Business Archives - gettectonic.com
Conga and Salesforce

Conga Strengthens Partnership with Salesforce

Conga has enhanced its Revenue Lifecycle Management solution by integrating with Salesforce Foundations, a free add-on available to all Salesforce CRM customers. What is Salesforce Foundations? Salesforce Foundations is a no-cost upgrade designed to bring powerful cross-departmental capabilities to every Salesforce customer. It includes features spanning: Additionally, Foundations offers access to thousands of prebuilt third-party extensions and integrations via Salesforce AppExchange, including extended free trials of Conga products at no extra cost. What This Partnership Means for Customers With Conga’s integration into Salesforce Foundations, customers can: Executive Perspectives Brian Landsman, Executive Vice President of Partnerships at Salesforce, stated: “I am thrilled to have one of our top ISV partners like Conga collaborating with us on Salesforce Foundations. Our launch partner apps provide customers with key functionality and enhance their experience through thousands of pre-built third-party extensions and integrations.” Noel Goggin, CEO and Culture Leader at Conga, shared: “We’re excited to collaborate with Salesforce, offering customers seamless access to third-party apps like Conga to enhance their systems and better automate processes across their organizations. By integrating Conga’s solutions, businesses can streamline operations, increase productivity, and drive greater customer engagement, ultimately fueling growth. Conga’s products empower customers to optimize their revenue processes and stay competitive in an evolving market.” The Bigger Picture This collaboration underscores Conga’s commitment to empowering Salesforce customers with tools that simplify processes and enhance operational efficiency. By integrating its solutions with Salesforce Foundations, Conga helps businesses unlock greater value, improve customer engagement, and drive growth in an ever-changing marketplace. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentforce Redefines Generative AI

The Rise of Agentic AI: Balancing Innovation and Trust

Agentic AI is transforming industries, and Salesforce’s Agentforce is proving to be a catalyst for both economic growth and workforce empowerment. For companies like Wiley, Agentforce has increased case resolutions by 40%, surpassing the performance of its previous chatbot and allowing employees to focus on more complex cases. However, a new Salesforce white paper emphasizes that simply deploying AI agents isn’t enough to drive productivity and build trust—they must operate within well-defined frameworks that ensure responsible AI adoption. “AI has the potential to enhance trust, efficiency, and effectiveness in our institutions,” said Eric Loeb, EVP of Global Government Affairs at Salesforce. “Salesforce research shows 90% of constituents are open to using AI agents for government services, drawn by benefits like 24/7 access, faster response times, and streamlined processes.” Key Considerations for Policymakers in the Age of AI Agents To strike a balance between risk and opportunity, the Salesforce white paper outlines critical areas policymakers must address: 🔹 Human-AI Collaboration – Employees must develop new skills to configure, manage, and oversee AI agents, ensuring they can be easily programmed and adapted for various tasks. 🔹 Reliability & Guardrails – AI agents must be engineered with fail-safes that enable clear handoffs to human workers and mechanisms to detect and correct AI hallucinations. 🔹 Cross-Domain Fluency – AI must be designed to interpret and act on data from diverse sources, making seamless enterprise-wide integrations essential. 🔹 Transparency & Explainability – Users must know when they’re interacting with AI, and regulators need visibility into how decisions are made to ensure compliance and accountability. 🔹 Data Governance & Privacy – AI agents often require access to sensitive information. Strong privacy and security safeguards are crucial to maintaining trust. 🔹 Security & AI Safety – AI systems must be resilient against adversarial attacks that attempt to manipulate or deceive them into producing inaccurate outputs. 🔹 Ethical AI Use – Companies should establish clear ethical guidelines to govern AI behavior, ensuring responsible deployment and human-AI collaboration. 🔹 Agent-to-Agent Interactions – Standardized protocols and security measures must be in place to ensure controlled, predictable AI behavior and auditability of decisions. Building an Agent-Ready Ecosystem While AI agents represent the next wave of enterprise innovation, policy frameworks must evolve to foster responsible adoption. Policymakers must look beyond AI development and equip the workforce with the skills needed to work alongside these digital assistants. “It’s no longer a question of whether AI agents should be part of the workforce—but how to optimize human and digital labor to achieve the best outcomes,” said Loeb. “Governments must implement policies that ensure AI agents are deployed responsibly, creating more meaningful and productive work environments.” Next Steps Salesforce’s white paper provides a roadmap for policymakers navigating the agentic AI revolution. By focusing on risk-based approaches, transparency, and robust safety measures, businesses and governments alike can unlock the full potential of AI agents—while ensuring trust, accountability, and innovation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
agentforce digital workforce

