ ✅ 83.3 93.0 GPT-4o Unknown ✅ ✅ ✅ 78.7 84.5 LlamaGuard 3 8B ✅ ❌ ❌ 71.3 71.0 Key Innovations Deep Dive: How SFR-Guard Works Toxicity Detection Matrix Category Examples Hate Speech Racial/ethnic slurs Identity Attacks Targeted harassment Violence Threats or glorification Physical Harm Dangerous instructions Sexual Content Explicit material Profanity Obscene language Prompt Injection Protection Attack Type Defense Strategy Role-Play/Jailbreaks DAN attack prevention Privilege Escalation Policy enforcement Prompt Leakage Sensitive data masking Adversarial Suffixes Encoding detection Privacy Attacks PII redaction Malicious Code Secure code generation The Future of Trusted AI at Salesforce Our ongoing research spans: Experience safer AI today: SFR-Guard technologies power Salesforce’s Trust Layer, Security Checks, and Guardrails – ensuring your Agentforce deployments remain both powerful and protected. “In the AI era, trust isn’t a feature—it’s the foundation.”— Salesforce AI Research Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More

Supercharge Salesforce Agentforce with OpenText AI-Powered Insights

The future of intelligent customer engagement is here. OpenText and Salesforce are revolutionizing AI-driven workflows with deep content integration, empowering sales and service teams to work smarter, faster, and with greater accuracy. AI in Sales & Service: The Need for Trusted Data AI is transforming business operations:✅ 83% of AI-powered sales teams report revenue growth✅ 93% of service teams achieve time and cost savings But success depends on trusted data. With 98% of sales leaders emphasizing the need for accurate, secure, and compliant information, OpenText Content Cloud provides the foundation for reliable AI—seamlessly integrated with Salesforce. OpenText + Salesforce: AI Innovation Leaders Since 2016, OpenText has enhanced Salesforce with powerful content management solutions. Now, we’re taking it further with GenAI-powered automation:✔ OpenText™ Content Aviator delivers AI-driven insights from unstructured data (contracts, emails, documents)✔ Selected as a launch partner for the Agentforce Partner Network✔ First-to-market solution on Salesforce’s new AgentExchange—making AI agent deployment faster than ever Key Use Cases 🔹 Sales Teams – Summarize customer buying trends, auto-generate upsell recommendations🔹 Customer Service – Instantly resolve claims by extracting key details from documents🔹 Claims Processing – Automate approvals with AI-powered document analysis How It Works: AI Insights → Agentforce Actions OpenText Content Aviator for Agentforce unlocks hidden insights from unstructured content stored in OpenText Content Management, then feeds them directly into Salesforce Agentforce to trigger smart, automated actions. Key Benefits 🚀 Accelerate Sales Cycles – Auto-summarize contracts, identify upsell opportunities🎯 Enhance Customer Service – Resolve cases faster with AI-generated insights✍ Reduce Manual Work – Auto-update Salesforce records, eliminating errors📧 Personalize at Scale – Draft tailored email responses using AI insights Now Available ✔ Integrated with OpenText Content Management CE 25.1✔ Coming soon to OpenText Core Content SaaS (CE 25.3) OpenText Content Aviator and Salesforce Agentforce integration provides AI-driven insights for Sales and Customer Service teams, enhancing productivity and accelerating processes. This integration enables users to discover, summarize, and translate business workspace content directly within Agentforce, eliminating the need to switch applications. Essentially, it leverages AI to extract valuable insights from unstructured data like documents, contracts, and emails, and then uses those insights to drive data-driven actions within Agentforce What’s Next? The Future of AI-to-AI Integration This is just the beginning. OpenText is expanding AI-driven automation across the entire content lifecycle, with upcoming innovations including:🔹 More AI agents for sales, service, and operations🔹 Industry-specific solutions (banking, insurance, healthcare)🔹 Bi-directional AI – Blending insights from multiple AI systems for smarter decision-making OpenText™ Content Aviator puts AI into the hands of business users to leverage conversational search, discover content, or even summarize a document or workspace, offering new ways to interact with content and extract knowledge. Content Aviator enables organizations to combine the power of generative AI and large language models (LLMs) with OpenText content services platforms, including OpenText™ Core Content Management, OpenText™ Documentum™ Content Management (CM) and OpenText™ Content Management (Extended ECM), to make document management, knowledge discovery, and business process automation more efficient, effective and intelligent. Get Started Today ✅ Explore OpenText Content Aviator for Agentforce on Salesforce AgentExchange✅ Discover all OpenText-Salesforce integrations on the Salesforce AppExchange Unlock the power of AI-driven content intelligence—and transform the way your teams work. Contact Tectonic today to leverage AI-driven content intelligence. Like1 Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AI-Powered Contact Center Landscape

