Data - gettectonic.com - Page 15
Ambient AI Enhances Patient-Provider Relationship

Ambient AI Enhances Patient-Provider Relationship

How Ambient AI is Enhancing the Patient-Provider Relationship Ambient AI is transforming the patient-provider experience at Ochsner Health by enabling clinicians to focus more on their patients and less on their screens. While some view technology as a barrier to human interaction, Ochsner’s innovation officer, Dr. Jason Hill, believes ambient AI is doing the opposite by fostering stronger connections between patients and providers. Researchers estimate that physicians spend over 40% of consultation time focused on electronic health records (EHRs), limiting face-to-face interactions. “We have highly skilled professionals spending time inputting data instead of caring for patients, and as a result, patients feel disconnected due to the screen barrier,” Hill said. Additionally, increased documentation demands related to quality reporting, patient satisfaction, and reimbursement are straining providers. Ambient AI scribes help relieve this burden by automating clinical documentation, allowing providers to focus on their patients. Using machine learning, these AI tools generate clinical notes in seconds from recorded conversations. Clinicians then review and edit the drafts before finalizing the record. Ochsner began exploring ambient AI several years ago, but only with the advent of advanced language models like OpenAI’s GPT did the technology become scalable and cost-effective for large health systems. “Once the technology became affordable for large-scale deployment, we were immediately interested,” Hill explained. Selecting the Right Vendor Ochsner piloted two ambient AI tools before choosing DeepScribe for an enterprise-wide partnership. After the initial rollout to 60 physicians, the tool achieved a 75% adoption rate and improved patient satisfaction scores by 6%. What set DeepScribe apart were its customization features. “We can create templates for different specialties, but individual doctors retain control over their note outputs based on specific clinical encounters,” Hill said. This flexibility was crucial in gaining physician buy-in. Ochsner also valued DeepScribe’s strong vendor support, which included tailored training modules and direct assistance to clinicians. One example of this support was the development of a software module that allowed Ochsner’s providers to see EHR reminders within the ambient AI app. “DeepScribe built a bridge to bring EHR data into the app, so clinicians could access important information right before the visit,” Hill noted. Ensuring Documentation Quality Ochsner has implemented several safeguards to maintain the accuracy of AI-generated clinical documentation. Providers undergo training before using the ambient AI system, with a focus on reviewing and finalizing all AI-generated notes. Notes created by the AI remain in a “pended” state until the provider signs off. Ochsner also tracks how much text is generated by the AI versus added by the provider, using this as a marker for the level of editing required. Following the successful pilot, Ochsner plans to expand ambient AI to 600 clinicians by the end of the year, with the eventual goal of providing access to all 4,700 physicians. While Hill anticipates widespread adoption, he acknowledges that the technology may not be suitable for all providers. “Some clinicians have different documentation needs, but for the vast majority, this will likely become the standard way we document at Ochsner within a year,” he said. Conclusion By integrating ambient AI, Ochsner Health is not only improving operational efficiency but also strengthening the human connection between patients and providers. As the technology becomes more widespread, it holds the potential to reshape how clinical documentation is handled, freeing up time for more meaningful patient interactions. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Zendesk Launches AI Agent Builder

The State of AI

The State of AI: How We Got Here (and What’s Next) Artificial intelligence (AI) has evolved from the realm of science fiction into a transformative force reshaping industries and lives around the world. But how did AI develop into the technology we know today, and where is it headed next? At Dreamforce, two of Salesforce’s leading minds in AI—Chief Scientist Silvio Savarese and Chief Futurist Peter Schwartz—offered insights into AI’s past, present, and future. How We Got Here: The Evolution of AI AI’s roots trace back decades, and its journey has been defined by cycles of innovation and setbacks. Peter Schwartz, Salesforce’s Chief Futurist, shared a firsthand perspective on these developments. Having been involved in AI since the 1970s, Schwartz witnessed the first “AI winter,” a period of reduced funding and interest due to the immense challenges of understanding and replicating the human brain. In the 1990s and early 2000s, AI shifted from attempting to mimic human cognition to adopting data-driven models. This new direction opened up possibilities beyond the constraints of brain-inspired approaches. By the 2010s, neural networks re-emerged, revolutionizing AI by enabling systems to process raw data without extensive pre-processing. Savarese, who began his AI research during one of these challenging periods, emphasized the breakthroughs in neural networks and their successor, transformers. These advancements culminated in large language models (LLMs), which can now process massive datasets, generate natural language, and perform tasks ranging from creating content to developing action plans. Today, AI has progressed to a new frontier: large action models. These systems go beyond generating text, enabling AI to take actions, adapt through feedback, and refine performance autonomously. Where We Are Now: The Present State of AI The pace of AI innovation is staggering. Just a year ago, discussions centered on copilots—AI systems designed to assist humans. Now, the conversation has shifted to autonomous AI agents capable of performing complex tasks with minimal human oversight. Peter Schwartz highlighted the current uncertainties surrounding AI, particularly in regulated industries like banking and healthcare. Leaders are grappling with questions about deployment speed, regulatory hurdles, and the broader societal implications of AI. While many startups in the AI space will fail, some will emerge as the giants of the next generation. Salesforce’s own advancements, such as the Atlas Reasoning Engine, underscore the rapid progress. These technologies are shaping products like Agentforce, an AI-powered suite designed to revolutionize customer interactions and operational efficiency. What’s Next: The Future of AI According to Savarese, the future lies in autonomous AI systems, which include two categories: The Road Ahead As AI continues to evolve, it’s clear that its potential is boundless. However, the path forward will require careful navigation of ethical, regulatory, and practical challenges. The key to success lies in innovation, collaboration, and a commitment to creating systems that enhance human capabilities. For Salesforce, the journey has only just begun. With groundbreaking technologies and visionary leadership, the company is not just predicting the future of AI—it’s creating it. The State of AI. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Multi AI Agent Systems