How Agentforce Works

Salesforce Agentforce: Everything You Need to Know Salesforce Agentforce represents a paradigm shift from generative AI to agentic AI—a new class of AI capable of autonomous action. Since its launch at Dreamforce in September 2024, Agentforce has redefined the conversation around AI, customer service, and experience management. To meet skyrocketing demand, Salesforce announced plans to hire more than 1,000 employees shortly after the launch. What is Salesforce Agentforce? Agentforce is a next-generation platform layer within the Salesforce ecosystem. While its bots leverage generative AI capabilities, they differ significantly from platforms like ChatGPT or Google Gemini. Agentforce bots are designed not just to generate responses but to act autonomously within predefined organizational guardrails. Unlike traditional chatbots, which follow scripted patterns, Agentforce AI agents are trained on proprietary data, enabling flexible and contextually accurate responses. They also integrate with Salesforce’s Data Cloud, enhancing their capacity to access and utilize customer data effectively. Agentforce combines three core tools—Agent Builder, Model Builder, and Prompt Builder—allowing businesses to create customized bots using low-code tools. Key Features of Agentforce The platform offers ready-to-deploy AI agents tailored for various industries, including: Agentforce officially became available on October 25, 2024, with pricing starting at $2 per conversation, and volume discounts offered for enterprise customers. Salesforce also launched the Agentforce Partner Network, enabling third-party integrations and custom agent designs for expanded functionality. How Agentforce Works Salesforce designed Agentforce for users without deep technical expertise in AI. As CEO Marc Benioff said, “This is AI for the rest of us.” The platform is powered by the upgraded Atlas Reasoning Engine, a component of Salesforce Einstein AI, which mimics human reasoning and planning. Like self-driving cars, Agentforce interprets real-time data to adapt its actions and operates autonomously within its established parameters. Enhanced Atlas Reasoning Engine In December 2024, Salesforce enhanced the Atlas Reasoning Engine with retrieval-augmented generation (RAG) and advanced reasoning capabilities. These upgrades allow agents to: Seamless Integrations with Salesforce Tools Agentforce is deeply integrated with Salesforce’s ecosystem: Key Developments Agentforce Testing Center Launched in December 2024, the Testing Center allows businesses to test agents before deployment, ensuring they are accurate, fast, and aligned with organizational goals. Skill and Integration Library Salesforce introduced a pre-built library for CRM, Slack, Tableau, and MuleSoft integrations, simplifying agent customization. Examples include: Industry-Specific Expansion Agentforce for Retail Announced at the NRF conference in January 2025, this solution offers pre-built skills tailored to retail, such as: Additionally, Salesforce unveiled Retail Cloud with Modern POS, unifying online and offline inventory data. Notable Agentforce Customers Looking Ahead Marc Benioff calls Agentforce “the third wave of AI”, advancing beyond copilots into a new era of autonomous, low-hallucination intelligent agents. With its robust capabilities, Agentforce is positioned to transform how businesses interact with customers, automate workflows, and drive success. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
B2B Customer Service with Agentforce

B2B Customer Service with Agentforce

Simplify and Transform B2B Customer Service with Agentforce B2B customer service is inherently complex. It involves managing layered relationships, high-value transactions, and specialized support needs—all of which require heightened attention to detail. With fewer but larger customers, the stakes are high. In fact, our research shows that 88% of customers are more likely to remain loyal with exceptional service, underscoring the importance of consistently delivering excellence. Enter Agentforce, an AI-powered solution designed to tackle these challenges. By complementing your service reps, Agentforce handles intricate B2B cases autonomously and within your predefined parameters. This ensures reliable 24/7 support for even the toughest queries, reducing rep burnout and enhancing customer satisfaction. Here’s how Agentforce can redefine B2B customer service and take it to the next level: What You’ll Learn What Is B2B Customer Service? B2B customer service focuses on providing personalized support and expertise to other businesses, addressing their unique needs and challenges. This service model aims to build lasting relationships by boosting loyalty, driving repeat business, and encouraging referrals. What Are AI Agents? AI agents like Agentforce are advanced systems capable of understanding and responding to customer inquiries without human involvement. Unlike basic chatbots, Agentforce uses natural language processing (NLP), machine learning, and contextual understanding to provide intelligent, conversational, and personalized support. At the heart of Agentforce is the Atlas Reasoning Engine, which simplifies complex queries, retrieves precise information from your Data Cloud, and creates accurate, reliable action plans—all within your company’s guardrails. Agentforce’s multi-modal understanding allows it to interpret inputs like text, images, and audio, making it a versatile tool for engaging customers. Crucially, Agentforce continuously learns and adapts, ensuring it evolves with your customers’ needs for more accurate, efficient support. Why AI Agents Are Ideal for B2B Customer Service B2B support often involves managing: Agentforce rises to these challenges by providing scalable, round-the-clock support that accommodates time zone differences, personalizes interactions, and resolves intricate inquiries with ease. Top Benefits of AI Agents in B2B Customer Service Use Cases for Agentforce in B2B Customer Service Challenges of Implementing AI Agents—and How to Solve Them 5 Best Practices for Success Ready to Elevate Your B2B Customer Service? Agentforce empowers your business to deliver consistent, reliable, and scalable support—around the clock. By handling complex interactions and reducing workload on service reps, it builds stronger customer relationships and positions your company for long-term success. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
No-Code Generative AI

