ERP Archives - gettectonic.com
Preparing for Salesforce's Permission Set Revolution

Preparing for Salesforce’s Permission Set Revolution

Tectonic Shift: Preparing for Salesforce’s Permission Set Revolution The Future of Salesforce Access Management Salesforce is fundamentally transforming how enterprises manage user permissions. By Spring 2026, the platform will begin phasing out profile-based permissions in favor of a permission set-centric model—a tectonic shift in access governance that demands strategic preparation. This evolution presents both challenges and opportunities: Why Salesforce is Making This Change Legacy profile-based permissions have become unsustainable for modern enterprises, creating: The new permission set model delivers:✔ Modular, role-based access controls✔ Reduced management overhead✔ Enhanced audit capabilities✔ Dynamic alignment with business needs Note: Some profile functionality (login hours, page layouts) will remain, but core object/field permissions will migrate to permission sets. Tectonic’s Proven Transition Framework As a leader in Salesforce transformations, Tectonic has developed a comprehensive approach to permission set migration: 1. Strategic Assessment 2. Intelligent Design 3. Automated Deployment 4. Organizational Enablement Beyond Compliance: Strategic Advantages This transition represents more than a technical requirement—it’s an opportunity to: Building Your Transition Team The permission set revolution will reshape Salesforce talent needs. Tectonic offers dual solutions: 1. Expert Consultants 2. Managed Services Why Partner with Tectonic? Prepare for the Shift The clock is ticking toward Spring 2026. Organizations that start their transition now will: Ready to transform your access management strategy? Tectonic’s Salesforce experts can guide your organization through every phase of this critical transition. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Salesforce Einstein and Einstein Automate

Smarter Predictions, Faster Decisions

Einstein AI in 2025: Smarter Predictions, Faster Decisions The Evolution of Salesforce Einstein The Summer ’25 release transforms Einstein from a predictive scoring engine into an active decision-making partner. With deeper CRM integration and enhanced explainability, Einstein now delivers: ✅ Context-aware automation through natural language Flow creation✅ Real-time analytics that drive immediate action✅ Transparent model governance for regulated industries Key Innovations in the Summer ’25 Release 1. Einstein for Flow: Intelligent Automation Made Simple What’s New: Impact: 2. Einstein CRM Analytics: Live Decision Intelligence Enhanced Capabilities: Sample Use Case:A sales manager sees: Benefits: 3. Trust Through Transparency New Governance Features: Critical For: Industry-Specific Applications Sector Einstein 2025 Use Cases Sales Real-time deal coaching, automated follow-ups based on engagement signals Service Predictive case routing, customer churn prevention flows Marketing Dynamic journey adjustments based on real-time propensity scores Healthcare Compliance-aware patient outreach automation Implementation Roadmap Why This Matters The Summer ’25 release closes the gap between insight and action by:🔹 Democratizing AI – Business users create sophisticated automations🔹 Accelerating Decisions – Live data eliminates reporting lag🔹 Building Trust – Explainable AI meets compliance requirements “With these updates, Einstein moves from predicting outcomes to driving outcomes,” said Salesforce Chief Product Officer. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Intelligent Adoption Framework