Multi AI Agent Systems

Building Multi-AI Agent Systems: A Comprehensive Guide As technology advances at an unprecedented pace, Multi-AI Agent systems are emerging as a transformative approach to creating more intelligent and efficient applications. This guide delves into the significance of Multi-AI Agent systems and provides a step-by-step tutorial on building them using advanced frameworks like LlamaIndex and CrewAI. What Are Multi-AI Agent Systems? Multi-AI Agent systems are a groundbreaking development in artificial intelligence. Unlike single AI agents that operate independently, these systems consist of multiple autonomous agents that collaborate to tackle complex tasks or solve intricate problems. Key Features of Multi-AI Agent Systems: Applications of Multi-AI Agent Systems: Multi-agent systems are versatile and impactful across industries, including: The Workflow of a Multi-AI Agent System Building an effective Multi-AI Agent system requires a structured approach. Here’s how it works: Building Multi-AI Agent Systems with LlamaIndex and CrewAI Step 1: Define Agent Roles Clearly define the roles, goals, and specializations of each agent. For example: Step 2: Initiate the Workflow Establish a seamless workflow for agents to perform their tasks: Step 3: Leverage CrewAI for Collaboration CrewAI enhances collaboration by enabling autonomous agents to work together effectively: Step 4: Integrate LlamaIndex for Data Handling Efficient data management is crucial for agent performance: Understanding AI Inference and Training Multi-AI Agent systems rely on both AI inference and training: Key Differences: Aspect AI Training AI Inference Purpose Builds the model. Uses the model for tasks. Process Data-driven learning. Real-time decision-making. Compute Needs Resource-intensive. Optimized for efficiency. Both processes are essential: training builds the agents’ capabilities, while inference ensures swift, actionable results. Tools for Multi-AI Agent Systems LlamaIndex An advanced framework for efficient data handling: CrewAI A collaborative platform for building autonomous agents: Practical Example: Multi-AI Agent Workflow Conclusion Building Multi-AI Agent systems offers unparalleled opportunities to create intelligent, responsive, and efficient applications. By defining clear agent roles, leveraging tools like CrewAI and LlamaIndex, and integrating robust workflows, developers can unlock the full potential of these systems. As industries continue to embrace this technology, Multi-AI Agent systems are set to revolutionize how we approach problem-solving and task execution. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Generative AI Replaces Legacy Systems