Generative-Driven Development

Nowhere has the rise of generative AI tools been more transformative than in software development. It began with GitHub Copilot’s enhanced autocomplete, which then evolved into interactive, real-time coding assistants like Aider and Cursor that allow engineers to dictate changes and see them applied live in their editor. Today, platforms like Devin.ai aim even higher, aspiring to create autonomous software systems capable of interpreting feature requests or bug reports and delivering ready-to-review code. At its core, the ambition of these AI tools mirrors the essence of software itself: to automate human work. Whether you were writing a script to automate CSV parsing in 2005 or leveraging AI today, the goal remains the same—offloading repetitive tasks to machines. What makes generative AI tools distinct, however, is their focus on automating the work of automation itself. Framing this as a guiding principle enables us to consider the broader challenges and opportunities generative AI brings to software development. Automate the Process of Automation The Doctor-Patient Strategy Most contemporary generative AI tools operate under what can be called the Doctor-Patient strategy. In this model, the GenAI tool acts on a codebase as a distinct, external entity—much like a doctor treats a patient. The relationship is one-directional: the tool modifies the codebase based on given instructions but remains isolated from the architecture and decision-making processes within it. Why This Strategy Dominates: However, the limitations of this strategy are becoming increasingly apparent. Over time, the unidirectional relationship leads to bot rot—the gradual degradation of code quality due to poorly contextualized, repetitive, or inconsistent changes made by generative AI. Understanding Bot Rot Bot rot occurs when AI tools repeatedly make changes without accounting for the macro-level architecture of a codebase. These tools rely on localized context, often drawing from semantically similar code snippets, but lack the insight needed to preserve or enhance the overarching structure. Symptoms of Bot Rot: Example:Consider a Python application that parses TPS report IDs. Without architectural insight, a code bot may generate redundant parsing methods across multiple modules rather than abstracting the logic into a centralized model. Over time, this duplication compounds, creating a chaotic and inefficient codebase. A New Approach: Generative-Driven Development (GDD) To address the flaws of the Doctor-Patient strategy, we propose Generative-Driven Development (GDD), a paradigm where the codebase itself is designed to enable generative AI to enhance automation iteratively and sustainably. Pillars of GDD: How GDD Improves the Development Lifecycle Under GDD, the traditional Test-Driven Development (TDD) cycle (red, green, refactor) evolves to integrate AI processes: This complete cycle eliminates the gaps present in current generative workflows, reducing bot rot and enabling sustainable automation. Over time, GDD-based codebases become easier to maintain and automate, reducing error rates and cycle times. A Day in the Life of a GDD Engineer Imagine a GDD-enabled workflow for a developer tasked with updating TPS report parsing: By embedding AI into the development process, GDD empowers engineers to focus on high-level decision-making while ensuring the automation process remains sustainable and aligned with architectural goals. Conclusion Generative-Driven Development represents a significant shift in how we approach software development. By prioritizing architecture, embedding automation into the software itself, and writing GenAI-optimized code, GDD offers a sustainable path to achieving the ultimate goal: automating the process of automation. As AI continues to reshape the industry, adopting GDD will be critical to harnessing its full potential while avoiding the pitfalls of bot rot. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce’s AI Energy Score