Exploring Open-Source Agentic AI Frameworks

Exploring Open-Source Agentic AI Frameworks: A Comparative Overview Most developers have heard of CrewAI and AutoGen, but fewer realize there are dozens of open-source agentic frameworks available—many released just in the past year. To understand how these frameworks work and how easy they are to use, several of the more popular options were briefly tested. This article explores what each one offers, comparing them to the more established CrewAI and AutoGen. The focus is on LangGraph, Agno, SmolAgents, Mastra, PydanticAI, and Atomic Agents, examining their features, design choices, and underlying philosophies. What Agentic AI Entails Agentic AI revolves around building systems that enable large language models (LLMs) to access accurate knowledge, process data, and take action. Essentially, it uses natural language to automate tasks and workflows. While natural language processing (NLP) for automation isn’t new, the key advancement is the level of autonomy now possible. LLMs can handle ambiguity, make dynamic decisions, and adapt to unstructured tasks—capabilities that were previously limited. However, just because LLMs understand language doesn’t mean they inherently grasp user intent or execute tasks reliably. This is where engineering comes into play—ensuring systems function predictably. For those new to the concept, deeper explanations of Agentic AI can be found here and here. The Role of Frameworks At their very core, agentic frameworks assist with prompt engineering and data routing to and from LLMs. They also provide abstractions that simplify development. Without a framework, developers would manually define system prompts, instructing the LLM to return structured responses (e.g., API calls to execute). The framework then parses these responses and routes them to the appropriate tools. Frameworks typically help in two ways: Additionally, they may assist with: However, some argue that full frameworks can be overkill. If an LLM misuses a tool or the system breaks, debugging becomes difficult due to abstraction layers. Switching models can also be problematic if prompts are tailored to a specific one. This is why some developers end up customizing framework components—such as create_react_agent in LangGraph—for finer control. Popular Frameworks The most well-known frameworks are CrewAI and AutoGen: LangGraph, while less mainstream, is a powerful choice for developers. It uses a graph-based approach, where nodes represent agents or workflows connected via edges. Unlike AutoGen, it emphasizes structured control over agent behavior, making it better suited for deterministic workflows. That said, some criticize LangGraph for overly complex abstractions and a steep learning curve. Emerging Frameworks Several newer frameworks are gaining traction: Common Features Most frameworks share core functionalities: Key Differences Frameworks vary in several areas: Abstraction vs. Control Frameworks differ in abstraction levels and developer control: They also vary in agent autonomy: Developer Experience Debugging challenges exist: Final Thoughts The best way to learn is to experiment. While this overview highlights key differences, factors like enterprise scalability and operational robustness require deeper evaluation. Some developers argue that agent frameworks introduce unnecessary complexity compared to raw SDK usage. However, for those building structured AI systems, these tools offer valuable scaffolding—if chosen wisely. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
ai agent interoperability

Salesforce Unveils Open AI Ecosystem with Agentforce and MCP Integration

Breaking the AI Interoperability Paradox Salesforce is solving the critical challenge facing enterprise AI adoption—how to balance open innovation with enterprise-grade security. With its upcoming Model Context Protocol (MCP) support for Agentforce, Salesforce is creating the first truly open yet governed ecosystem for AI agent collaboration. The $6T Digital Labor Opportunity Current barriers to AI adoption: Salesforce’s solution enables:✔ Native agent interoperability via open standards✔ Enterprise-grade governance baked into every connection✔ 16x faster deployment than DIY approaches AgentExchange: The Trusted Marketplace for AI Agents Key Innovations Partner Ecosystem in Action Partner AI Agent Capabilities Enabled AWS Unstructured data processing across Bedrock, Aurora DBs, and multimedia Box Intelligent contract analysis and automated workflow triggers Google Cloud Location-aware AI combining Maps, generative models, and transactional data PayPal End-to-end agentic commerce from product listing to dispute resolution Stripe Real-time payment operations and subscription management WRITER Compliant content generation within Salesforce workflows The Salesforce Advantage “With MCP, we’re creating a new category of agent-first businesses,” says Brian Landsman, CEO of AppExchange. “Partners build once and connect everywhere—without the security tradeoffs of traditional integrations.” Enterprise Benefits The Future of Digital Labor This announcement marks a pivotal shift in enterprise AI: Available in pilot July 2024, Salesforce’s MCP integration positions Agentforce as the hub for the next generation of enterprise AI—where security and innovation coexist to unlock the full trillion potential of digital labor. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Salesforce Unveils Agentforce for Net Zero Cloud

Salesforce Unveils Agentforce for Net Zero Cloud

Salesforce Unveils Agentforce for Net Zero Cloud: AI-Powered Sustainability Transformation Revolutionizing Corporate Sustainability Through AI Salesforce has taken a groundbreaking leap in sustainable business operations with the launch of Agentforce for Net Zero Cloud—an AI-driven platform that transforms environmental compliance from a reporting obligation into a strategic advantage. This innovative solution empowers organizations to automate emissions tracking, optimize resource allocation, and drive measurable sustainability impact. Key Features & Capabilities 1. From Spreadsheets to Smart Insights 2. Automated Compliance & Reporting 3. Custom AI Agents for Targeted Impact 4. Sustainable AI Architecture Real-World Impact Prashanthi Sudhakar, Head of Net Zero Cloud at Salesforce:“Agentforce shifts sustainability from reactive reporting to proactive strategy—helping customers identify savings while reducing environmental impact.” Dan Connors, CEO of Green Impact:“Our clients are now making real-time, data-driven decisions that accelerate both cost savings and sustainability goals.” Why This Matters With Agentforce for Net Zero Cloud, Salesforce is redefining corporate sustainability—turning complex environmental data into competitive advantage through AI-powered intelligence. Available now for enterprises committed to transforming their sustainability operations. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Why AI Won't Kill SaaS