Generative AI Replaces Legacy Systems

Generative AI Will Overtake Legacy Stack Vendors With the rise of generative AI, legacy software vendors like Appian, IBM, Salesforce, SAP, Pegasystems, IFS, Oracle, Software AG, TIBCO, and UIPath are becoming increasingly obsolete. These vendors represent the old guard, clinging to outdated business process automation systems, while the future clearly belongs to AI-driven innovation. Back in the early 2010s, discussions around dynamic processes—self-assembling workflows created by artificial intelligence—were already gaining traction. The vision was to bypass the need for traditional process mapping or manually designing new interfaces. Instead, AI would dynamically generate processes in response to specific tasks, allowing for far greater flexibility and adaptability. However, business rules within BPMS (Business Process Management Systems) often imposed constraints that limited decision-making flexibility. Today, this vision is finally within reach. Many traditional stack vendors are scrambling to integrate generative AI into their offerings in a desperate bid to remain relevant. But the truth is, generative AI renders these vendors largely unnecessary. For instance, Pegasystems, like many others, now incorporates generative AI into its software, but users are still bound to old workflows and low-code development systems. The reliance on building processes, regardless of AI assistance, keeps them stuck in the past. Across the board—whether it’s ERP, CRM, or RPA—vendors such as Salesforce, SAP, and IFS remain tethered to their outdated systems, even though they possess all the necessary data, both structured and unstructured, to benefit from a simpler, AI-powered approach. All that’s needed is a generative AI layer on top to handle tasks like customer complaints. Consider a customer complaint scenario: traditionally, a complaint is processed through a defined workflow, often requiring the creation of expensive, custom SaaS solutions. But what if an LLM (Large Language Model) could handle this instead? The LLM could analyze the complaint, extract key information, assess urgency through sentiment analysis, and generate a custom workflow on the fly. It could even generate backend code in real-time to process refunds or update databases, all without relying on legacy front-end systems. The LLM’s ability to create and execute dynamic workflows eliminates the need for static business processes. The AI generates temporary code and UI elements to handle a specific interaction, then discards them once the task is complete. This shifts the focus away from traditional, bloated enterprise systems and towards dynamic, JIT (Just-In-Time) interactions that are tailored to each individual customer. The efficiency gains are not in cutting jobs but in eliminating the need for costly, antiquated software and lengthy digital transformation programs. Generative AI doesn’t require massive ERP or CRM implementations, and businesses can converse directly with customer data through AI, bypassing the need for complex system integrations. Master Data Management, which once consumed millions of dollars and years of effort, is now positioned to become a simple, AI-powered solution. Enterprises already have well-structured and clean data, and adding a generative AI layer could remove the need for integrating or syncing legacy systems. The era of major vendors selling AI-enhanced solutions built on top of decaying software stacks is coming to an end. The idea of using generative AI as the foundation for a new business operating system, without the need for bloated, legacy software, is increasingly appealing. With the global workflow automation market projected to grow to .4 billion by 2030, the future clearly belongs to AI-driven solutions. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Benioff Excited About AI

Benioff Excited About AI

Salesforce CEO Marc Benioff recently critiqued Microsoft for overhyping the capabilities of its Copilot AI tool, arguing that the tech giant has done a “tremendous disservice” to the industry. In a Rapid Response interview with Bob Safian, Benioff emphasized that Salesforce’s Agentforce is “what AI was meant to be.” More excited than ever, he sees Agentforce as a technology poised to transform industries in ways comparable to past cloud, mobile, and social revolutions. Benioff Excited About AI. Reflecting on Dreamforce 2024Benioff called this year’s Dreamforce the most significant yet. With 45,000 attendees and millions joining online, Agentforce took center stage, allowing users to build their own AI agents firsthand. This hands-on experience was vital, he said, to clear up misconceptions caused by overpromised AI products. Salesforce already handles trillions of AI transactions through its Einstein platform, but Benioff believes Agentforce represents a groundbreaking shift in enterprise AI. Agentforce vs. Copilot: A Clear DifferenceBenioff drew a sharp contrast between Agentforce and Microsoft’s Copilot, comparing the latter to the infamous Microsoft Clippy. According to Benioff, Copilot often fails to deliver meaningful results, creating confusion and dissatisfaction among customers. In contrast, Agentforce is set to deliver powerful outcomes by connecting customers, raising revenues, and augmenting employees. He anticipates that within a year, Salesforce will operate over a billion AI agents worldwide. Benioff Excited About AI. Benioff Excited About AI Agentforce’s Real-World ImpactSharing a story from the healthcare sector, Benioff illustrated how Agentforce has resolved over 90% of patient inquiries and scheduling needs for one large provider, enabling rapid and meaningful interactions. He foresees similar applications across media, finance, and travel, as Agentforce helps industries implement AI-driven agents with high success rates. Scheduled to go live on October 25, Agentforce is expected to be adopted by hundreds of thousands of companies. MIT IDE Annual Conference Insights: AI’s Potential and ChallengesWhile businesses explore AI’s possibilities, researchers at MIT’s Initiative on the Digital Economy (IDE) are investigating the complexities and ethical considerations of AI. At the 2024 MIT IDE Annual Conference, findings on AI’s influence on various domains were presented, with highlights including: These MIT findings highlight both the immense promise and the challenges AI presents, as companies like Salesforce aim to harness AI’s true potential while navigating ethical and practical concerns. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Battle of Copilots