Salesforce’s Vision for the Future of Service Cloud & Contact Center Integration

The New Era of CCaaS-CRM Convergence At Enterprise Connect 2025, Salesforce and AWS unveiled Salesforce Contact Center with Amazon Connect, expanding beyond voice to embed omnichannel routing, digital channels, and AI-powered workflows directly into Service Cloud. This follows similar deep integrations with Genesys and Five9, signaling Salesforce’s commitment to open, flexible contact center partnerships—rather than locking customers into a single vendor. “We want all vendors to integrate deeply with our system. AI needs real-time, cross-channel data to deliver seamless experiences.”—Ryan Nichols, Chief Customer Officer, Service Cloud, Salesforce Key Benefits of the New Integrations ✔ Unified Agent Workspace – Blend voice, chat, email, and more in one CRM view.✔ AI-Ready Infrastructure – Real-time data flows power smarter automation.✔ BYO Channel Flexibility – Keep existing CCaaS investments while enhancing Service Cloud. Salesforce’s “Bring Your Own Channel” Strategy Rather than building its own CCaaS, Salesforce is doubling down on partnerships via: 🔹 Bring Your Own Telephony (BYOT) – Already adopted by 18+ CCaaS providers.🔹 Bring Your Own Channel (BYOC) Program – Extends integrations to digital channels, routing, and AI. “We’re an open platform. Partners can build deeper, more customized connections.”—Ryan Nichols Contrasting Approaches: Salesforce vs. Zendesk The Future of Service Cloud: AI, Predictions & Prescriptive Guidance Salesforce is evolving Service Cloud into a self-optimizing, AI-driven platform with: 1. My Service Journey 2. Customer Success Score 3. AI Agents & Predictive Service The Bottom Line ✅ Salesforce is betting on open CCaaS partnerships—not walled gardens.✅ Service Cloud’s future is predictive, prescriptive, and AI-native.✅ Zendesk’s in-house CCaaS move could reshape competitive dynamics. What’s Next? Want to optimize Service Cloud for AI? Contact Tectonic today. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Commerce Cloud and Agentic AI

Generative AI in Marketing

Generative AI in Marketing: Balancing Innovation and Risk Generative AI (gen AI) has become a disruptive force in the marketplace, particularly in marketing, where its ability to create content—from product descriptions to personalized ads—has reshaped strategies. According to Salesforce’s State of Marketing report, which surveyed 5,000 marketers worldwide, implementing AI is now their top priority. Some companies, like Vanguard and Unilever, have already seen measurable benefits, with Vanguard increasing LinkedIn ad conversions by 15% and Unilever cutting customer service response times by 90%. Yet, despite 96% of marketers planning to adopt gen AI within 18 months, only 32% have fully integrated it into their operations. This gap highlights the challenges of implementation—balancing efficiency with risks like inauthenticity or errors. For instance, Coca-Cola’s AI-generated holiday ad initially drew praise but later faced backlash for its perceived lack of emotional depth. The Strategic Dilemma: How, Not If, to Use Gen AI Many Chief Data and Analytics Officers (CDAOs) have yet to formalize gen AI strategies, leading to fragmented experimentation across teams. Based on discussions with over 20 industry leaders, successful adoption hinges on three key decisions: To answer these, companies must assess: Gen AI vs. Analytical AI: Choosing the Right Tool Analytical AI excels at predictions—forecasting customer behavior, pricing sensitivity, or ad performance. For example, Kia once used IBM Watson to identify brand-aligned influencers, a strategy still relevant today. Generative AI, on the other hand, creates new content—ads, product descriptions, or customer service responses. While analytical AI predicts what a customer might buy, gen AI crafts the persuasive message around it. The most effective strategies combine both: using analytical AI to identify the “next best offer” and gen AI to personalize the pitch. Custom vs. General Inputs: Striking the Balance Gen AI models can be trained on: For broad applications like customer service chatbots, general models (e.g., ChatGPT) work well. But for brand-specific needs—like ad copy or legal disclaimers—custom-trained models (e.g., BloombergGPT for finance or Jasper for marketing) reduce errors and intellectual property risks. Human Oversight: How Much Is Enough? The level of human review depends on risk tolerance: Air Canada learned this the hard way when its AI chatbot mistakenly promised a bereavement discount—a pledge a court later enforced. While human review slows output, it mitigates costly errors. A Framework for Implementation To navigate these trade-offs, marketers can use a quadrant-based approach: Input Type No Human Review Human Review Required General Data Fast, low cost, high risk Higher accuracy, slower output (e.g., review summaries) (e.g., social media posts) Custom Data Lower privacy risk, higher cost Highest accuracy, highest cost (e.g., in-store product locator) (e.g., SEC filings) The Path Forward Gen AI is not a one-size-fits-all solution. Marketers must weigh speed, cost, accuracy, and risk for each use case. While technology will evolve, today’s landscape demands careful strategy—blending gen AI’s creativity with analytical AI’s precision and human judgment’s reliability. The question is no longer whether to adopt gen AI, but how to harness its potential without falling prey to its pitfalls. Companies that strike this balance will lead the next wave of marketing innovation. Like1 Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
time series artificial intelligence