Essential Framework for Enterprise AI Development

LangChain: The Essential Framework for Enterprise AI Development The Challenge: Bridging LLMs with Enterprise Systems Large language models (LLMs) hold immense potential, but their real-world impact is limited without seamless integration into existing software stacks. Developers face three key hurdles: 🔹 Data Access – LLMs struggle to query databases, APIs, and real-time streams.🔹 Workflow Orchestration – Complex AI apps require multi-step reasoning.🔹 Accuracy & Hallucinations – Models need grounding in trusted data sources. Enter LangChain – the open-source framework that standardizes LLM integration, making AI applications scalable, reliable, and production-ready. LangChain Core: Prompts, Tools & Chains 1. Prompts – The Starting Point 2. Tools – Modular Building Blocks LangChain provides pre-built integrations for:✔ Data Search (Tavily, SerpAPI)✔ Code Execution (Python REPL)✔ Math & Logic (Wolfram Alpha)✔ Custom APIs (Connect to internal systems) 3. Chains – Multi-Step Workflows Chain Type Use Case Generic Basic prompt → LLM → output Utility Combine tools (e.g., search → analyze → summarize) Async Parallelize tasks for speed Example: python Copy Download chain = ( fetch_financial_data_from_API → analyze_with_LLM → generate_report → email_results ) Supercharging LangChain with Big Data Apache Spark: High-Scale Data Processing Apache Kafka: Event-Driven AI Enterprise Architecture: text Copy Download Kafka (Real-Time Events) → Spark (Batch Processing) → LangChain (LLM Orchestration) → Business Apps 3 Best Practices for Production 1. Deploy with LangServe 2. Debug with LangSmith 3. Automate Feedback Loops When to Use LangChain vs. Raw Python Scenario LangChain Pure Python Quick Prototyping ✅ Low-code templates ❌ Manual wiring Complex Workflows ✅ Built-in chains ❌ Reinvent the wheel Enterprise Scaling ✅ Spark/Kafka integration ❌ Custom glue code Criticism Addressed: The Future: LangChain as the AI Orchestration Standard With retrieval-augmented generation (RAG) and multi-agent systems gaining traction, LangChain’s role is expanding: 🔮 Autonomous Agents – Chains that self-prompt for complex tasks.🔮 Semantic Caching – Reduce LLM costs by reusing past responses.🔮 No-Code Builders – Business users composing AI workflows visually. Bottom Line: LangChain isn’t just for researchers—it’s the missing middleware for enterprise AI. “LangChain does for LLMs what Kubernetes did for containers—it turns prototypes into production.” Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
PepsiCo Pioneers Enterprise AI with Salesforce Agentforce

PepsiCo Pioneers Enterprise AI with Salesforce Agentforce

A Global First: PepsiCo Deploys Salesforce Agentforce at Scale PepsiCo has made history as the first major food and beverage company to implement Salesforce Agentforce AI agents across its global operations. This landmark partnership signals a transformative shift in how enterprises leverage AI for customer engagement, sales, and supply chain optimization. The announcement follows Salesforce’s Agentforce World Tour, where demonstrations in Tel Aviv, London, Zurich, Seoul, and Melbourne drew thousands of business leaders eager to explore AI’s potential. Now, with PepsiCo’s adoption, Agentforce moves from concept to real-world enterprise deployment. Why PepsiCo Chose Agentforce PepsiCo—a $92 billion market leader—isn’t just experimenting with AI; it’s reinventing its operations. The company will deploy Agentforce across: ✅ Customer Support – AI-powered, hyper-personalized interactions✅ Sales Optimization – Real-time inventory insights via Consumer Goods Cloud✅ Data-Driven Decision Making – Unified customer profiles via Salesforce Data Cloud Ramon Laguarta, PepsiCo Chairman & CEO, explains: “AI is reshaping our business in ways that were once unimaginable. This collaboration unlocks smarter decision-making, fuels innovation, and powers sustainable growth.” The AI + Human Collaboration Model Salesforce and PepsiCo emphasize augmentation over automation—where AI agents enhance, not replace, human roles. Marc Benioff, Salesforce CEO, highlights the vision: “PepsiCo is reimagining work by uniting human expertise with AI intelligence. This is the future of digital labor.” Athina Kanioura, PepsiCo’s Chief Strategy Officer, adds: With Agentforce, we’re building an enterprise where humans and AI collaborate—driving efficiency, resilience, and readiness for the future.” Addressing AI’s Impact on Jobs At the London Agentforce Tour, Zahra Bahrololoumi (Salesforce UK & Ireland CEO) clarified: “Our goal is to boost human productivity, not eliminate jobs. Some tasks are best handled by AI, others require human judgment.” A Blueprint for Enterprise AI Adoption PepsiCo’s deployment is a watershed moment for AI in consumer goods: 🔹 Scale: Impacts billions of daily product interactions across 200+ countries🔹 Integration: Combines Data Cloud, Consumer Goods Cloud, and Agentforce AI🔹 Innovation: Moves beyond automation to AI-driven decision intelligence What’s Next? If successful, PepsiCo’s implementation could accelerate global AI adoption—proving that enterprise-ready AI isn’t just theoretical. The Bigger Picture: AI’s Role in the Future of Business PepsiCo’s bold move underscores a critical shift: Will your business be next? 📈 Explore how Agentforce can transform your operations – Contact Salesforce AI Experts Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Salesforce Launches Agentforce 3