Salesforce’s AI Energy Score

Salesforce’s AI Energy Score: Setting a New Standard for AI Sustainability Understanding AI’s Environmental Impact As AI adoption accelerates globally, concerns about its environmental footprint have grown. Due to AI’s reliance on power-intensive data centers, the technology consumes vast amounts of energy and water, raising sustainability challenges. To address this, Salesforce, in collaboration with Hugging Face, Cohere, and Carnegie Mellon University, has introduced the AI Energy Score—a pioneering tool designed to measure and compare AI models’ energy efficiency. The AI Energy Score Launch The AI Energy Score will debut at the AI Action Summit on February 10, 2025, where leaders from over 100 countries, along with private sector and civil society representatives, will convene to discuss AI’s role in sustainability. Recognized by the French Government and the Paris Peace Forum, this initiative marks a significant step toward transparent and accountable AI development. “We are at a critical moment where the rapid acceleration of both the climate crisis and AI innovation intersect,” says Boris Gamazaychikov, Head of AI Sustainability at Salesforce.“AI’s environmental impact has remained largely opaque, with little transparency around its energy consumption. The AI Energy Score provides a standardized framework to disclose and compare these impacts, removing a key blocker to making sustainable AI the norm.” What Is the AI Energy Score? Developed in partnership with Hugging Face, Cohere, and Carnegie Mellon University, the AI Energy Score aims to establish clear and standardized energy consumption metrics for AI models. “The AI Energy Score is a major milestone for sustainable AI,” says Dr. Sasha Luccioni, AI & Climate Lead at Hugging Face. “By creating a transparent rating system, we address a key blocker for reducing AI’s environmental impact. We’re excited to launch this initiative and drive industry-wide adoption.” Key features of the AI Energy Score include: ✅ Standardized energy ratings – A framework for evaluating AI models’ energy efficiency✅ Public leaderboard – A ranking of 200+ AI models across 10 common tasks (e.g., text and image generation)✅ Benchmarking portal – A platform for submitting and assessing AI models, both open and proprietary✅ Recognizable energy use label – A 1–5 star system for easy identification of energy-efficient models✅ Label generator – A tool for AI developers to create and share standardized energy labels The Impact of the AI Energy Score The introduction of this score is expected to have far-reaching implications for the AI industry: 🔹 Driving market preference – Transparency will push demand for more energy-efficient AI models🔹 Incentivizing sustainable development – Public disclosure will encourage AI developers to prioritize efficiency🔹 Empowering informed decisions – AI users and businesses can make better choices based on energy efficiency data Salesforce’s Commitment to Sustainable AI Salesforce is leading by example, becoming the first AI model developer to disclose energy efficiency data for its proprietary models under this framework. This aligns with the company’s broader sustainability goals and ethical AI approach. Agentforce: AI Efficiency at Scale Salesforce’s Agentforce platform, introduced in 2024, is designed to deploy autonomous AI agents across business functions while maintaining energy efficiency. “Agentforce is built with sustainability at its core, delivering high performance while minimizing environmental impact,” explains Boris Gamazaychikov.“Unlike DIY AI approaches that require energy-intensive model training for each customer, Agentforce is optimized out of the box, reducing costly and carbon-heavy training.” Organizations are already leveraging Agentforce for impact-driven efficiencies: ✅ Good360 uses Agentforce to allocate donated goods more efficiently, cutting waste and emissions while saving 1,000+ employee hours annually✅ Businesses can reduce operational costs by optimizing AI model energy consumption “Reducing AI energy use isn’t just good for the environment—it lowers costs, optimizes infrastructure, and improves long-term profitability,” says Suzanne DiBianca, EVP & Chief Impact Officer at Salesforce.“We’re proud to work with industry leaders to build a more transparent AI ecosystem.” Addressing the AI Energy Challenge With AI-driven data center power usage projected to double by 2026, the AI Energy Score is a timely solution to help organizations manage and reduce their AI-related environmental impact. “The AI Energy Score isn’t just an energy-use metric—it’s a strategic business advantage,” adds Boris Gamazaychikov. “By helping organizations assess and optimize AI model energy consumption, it supports lower costs, better infrastructure efficiency, and long-term profitability.” As AI continues to evolve, sustainability must be part of the equation. The AI Energy Score is a major step in ensuring that the AI industry moves toward a more responsible, energy-efficient future.: Setting a New Standard for AI Sustainability Understanding AI’s Environmental Impact As AI adoption accelerates globally, concerns about its environmental footprint have grown. Due to AI’s reliance on power-intensive data centers, the technology consumes vast amounts of energy and water, raising sustainability challenges. To address this, Salesforce, in collaboration with Hugging Face, Cohere, and Carnegie Mellon University, has introduced the AI Energy Score—a pioneering tool designed to measure and compare AI models’ energy efficiency. The AI Energy Score Launch The AI Energy Score will debut at the AI Action Summit on February 10, 2025, where leaders from over 100 countries, along with private sector and civil society representatives, will convene to discuss AI’s role in sustainability. Recognized by the French Government and the Paris Peace Forum, this initiative marks a significant step toward transparent and accountable AI development. “We are at a critical moment where the rapid acceleration of both the climate crisis and AI innovation intersect,” says Boris Gamazaychikov, Head of AI Sustainability at Salesforce.“AI’s environmental impact has remained largely opaque, with little transparency around its energy consumption. The AI Energy Score provides a standardized framework to disclose and compare these impacts, removing a key blocker to making sustainable AI the norm.” What Is the AI Energy Score? Developed in partnership with Hugging Face, Cohere, and Carnegie Mellon University, the AI Energy Score aims to establish clear and standardized energy consumption metrics for AI models. “The AI Energy Score is a major milestone for sustainable AI,” says Dr. Sasha Luccioni, AI & Climate Lead at Hugging Face. “By creating a transparent rating system, we address a key blocker for reducing AI’s

Read More
Rule-Based vs. Machine Learning Deduplication Approaches

Rule-Based vs. Machine Learning Deduplication Approaches

Choosing the Right Tool for Salesforce Deduplication: Rule-Based vs. Machine Learning Approaches When you browse Salesforce AppExchange for a deduplication solution, you’re presented with two primary options: rule-based deduplication tools or machine learning-powered applications. Both have their strengths, but understanding their methods will help you make an informed decision. Below, we’ll explore these approaches and their pros and cons to guide your choice. Why Salesforce’s Built-in Deduplication Falls Short Salesforce, while a powerful CRM, doesn’t excel at large-scale deduplication. Its native tools are limited to basic, rule-based matching, which may struggle with complexities like typos, inconsistent formatting, or unstructured data. Additionally, Salesforce’s deduplication features lack the scalability required for organizations dealing with large datasets or multiple data sources (e.g., third-party integrations, legacy systems). Businesses often need supplemental tools to address overlapping records or inconsistencies effectively. How Rule-Based Deduplication Works Popular rule-based tools on AppExchange, such as Cloudingo, DemandTools, DataGroomr, and Duplicate Check, require users to create filters that define what constitutes a duplicate. For example: Ultimately, the user manually defines the rules, deciding how duplicates are identified and handled. Benefits of Rule-Based Deduplication Drawbacks of Rule-Based Deduplication How Machine Learning-Based Deduplication Works Machine learning (ML)-powered tools rely on algorithms to identify patterns and relationships in data, detecting duplicates that may not be apparent through rigid rules. Key Features of ML Deduplication Techniques Used Benefits of ML-Based Deduplication Drawbacks of ML-Based Deduplication When to Choose Rule-Based vs. Machine Learning Deduplication Choose Rule-Based Deduplication If: Choose Machine Learning-Based Deduplication If: Selecting the Right Deduplication Tool When evaluating tools on AppExchange, consider these factors: Tectonic’s Closing Thoughts Rule-based and machine learning-based deduplication each serve distinct purposes. The right choice depends on your data’s complexity, the resources available, and your organization’s goals. Whether you’re seeking a quick, transparent solution or a powerful, scalable tool, AppExchange offers options to meet your needs and help maintain a clean Salesforce data environment. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Decision Domain Management