Revolutionizing Time Series AI

Revolutionizing Time Series AI: Salesforce’s Synthetic Data Breakthrough for Foundation Models Revolutionizing Time Series AI. Time series analysis is hindered by critical challenges in data availability, quality, and diversity—key factors in building powerful foundation models. Real-world datasets often suffer from regulatory constraints, inherent biases, inconsistent quality, and a lack of paired textual annotations, making it difficult to develop robust Time Series Foundation Models (TSFMs) and Time Series Large Language Models (TSLLMs). These limitations stifle progress in forecasting, classification, anomaly detection, reasoning, and captioning, restricting AI’s full potential. To tackle these obstacles, Salesforce AI Research has pioneered an innovative approach: leveraging synthetic data to enhance TSFMs and TSLLMs. Their groundbreaking study, “Empowering Time Series Analysis with Synthetic Data,” introduces a strategic framework for using synthetic data to refine model training, evaluation, and fine-tuning—while mitigating biases, expanding dataset diversity, and enriching contextual understanding. This approach is particularly transformative in regulated sectors like healthcare and finance, where real-world data sharing is heavily restricted. The Science Behind Synthetic Data Generation Salesforce’s methodology employs advanced synthetic data generation techniques tailored to replicate real-world time series dynamics, including trends, seasonality, and noise patterns. Key innovations include: These methods enable controlled yet highly varied data generation, capturing a broad spectrum of time series behaviors essential for robust model training. Proven Benefits: How Synthetic Data Supercharges Model Performance Salesforce’s research reveals significant performance gains from synthetic data across multiple stages of AI development: ✅ Pretraining Boost – Models like ForecastPFN, Mamba4Cast, and TimesFM showed marked improvements when pretrained on synthetic data. ForecastPFN, for instance, excelled in zero-shot forecasting after full synthetic pretraining. ✅ Optimal Data Blending – Chronos found peak performance by mixing 10% synthetic data with real-world datasets, beyond which excessive synthetic data could reduce diversity and effectiveness. ✅ Enhanced Evaluation – Synthetic data allowed precise assessment of model capabilities, uncovering hidden biases and gaps. For example, Moment used synthetic sinusoidal waves to analyze embedding sensitivity and trend detection accuracy. Future Directions: Overcoming Limitations While synthetic data offers immense promise, Salesforce identifies key areas for improvement: 🔹 Systematic Integration – Developing structured frameworks to strategically fill gaps in real-world datasets.🔹 Beyond Statistical Methods – Exploring diffusion models and other generative AI techniques for richer, more realistic synthetic data.🔹 Fine-Tuning Potential – Leveraging synthetic data adaptively to address domain-specific weaknesses during fine-tuning. The Path Forward Salesforce AI Research demonstrates that synthetic data is a game-changer for time series analysis, enabling stronger generalization, reduced bias, and superior performance across AI tasks. While challenges like realism and alignment remain, the future is bright—advancements in generative AI, human-in-the-loop refinement, and systematic gap-filling will further propel the reliability and applicability of time series models. By embracing synthetic data, Salesforce is laying the foundation for the next generation of AI-driven time series innovation—ushering in a new era of accuracy, adaptability, and intelligence. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
B2B Customer Service with Agentforce