Salesforce Launches Agentforce 3

Salesforce Launches Agentforce 3: The Next Evolution of Enterprise AI Agents Transforming Businesses with AI-Powered Digital Workforces Salesforce has unveiled Agentforce 3, a major upgrade to its AI agent platform designed to help enterprises build, optimize, and scale hybrid workforces combining AI agents and human employees. At the heart of the update is Agentforce Studio, a centralized hub where businesses can:✔ Design AI agents for specific tasks✔ Test interactions in real-world scenarios✔ Optimize performance with advanced analytics “We’ve moved past just deploying AI—now we’re refining it,” says Jayesh Govindarajan, Salesforce’s EVP of AI & Engineering. Solving the “Step Two” Problem: Making AI Agents Smarter & More Reliable While 3,000+ businesses are already building AI agents on Salesforce, a critical challenge emerged: How do you maintain and improve AI performance after deployment? Key Upgrades in Agentforce 3 🔹 Real-Time Observability – Track AI and human interactions via Agentforce Command Center🔹 Web Search & Citations – AI agents can now pull external data (with source transparency)🔹 Pre-Built Industry Tools – Accelerate deployment with 100+ ready-made AI actions🔹 Multi-LLM Support – Choose between OpenAI, Anthropic’s Claude, or Google Gemini🔹 Regulatory Compliance – FedRAMP High Authorization enables public sector use Real-World Impact: AI Agents in Action 1. OpenTable 2. 1-800Accountant 3. UChicago Medicine Pricing & Global Expansion The Future of AI at Work “Agentforce isn’t just automation—it’s a digital labor platform,” says Adam Evans, Salesforce’s AI lead. With open standards (MCP, A2A) and 20+ partner integrations (Stripe, Box, Atlassian), businesses can:✔ Scale AI without custom code✔ Maintain full governance✔ Continuously optimize performance The bottom line? AI agents are no longer experimental—they’re essential workforce multipliers. Companies that master them will outpace competitors in efficiency and customer experience. “With Agentforce, we’re gaining a holistic view of operations—enabling smarter decisions across every market.”—Athina Kanioura, Chief Strategy Officer, PepsiCo Next step for businesses? Start small, measure rigorously, and scale fast. The AI agent revolution is here. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
amazon sagemaker

Amazon Sagemaker

Amazon SageMaker is a fully managed AWS machine learning service, enabling developers to build, train, and deploy machine learning models quickly and efficiently. It offers a range of tools and features for the entire ML lifecycle, including data preparation, model building, training, deployment, and monitoring. SageMaker supports various ML tasks, including classification, regression, and deep learning, and can be used for both online and batch inference.  Here’s a more in-depth look at SageMaker: Key Features and Capabilities: Benefits of using SageMaker:  Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AI Agents Are the Future of Enterprise