Roger’s first week in the office felt like a wilder than 8 second ride on a raging rodeo bull. Armed with top-notch academic achievements, he hoped to breeze through operational routines and impress his new managers. What he didn’t expect was to land in a whirlwind of half-documented processes, half-baked ideas, and near-constant firefighting. While the organization had detailed SOPs for simple, routine tasks—approving invoices, updating customer records, and shipping standard orders—Roger quickly realized that behind the structured facade, there was a deeper level of uncertainty. Every day, he heard colleagues discuss “strategic pivots” or “risky product bets.” There were whispers about AI-based initiatives that promised to automate entire workflows. Yet, when the conversation shifted to major decisions—like selecting the right AI use cases—leaders often seemed to rely more on intuition than any structured methodology. One afternoon, Roger was invited to a cross-functional meeting about the company’s AI roadmap. Expecting an opportunity to showcase his knowledge, he instead found himself in a room filled with brilliant minds pulling in different directions. Some argued that AI should focus on automating repetitive tasks aligned with existing SOPs. Others insisted that AI’s real value lay in predictive modeling—helping forecast new market opportunities. The debate went in circles, with no consensus on where or how to allocate AI resources. After an hour of heated discussion, the group dispersed, each manager still convinced of the merit of their own perspective but no closer to a resolution. That evening, as Roger stood near the coffee machine, he muttered to himself, “We have SOPs for simple tasks, but nothing for big decisions. How do we even begin selecting which AI models or agents to develop first?” His frustration led him to a conversation with a coworker who had been with the company for years. “We’re missing something fundamental here,” Roger said. “We’re rushing to onboard AI agents that can mimic our SOPs—like some large language model trained to follow rote instructions—but that’s not where the real value lies. We don’t even have a framework for weighing one AI initiative against another. Everything feels like guesswork.” His coworker shrugged. “That’s just how it’s always been. The big decisions happen behind closed doors, mostly based on experience and intuition. If you’re waiting for a blueprint, you might be waiting a long time.” That was Roger’s ;ight bulb moment. Despite all his academic training, he realized the organization lacked a structured approach to high-level decision-making. Sure, they had polished SOPs for operational tasks, but when it came to determining which AI initiatives to prioritize, there were no formal criteria, classifications, or scoring mechanisms in place. Frustrated but determined, Roger decided he needed answers. Two days later, he approached a coworker known for their deep understanding of business strategy and technology. After a quick greeting, he outlined his concerns—the disorganized AI roadmap meeting, the disconnect between SOP-driven automation and strategic AI modeling, and his growing suspicion that even senior leaders were making decisions without a clear framework. His coworker listened, then gestured for him to take a seat. “Take a breath,” they said. “You’re not the first to notice this gap. Let me explain what’s really missing.” Why SOPs Aren’t Enough The coworker acknowledged that the organization was strong in SOPs. “We’re great at detailing exactly how to handle repetitive, rules-based tasks—like verifying invoices or updating inventory. In those areas, we can plug in AI agents pretty easily. They follow a well-defined script and execute tasks efficiently. But that’s just the tip of the iceberg.” They leaned forward and continued, “Where we struggle, as you’ve discovered, is in decision-making at deeper levels—strategic decisions like which new product lines to pursue, or tactical decisions like selecting the right vendor partnerships. There’s no documented methodology for these. It’s all in people’s heads.” Roger tilted his head, intrigued. “So how do we fix something as basic but great impact as that?” “That’s where Decision Domain Management comes in,” he explained. In the context of data governance and management, data domains are the high-level blocks that data professionals use to define master data. Simply put, data domains help data teams logically group data that is of interest to their business or stakeholders. “Think of it as the equivalent of SOPs—but for decision-making. Instead of prescribing exact steps for routine tasks, it helps classify decisions, assess their importance, and determine whether AI can support them—and if so, in what capacity.” They broke it down further. The Decision Types “First, we categorize decisions into three broad types: Once we correctly classify a decision, we get a clearer picture of how critical it is and whether it requires an AI agent (good at routine tasks) or an AI model (good at predictive and analytical tasks).” The Cynefin Framework The coworker then introduced the Cynefin Framework, explaining how it helps categorize decision contexts: By combining Decision Types with the Cynefin Framework, organizations can determine exactly where AI projects will be most beneficial. Putting It into Practice Seeing the spark of understanding in Roger’s eyes, the coworker provided some real-world examples: ✅ AI agents are ideal for simple SOP-based tasks like invoice validation or shipping notifications. ✅ AI models can support complicated decisions, like vendor negotiations, by analyzing performance metrics. ✅ Strategic AI modeling can help navigate complex decisions, such as predicting new market trends, but human judgment is still required. “Once we classify decisions,” the coworker continued, “we can score and prioritize AI investments based on impact and feasibility. Instead of throwing AI at random problems, we make informed choices.” The Lightbulb Moment Roger exhaled, visibly relieved. “So the problem isn’t just that we lack a single best AI approach—it’s that we don’t have a shared structure for decision-making in the first place,” he said. “If we build that structure, we’ll know which AI investments matter most, and we won’t keep debating in circles.” The coworker nodded. “Exactly. Decision Domain Management is the missing blueprint. We can’t expect AI to handle what even humans haven’t clearly defined. By categorizing