Agents are the Future of Customer Engagement

Agentic Customer Engagement is Here There was a time when customer service meant going into a brick and mortar building and talking to a person face to face. It was time consuming and did not guarantee a solution. The mail order business brought on the need for the 800 number to contact a merchant. The dot com boom brought customer engagement opportunities directly to our homes. Ios and Android apps brought customer engagement to our fingertips. Yet we still were dependent upon the availability of humans or at least chatbots. Customer service often repressed customer engagement, not enhanced it. Agents, like Salesforce Agentforce, brought 24 7 customer engagement to us no matter where we are, when it is, or how complicated our issue is. And agents improved customer service! What’s next? Robots and drones who deliver our items and answer our questions? Who knows. AI bots are transforming client relationships and customer service. To achieve unparalleled efficiency, these intelligent systems plan and automate difficult activities, make deft decisions, and blend in seamlessly with current workflows. Yes, it’s widely believed that AI agents will play a crucial role in the future of customer engagement, offering personalized, efficient, and consistent experiences across various channels.  Here’s why AI agents are poised to be a key driver in customer engagement: AI agents are becoming smarter every day, using machine learning and natural language processing to predict customer needs, handle complex queries with empathy and offer real-time, personalized assistance. How AI Agents Are Redefining Customer Engagement Marketing is undergoing a seismic transformation. Tectonic shift, if you will. The past decade was dominated by complex tech stacks and data integration—now, AI is shifting the focus back to what truly matters: crafting impactful content and campaigns. Welcome to the era of agentic customer engagement and marketing. The Rise of Marketing Agents Unlike traditional customer service agents handling one-to-one interactions, marketing agents amplify human expertise to engage audiences at scale—whether targeting broad segments or hyper-personalized personas. They ensure consistent, high-quality messaging across every channel while automating the intricate backend work of delivering the right content to the right customer at the right time. This shift is powered by rapid AI advancements: How Agentic Engagement Amplifies Marketing Marketing agents don’t replace human creativity—they extend it. Once strategists set guidelines, approve messaging, and define brand voice, agents execute with precision across channels. At Typeface, for example, AI securely learns brand tones and styles to generate on-brand imagery, text, and videos—ensuring every asset aligns with the company’s identity. Key Capabilities of Marketing Agents The Human-Agent Partnership AI agents don’t replace marketers—they empower them. Humans bring creativity, emotional intelligence, and strategic decision-making; agents handle execution, data processing, and scalability. Marketers will evolve into “agent wranglers”, setting objectives, monitoring performance, and ensuring alignment with business goals. Meanwhile, agents will work in interconnected ecosystems—where a content agent’s blog post triggers a social agent’s promotion, while a performance agent optimizes distribution, and a brand agent tracks reception. Preparing for the Agent Era To stay ahead, businesses should:✅ Start small, think big – Pilot agents in low-risk areas before scaling.✅ Train teams – Ensure marketers understand agent management.✅ Build governance frameworks – Define oversight and intervention protocols.✅ Strengthen data infrastructure – Clean, structured data fuels agent effectiveness.✅ Maintain human oversight – Regularly audit agent outputs for quality and alignment. Work with a Salesforce partner like Tectonic to prepare for the Agent Era. The Future is Agentic The age of AI-driven marketing isn’t coming—it’s here. Companies that embrace agentic engagement will unlock unprecedented efficiency, personalization, and impact. The question isn’t if you’ll adopt AI agents—it’s how soon. Ready to accelerate your strategy? Discover how Agentforce (Salesforce’s agentic layer) can cut deployment time by 16x while boosting accuracy by 70%. The future of marketing isn’t just automated—it’s autonomous, adaptive, and agentic. Are you prepared? The Future of Customer Experience: AI-Driven Efficiency and Innovation Businesses have long understood the connection between operational efficiency and superior customer experience (CX). However, the rapid advancement of AI-powered technologies, including next-generation hardware and virtual agents, is transforming this connection into a measurable driver of value creation. Increasingly well-documented use cases for generative AI (GenAI) demonstrate that companies can simultaneously deliver a vastly superior customer experience at a significantly lower cost-to-serve, resulting in substantial financial gains. From Customer Journeys to Autonomous Customer Missions To achieve this ideal balance, companies are shifting from traditional customer journeys—where users actively manage their own experiences via apps—to a more comprehensive approach driven by trusted autonomous agents. These agents are designed to complete specific tasks with minimal human involvement, creating an entirely new paradigm for customer engagement. While early implementations may be rudimentary, the convergence of hardware and AI will lead to sophisticated, seamless experiences far beyond current capabilities. AI-Enabled Internal and External Transformation AI is already driving transformation both internally and externally. Internally, it streamlines processes, enhances employee experiences, and significantly boosts productivity. In customer service operations, for example, GenAI has driven productivity improvements of 15% to 30%, with some companies targeting up to 80% efficiency gains. Externally, AI is reshaping customer interactions, making them more personalized, efficient, and intuitive. Virtual co-pilots assist customers by answering inquiries, processing returns, and curating tailored offers—freeing human employees to focus on complex issues that require nuanced decision-making. Linking Operational Efficiency to Customer Experience Leading organizations are demonstrating how AI-driven efficiencies translate into enhanced CX. Despite these gains, companies must raise the bar even further to fully capitalize on AI’s potential. The convergence of next-generation hardware with AI-driven automation presents an unprecedented opportunity to redefine customer engagement. From App-Driven Experiences to Autonomous Agents At Dreamforce 2024, Salesforce CEO Marc Benioff highlighted that service employees waste over 40% of their time on repetitive, low-value tasks. Similarly, customers face friction in making significant purchases or planning events. Google research indicates that travelers may engage in over 700 digital touchpoints when planning a trip—a fragmented and often frustrating experience. Imagine instead a network of proprietary and third-party agents seamlessly executing customer missions—such as purchasing a car or planning a vacation—without requiring constant user input. These AI agents

Read More
gettectonic.com