Persona-Centric Intelligence at Scale

The CIO’s Playbook for AI Success: Persona-Centric Intelligence at Scale The New Imperative: AI That Works the Way Your Teams Do In today’s digital-first economy, AI isn’t just a tool—it’s the operating system of modern business. But too many enterprises treat AI as a one-size-fits-all solution, leading to low adoption, wasted investment, and fragmented value. The winning strategy? Persona-based AI—designing intelligence that adapts to how different roles actually work. From Siloed to Strategic: The Evolution of Enterprise AI The Problem With Platform-Locked AI Most organizations deploy AI in disconnected pockets—Salesforce for sales, Workday for HR, SAP for finance. This creates:🔴 Duplicated efforts (multiple AI models doing similar tasks)🔴 Inconsistent insights (CRM AI says one thing, ERP AI another)🔴 Vendor lock-in (intelligence trapped in specific systems) The Solution: System-Agnostic Intelligence Forward-thinking CIOs are shifting to centralized AI “as a service”—decoupling intelligence from individual platforms to power seamless, cross-functional workflows. Example: 4 Pillars of a Persona-Based AI Strategy 1. Role-Specific Intelligence AI should augment, not disrupt existing workflows:🔹 Sales Reps: Real-time deal coaching, automated lead scoring🔹 Customer Support: AI-generated case summaries, sentiment-triggered escalations🔹 HR Teams: Smart resume screening, personalized onboarding bots Real-World Impact: *”Salesforce’s Agentforce cuts rep ramp time by 40% with AI role-plays tailored to each rep’s deal pipeline.”* 2. Generative AI That Works Behind the Scenes GenAI isn’t just for drafting emails—it’s automating high-value workflows:✔ Marketing: Dynamically localizing campaign creatives✔ Legal: Auto-redlining contracts against playbooks✔ IT: Converting trouble tickets into executable scripts Key Consideration: Guardrails matter—implement strict controls for data privacy and IP protection. 3. Edge AI for Real-Time Action Smart Cities Example:📍 Problem: Mumbai’s traffic gridlock costs $22B/year in lost productivity📍 AI Solution: Edge-powered cameras + sensors dynamically reroute vehicles without cloud latency📍 Outcome: 30% faster emergency response times Enterprise Use Cases: 4. Intelligent Automation: The Silent Productivity Engine Combining RPA + AI automates complex processes end-to-end:🔸 Finance: Invoice matching → fraud detection → payment approvals🔸 Supply Chain: Demand forecasting → autonomous PO generation🔸 IT: Self-healing network alerts → auto-remediation The CIO Action Plan 1. Audit Existing AI Deployments 2. Build a Central AI Layer 3. Start With High-Impact Personas Prioritize roles where AI drives measurable ROI:🎯 Field Service Techs: AR-guided repairs + parts forecasting🎯 Account Managers: Churn risk alerts + upsell scripts 4. Measure What Matters Track persona-specific metrics: The Future Is Adaptive The next frontier? “Living Intelligence”—AI that evolves with user behavior: *”By 2026, persona-driven AI will boost enterprise productivity by 35%.”*—Gartner “The best AI doesn’t feel like AI—it feels like a smarter way to work.” Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More

The Future of ERP: Agile, Modular, and Built for Growth

In today’s fast-moving business landscape, agility separates industry leaders from the rest. Outdated, monolithic ERP systems can’t keep up—they lock companies into rigid workflows instead of adapting to their needs. Enter modular ERP, a modern approach that combines enterprise-grade structure with the flexibility businesses demand. And when built natively on Salesforce, it becomes a game-changer—delivering seamless integration, real-time insights, and unmatched scalability. Why Legacy ERP Systems Are Failing Businesses Traditional ERP solutions were designed as one-size-fits-all systems, promising to handle everything from finance to supply chain in a single platform. But in reality, they often create more problems than they solve: For dynamic industries like manufacturing, distribution, and retail, these limitations lead to inefficiencies, delayed decisions, and rising operational costs. What Makes Modular ERP Different? Modular ERP redefines enterprise software by allowing businesses to deploy only what they need—and scale when ready. Think of it as a customizable toolkit: start with core functions like inventory or financials, then add supply chain, procurement, or manufacturing modules as your business grows. This approach eliminates the risks of a full-scale ERP overhaul while maximizing ROI—no bloat, no unnecessary features, just what you need to run smarter. Why Salesforce Is the Ideal ERP Foundation Salesforce is the world’s #1 CRM, but its power extends far beyond sales. As an ERP platform, it offers: ✅ Real-time data sync across sales, finance, logistics, and operations✅ True cloud scalability with enterprise-grade security✅ Low-code customization for rapid deployment✅ Seamless integration with Salesforce apps and third-party tools✅ Mobile-friendly access for today’s hybrid workforce When ERP is built natively on Salesforce businesses get the best of both worlds: the depth of enterprise resource planning and the agility of the Salesforce ecosystem. 5 Key Benefits of Modular ERP on Salesforce Real-World Impact: A Manufacturer’s Success Story A mid-sized industrial parts manufacturer was struggling with siloed systems—their legacy ERP couldn’t adapt to remote work or shifting demand. By implementing Salesforce, they: ✔ Cut inventory costs by 25% with real-time tracking✔ Reduced production cycle times by 18%✔ Gained end-to-end operational visibility✔ Scaled effortlessly by adding supply chain and finance modules later The Bottom Line: ERP That Works for You The future of ERP isn’t monolithic—it’s modular, cloud-based, and built for change. With ERP on Salesforce, businesses can finally break free from rigid systems and embrace a solution that evolves with them. Ready to modernize your operations? The right ERP shouldn’t hold you back—it should propel you forward. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Agentforce to the Team