Read More
deepseek deep dive

Deep Dive into DeepSeek

DeepSeek: The AI Lab Turned Controversial Global Player You know we have to write about anything AI related that is making waves. And DeepSeek is definitely doing that. On April 14, 2023, High-Flyer announced the launch of a dedicated artificial general intelligence (AGI) lab, focused on AI research independent of its financial business. This initiative led to the incorporation of DeepSeek on July 17, 2023, with High-Flyer as its primary investor and backer. DeepSeek’s Breakthrough and the Debate on AI Development DeepSeek quickly gained attention in the AI world, with former India IT Minister Rajeev Chandrasekhar highlighting its impact. He stated that DeepSeek’s success reinforced the idea that better datasets and algorithms—rather than increased compute capacity—are the key to advancing AI capabilities. National Security Concerns: Hidden Risks in DeepSeek’s Code Despite its technological achievements, DeepSeek is now at the center of global controversy. Cybersecurity experts have raised serious concerns about the tool’s potential data-sharing links to the Chinese government. According to a report by ABC News, DeepSeek contains hidden code capable of transmitting user data directly to China. Ivan Tsarynny, CEO of the Ontario-based cybersecurity firm Feroot Security, conducted an analysis of DeepSeek’s code and discovered an embedded function that connects user data to CMPassport.com—the online registry for China Mobile, a state-owned telecommunications company. Key Concerns Raised by Cybersecurity Experts: Global Backlash and Regulatory Actions DeepSeek’s security concerns have sparked international scrutiny. Several governments and organizations have moved swiftly to restrict or ban its use: John Cohen, a former acting Undersecretary for Intelligence and Analysis at the U.S. Department of Homeland Security, described DeepSeek as one of the most blatant cases of suspected Chinese surveillance. He emphasized that it joins a growing list of Chinese tech firms identified as potential national security threats. The Future of DeepSeek DeepSeek’s rapid rise and subsequent scrutiny reflect the broader tensions between AI innovation and national security. As regulators worldwide assess its risks, the company’s future remains uncertain—caught between technological breakthroughs and growing geopolitical concerns. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Financial Services Sector

Fundingo Outshines Mortgage Automator

Why Fundingo Outshines Mortgage Automator: A Salesforce-Based Perspective Introduction In the dynamic world of loan servicing and mortgage management, businesses face increasing demands for flexibility, efficiency, and scalability. While Mortgage Automator is a well-known provider, many users encounter significant challenges, including inflexible loan structures and cumbersome reporting processes. Fundingo, a Salesforce-native solution, addresses these issues head-on with a modern, adaptable, and user-friendly approach to loan management. Pain Points of Mortgage Automator Despite its established presence, Mortgage Automator comes with notable limitations: Fundingo’s Competitive Edge Fundingo offers a suite of advantages designed for modern lending institutions, making it the superior choice: Head-to-Head Comparison Feature Fundingo Mortgage Automator Flexibility High – Supports diverse loan products Limited – Rigid loan structures Reporting Automated and user-friendly Complex and manual processes Integrations Seamless with Salesforce ecosystem Poor integration capabilities Scalability Cost-effective, built-in scalability Expensive add-ons hinder growth Security & Compliance SOC 1 certified Basic security measures Summary Fundingo emerges as the ideal solution for modern loan servicing and mortgage management. By addressing the common challenges associated with Mortgage Automator—rigid loan structures, manual processes, and costly add-ons—Fundingo provides a flexible, scalable, and secure alternative. Its Salesforce-native design, built-in CRM, mobile accessibility, exceptional uptime, and robust security measures make it the best competitor in the market, empowering financial institutions to deliver exceptional service while optimizing operational efficiency. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI evolves with tools like Agentforce and Atlas

Salesforce Atlas

Salesforce Atlas: The Brainpower Behind AI-Driven Transformation A New Era of AI for Enterprise AI is reshaping industries at an unprecedented pace, and agentic AI—AI that can think, plan, and act autonomously—is at the forefront of this revolution. Salesforce is leading the charge with Agentforce, a low-code platform that allows businesses to build, refine, and deploy autonomous AI agents across multiple business functions. At the core of this innovation is Salesforce Atlas, the reasoning engine that empowers Agentforce to tackle complex decision-making tasks just like a human. But Atlas goes further—it continuously learns, adapts, and evolves, setting a new standard for AI-driven enterprises. Let’s explore how Atlas works, its capabilities, and why it’s a game-changer for businesses. Salesforce Atlas: The Reasoning Engine Powering Agentforce Atlas is the intelligent decision-making engine that powers Agentforce’s AI agents. Rather than simply following predefined rules, Atlas evaluates data, refines its approach, and continuously learns from outcomes. When an AI agent encounters a decision point, Atlas asks: ➡️ Do I have enough data to ensure accuracy?✔ If yes, it proceeds with a decision.❌ If no, it seeks additional data or escalates the issue. This iterative learning process ensures that AI agents become more reliable, context-aware, and autonomous over time. Salesforce CEO Marc Benioff teased the potential of Atlas, revealing that: 📊 “We are seeing 90-95% resolution on all service and sales issues with the new Atlas.” That’s a staggering success rate, demonstrating how AI-driven reasoning can transform enterprise efficiency and customer engagement. How Salesforce Atlas Works: The “Flywheel” Process Atlas operates using a structured flywheel process that enables self-improvement and adaptability. Here’s how it works: 1️⃣ Data Retrieval – Atlas pulls structured and unstructured data from the Salesforce Data Cloud.2️⃣ Evaluation – It analyzes the data, generates a plan of action, and assesses whether the plan will drive the desired outcome.3️⃣ Refinement – If the plan isn’t strong enough, Atlas loops back, refines its approach, and iterates until it’s confident in its decision. This cycle repeats continuously, ensuring AI agents deliver accurate, data-driven outcomes that align with business goals. Once a task is completed, Atlas learns from the results, refining its approach to become even smarter over time. The Core Capabilities of Salesforce Atlas Atlas stands out because of its advanced reasoning, adaptive learning, and built-in safeguards—all designed to deliver trustworthy, autonomous AI experiences. 1. Advanced Reasoning & Decision-Making Atlas doesn’t just execute tasks; it thinks critically, determining the best way to approach each challenge. Unlike traditional AI models that follow rigid scripts, Atlas: 🔍 Analyzes real-time data to determine the most effective course of action.📊 Refines its decisions dynamically based on live feedback.🌍 Adapts to changing circumstances to optimize outcomes. At Dreamforce 2024, Marc Benioff demonstrated Atlas’s power by showcasing how it could optimize theme park experiences in real time, analyzing: 🎢 Ride availability👥 Guest preferences🚶 Park flow patterns This real-time decision-making showcases the game-changing potential of agentic AI. 2. Advanced Data Retrieval Atlas leverages Retrieval-Augmented Generation (RAG) to pull highly relevant, verified data from multiple sources. This ensures: ✔ More accurate responses✔ Minimized AI hallucinations✔ Reliable, data-driven insights For example, Saks Fifth Avenue uses Atlas to personalize shopping recommendations for millions of customers—tailoring experiences with precision. 3. Built-in Guardrails for Security & Compliance Salesforce recognizes the importance of AI governance, and Atlas includes robust safeguards to ensure responsible AI usage. 🔐 Ethical AI protocols – Ensures compliance with evolving regulations.🚨 Escalation capabilities – AI knows when to seek human intervention for complex issues.🌍 Hyperforce security – Provides enterprise-grade privacy and security standards. These protections ensure Atlas operates securely, responsibly, and at scale across global enterprises. 4. Reinforcement Learning & Continuous Improvement Atlas doesn’t just process data—it learns from outcomes. 🔄 Refines decisions based on real-world results📈 Optimizes performance over time⚡ Becomes increasingly efficient and tailored to business needs Whether it’s increasing sales conversions, resolving service issues, or optimizing workflows, Atlas ensures AI agents grow smarter with every interaction. Why Salesforce Atlas is a Game-Changer Salesforce Atlas isn’t just another AI tool—it’s the brain behind Salesforce’s next-generation AI ecosystem. With Atlas, businesses can: ✅ Automate complex tasks with AI-driven decision-making.✅ Deliver hyper-personalized customer experiences with confidence.✅ Scale AI-powered workflows across sales, service, and operations.✅ Ensure compliance and trust with built-in governance measures.✅ Adapt AI capabilities to meet evolving business needs. Marc Benioff envisions Atlas as the core of a future where AI and humans collaborate to drive innovation and efficiency. By combining advanced reasoning, dynamic adaptability, and enterprise security, Atlas empowers organizations to work smarter, faster, and more effectively—unlocking the full potential of agentic AI. The future of AI-driven enterprise has arrived. With Salesforce Atlas, businesses can build AI agents that don’t just follow instructions—they think, learn, and evolve. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
copilots and agentic ai