How Agentforce 2.0’s New Model Changes the Game

Salesforce Reinvents AI Pricing: How Agentforce 2.0’s New Model Changes the Game From Conversations to Actions: Salesforce’s Bold Pricing Shift When Salesforce launched Agentforce 2.0 in October 2024, it raced ahead of competitors like Microsoft, SAP, and ServiceNow, positioning itself as the go-to platform for enterprise AI agents. The initial -per-conversation model worked well for simple use cases—like AI handling frontline customer chats—but as businesses experimented further, limitations emerged. Now, Salesforce is rolling out a game-changing update: action-based pricing. The New Pricing Model: Pay for What the AI Actually Does Bill Patterson, EVP of Corporate Strategy at Salesforce, explains: “We’re moving to an action-oriented model—charging for the actual work AI agents perform, not just conversations.” Key Features of the New Pricing: ✅ Flex Credits – Universal currency for AI actions across Sales, Service, and Marketing Clouds✅ $0.10 per action (20 credits) – Only pay when the AI completes a task✅ No hidden fees – Unlike hyperscalers, no separate charges for compute, storage, or LLM calls Example: “Think of it like electricity—you don’t pay differently for your fridge vs. your stove. Flex Credits power all AI agents uniformly.”— Bill Patterson Two Major Additions: Flex Agreement & Digital Wallet 1. Flex Agreement: Convert Unused Licenses into AI Credits Many companies overbuy CRM licenses during hiring surges. Now, they can trade unused licenses into Flex Credits for AI agents. Why It Matters: 2. Digital Wallet: Control & Monitor AI Spending A new centralized dashboard lets companies:📊 Track AI agent usage in real-time🛑 Set spending limits (e.g., cap expensive agents)📈 Measure ROI per agent “This isn’t about nickel-and-diming customers—it’s about fair, scalable pricing that grows with AI adoption.” How Does Salesforce Compare to Competitors? Pricing Model Salesforce Hyperscalers (AWS, Azure) AI Startups Basis Actions completed Compute + microservices “Employee replacement” flat fees Flexibility ✅ Universal Flex Credits ❌ Complex tiered pricing ❌ Rigid per-agent costs Transparency ✅ Clear per-action cost ❌ Hidden API/LLM fees ✅ Fixed but inflexible Salesforce’s edge? Agentforce One: The Next Evolution Coming in July 2025, Salesforce is rebranding Einstein One as Agentforce One—a bundled AI package for Sales & Service Cloud users. What’s Included? Goal: Lower the barrier to entry and accelerate AI adoption across Salesforce’s 150,000+ customers. Will This Boost Agentforce Adoption? ✅ 8,000 companies already use Agentforce (fastest-growing Salesforce product ever).✅ Flex Credits remove cost uncertainty.✅ Digital Wallet enables better budgeting. But… 8,000 is just 5% of Salesforce’s customer base. The new pricing could be the push needed to unlock mass adoption. The Bottom Line Salesforce’s pricing shift isn’t just about cost—it’s about trust. By moving to action-based billing, they’re ensuring customers:✔ Only pay for valuable AI work✔ Can scale AI across departments✔ Gain full visibility into ROI What’s next? As AI costs normalize, Salesforce’s flexible, transparent model could set the industry standard. 🚀 Ready to explore Agentforce?Contact us today! “This is the pricing model AI-powered businesses have been waiting for.”— CIO, Fortune 500 Salesforce Customer Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
ai agent communication protocols

AI Agent Communication Protocols

AI agent communication protocols are sets of rules that define how AI agents interact and exchange information within multi-agent systems. They provide a standardized way for agents to collaborate, share knowledge, and coordinate their actions to achieve complex goals. Key examples include Agent Communication Protocol (ACP), Model Context Protocol (MCP), and Agent2Agent (A2A).  Elaboration: Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
gettectonic.com