Transforming Industries and Redefining Workflows

The Rise of Agentic AI: Transforming Industries and Redefining Workflows Artificial Intelligence (AI) is evolving faster than we anticipated. No longer limited to predicting outcomes or generating content, AI systems are now capable of handling complex tasks and making autonomous decisions. This new era—driven by Agentic AI—is set to redefine the workplace and transform industries. From Prediction to Autonomy: The Three Waves of AI To understand where we’re headed, it’s important to see how far AI has come. Arun Parameswaran, SVP & MD of Salesforce India, describes it as a fundamental shift: “What has changed with agents is their ability to handle complex reasoning… and, most importantly, to take action.” Unlike previous AI models that recommend or predict, Agentic AI executes tasks, reshaping customer experiences and operational workflows. Agentic AI in Action: Industry Applications At a recent Mint x Salesforce India deep-dive event on AI, industry leaders explored how Agentic AI is driving transformation across sectors. The panel featured: Here’s how Agentic AI is already making an impact: 1. Revolutionizing Customer Support Traditional chatbots have limited capabilities. Agentic AI, however, understands urgency and context. 2. Accelerating Business Decisions In finance and supply chain management, AI agents analyze vast amounts of data and execute decisions autonomously. 3. Transforming Travel & Aviation Airlines are leveraging AI to optimize booking systems, reduce costs, and enhance efficiency. 4. Automating Wealth Management AI agents in financial services monitor markets, adjust strategies, and offer personalized investment recommendations in real time. The Risks & Responsibilities of Agentic AI With great autonomy comes great responsibility. The potential of Agentic AI is vast—but so are the challenges: The Future of Work: AI as a Partner, Not a Replacement Despite concerns about job displacement, AI is more likely to reshape rather than replace roles. What Are AI Agents? AI agents go beyond traditional models like ChatGPT or Gemini. They are proactive, self-learning systems that: They fall into two categories: “AI agents don’t just wait for commands; they anticipate needs and act,” says Dr. Tomer Simon, Chief Scientist at Microsoft Research Israel. AI Agents in the Workplace: A Shift in Roles AI agents streamline processes, but they don’t eliminate the need for human oversight. Salesforce’s Agentforce is a prime example: “Companies need to integrate AI, not fear it. Those who fail to adopt AI tools risk drowning in tasks AI can handle,” warns Dr. Omri Allouche, Chief Scientist at Gong. The Road Ahead: AI-Driven Business Growth Agentic AI is not about replacing people—it’s about empowering them. As organizations re-evaluate workflows and embrace AI collaboration, the companies that act early will gain a competitive edge in efficiency and innovation. Final Thought The AI revolution is here, and Agentic AI is at its forefront. The key question isn’t whether AI will transform industries—it’s how organizations will adapt and thrive in this new era. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Einstein Service Agent

It’s been a little over a year since the global surge in GenAI chatbots, sparked by the excitement around ChatGPT. Since then, numerous vendors, both large and mid-sized, have invested heavily in the technology, and many users have already adopted AI-powered chatbots. The competition is intensifying, with CRM giant Salesforce releasing its own GenAI chatbot software, Einstein Service Agent. Einstein Service Agent, built on the Einstein 1 Platform, is Salesforce’s first fully autonomous AI agent. It interacts with large language models (LLMs) by analyzing the context of customer messages to determine the next actions. Utilizing GenAI, the agent generates conversational responses grounded in a company’s trusted business data, including Salesforce CRM data. Salesforce claims that service organizations can now significantly reduce the number of tedious inquiries that hinder productivity, allowing human agents to focus on more complex tasks. For customers, this means getting answers faster without waiting for human agents. Additionally, the service promises 24/7 availability for customer communication in natural language, with an easy handoff to human agents for more complicated issues. Businesses are increasingly turning to AI-based chatbots because, unlike traditional chatbots, they don’t rely on specific programmed queries and can understand context and nuance. Alongside Salesforce, other tech leaders like AWS and Google Cloud have released their own chatbots, such as Amazon Lex and Vertex AI, continuously enhancing their software. Recently, AWS updated its chatbot with the QnAIntent capability in Amazon Lex, allowing integration with a knowledge base in Amazon Bedrock. Similarly, Google released Vertex AI Agent Builder earlier this year, enabling organizations to build AI agents with no code, which can function together with one main agent and subagents. The AI arms race is just beginning, with more vendors developing software to meet market demands. For users, this means that while AI takes over many manual and tedious tasks, the primary challenge will be choosing the right vendor that best suits the needs and resources of their business. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents and Digital Transformation

AI Agents Help Streamline Customer Service

AI Agents Help Fisher & Paykel Streamline Customer Service Through Expanded Salesforce Partnership Fisher & Paykel, the New Zealand-based luxury appliance manufacturer, is leveraging AI agents to automate customer service tasks, such as answering frequently asked questions and scheduling service appointments. This initiative is designed to free up employee time for more value-added tasks, enhancing the overall customer service experience. In collaboration with Salesforce, Fisher & Paykel is using autonomous agents that integrate seamlessly with its CRM system, providing agents with greater visibility into customers’ interaction histories. This enables more efficient, data-driven interactions and allows the company to proactively resolve issues, such as freezer temperature irregularities, by automatically notifying customers and helping them schedule necessary appointments. For instance, AI agents can diagnose appliance issues, alert the service team, and assist customers in scheduling repair appointments. These agents also support on-site technicians by providing critical information, such as appointment locations and appliance age, while offering helpful articles and generating post-service summaries. Additionally, the integration of AI agents will enhance collaboration with Fisher & Paykel’s retail, builder, and designer partners. These partners will benefit from more efficient access to inventory information, accurate quotes for multiple products, and streamlined order placement and tracking. Enhancing Automation-Ready Environments This initiative builds on existing capabilities from the partnership, combining AI, data, and CRM functions such as subscription management and consolidated customer engagement data. The results have been impressive: Fisher & Paykel saw a 206% increase in unique email opens and a 112% rise in unique clicks in 2023. They also reduced manual effort by 30 minutes per order and saved up to 3,300 hours through automation in the B2B side of their business, according to Salesforce. In addition to service automation, Fisher & Paykel is tapping into AI-driven automated journeys based on consumer buying signals and cloud-based customer service support that automates appointment confirmations. Rudi Khoury, Chief Digital Officer at Fisher & Paykel, emphasized that customer expectations for efficiency and personalized service align perfectly with the brand’s luxury offerings, highlighting the importance of AI in meeting these demands. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com