Battle of Copilots

Salesforce is directly challenging Microsoft in the growing battle of AI copilots, which are designed to enhance customer experience (CX) across key business functions like sales and support. In this competitive landscape, Salesforce is taking on not only Microsoft but also major AI rivals such as Google Gemini, OpenAI GPT, and IBM watsonx. At the heart of this strategy is Salesforce Agentforce, a platform that leverages autonomous decision-making to meet enterprise demands for data and AI abstraction. Salesforce Dreamforce Highlights One of the most significant takeaways from last month’s Dreamforce conference in San Francisco was the unveiling of autonomous agents, bringing advanced GenAI capabilities to the app development process. CEO Marc Benioff and other Salesforce executives made it clear that Salesforce is positioning itself to compete with Microsoft’s Copilot, rebranding and advancing its own AI assistant, previously known as Einstein AI. Microsoft’s stronghold, however, lies in Copilot’s seamless integration with widely used products like Teams, Outlook, PowerPoint, and Word. Furthermore, Microsoft has established itself as a developer’s favorite, especially with GitHub Copilot and the Azure portfolio, which are integral to app modernization in many enterprises. “Salesforce faces an uphill battle in capturing market share from these established players,” says Charlotte Dunlap, Research Director at GlobalData. “Salesforce’s best chance lies in highlighting the autonomous capabilities of Agentforce—enabling businesses to automate more processes, moving beyond basic chatbot functions, and delivering a personalized customer experience.” This emphasis on autonomy is vital, given that many enterprises are still grappling with the complexities of emerging GenAI technologies. Dunlap points out that DevOps teams are struggling to find third-party expertise that understands how GenAI fits within existing IT systems, particularly around security and governance concerns. Salesforce’s focus on automation, combined with the integration prowess of MuleSoft, positions it as a key player in making GenAI tools more accessible and intuitive for businesses. Elevating AI Abstraction and Automation Salesforce has increasingly focused on the idea of abstracting data and AI, exemplified by its Data Cloud and low-level UI capabilities. Now, with models like the Atlas Reasoning Engine, Salesforce is looking to push beyond traditional AI assistants. These tools are designed to automate complex, previously human-dependent tasks, spanning functions like sales, service, and marketing. Simplifying the Developer Experience The true measure of Salesforce’s success in its GenAI strategy will emerge in the coming months. The company is well aware that its ability to simplify the developer experience is critical. Enterprises are looking for more than just AI innovation—they want thought leadership that can help secure budget and executive support for AI initiatives. Many companies report ongoing struggles in gaining that internal buy-in, further underscoring the importance of strong, strategic partnerships with technology providers like Salesforce. In its pursuit to rival Microsoft Copilot, Salesforce’s future hinges on how effectively it can build on its track record of simplifying the developer experience while promoting the unique autonomous qualities of Agentforce. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Impact of Generative AI

Impact of Generative AI

Generative AI has emerged as the most dominant trend in data management and analytics, overshadowing all other technologies. This prominence began with the launch of ChatGPT by OpenAI in November 2022, which significantly advanced the capabilities of large language models (LLMs) and demonstrated the transformative potential of generative AI (GenAI) for enterprises. Generative AI’s impact is profound, particularly in making advanced business intelligence tools accessible to a broader range of employees, not just data scientists and analysts. Before the advent of GenAI, complex data management and analytics platforms required computer science skills, statistical expertise, and extensive data literacy. Generative AI has reduced these barriers, enabling more people to leverage data insights for decision-making. Another key advantage of generative AI is its ability to greatly enhance efficiency. It can automate time-consuming, repetitive tasks previously performed manually by data engineers and experts, acting as an independent agent in managing data processes. The landscape of generative AI has evolved rapidly. Following the launch of ChatGPT, a wave of competing LLMs has emerged. Initially, the transformative potential of these technologies was theoretical, but it is now becoming tangible. Companies like Google are developing tools to help customers build and deploy their own generative AI models and applications. Enterprises are increasingly moving from pilot testing to developing and implementing production models. Generative AI does not operate in isolation. Enterprises are also focusing on complementary aspects such as data quality and governance. Ensuring that the data feeding and training generative AI is reliable is crucial. Additionally, real-time data and automation are essential for making generative AI a proactive technology rather than a reactive one. Generative AI has highlighted the need for a robust data foundation. The main challenge now is ensuring that enterprise data is trusted, governed, and ready for AI applications. With the rise of multimodal data, enterprises require a unified approach to manage and govern diverse data types effectively. In addition to generative AI, other significant trends in data management and analytics include the focus on real-time data processing and automation. Integrating generative AI with real-time data streams and automated systems is expected to drive substantial business transformation. By enabling real-time insights and actions, businesses can achieve a level of operational efficiency previously unattainable. The convergence of these technologies is transforming business operations. Unified and simplified technology stacks, integrating foundational technologies, LLMs, and real-time data platforms, are essential for driving this transformation. The industry is making strides towards creating integrated solutions that support comprehensive data management and analytics. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Salesforce Success Story

Case Study: Children’s Hospital Use Cases

In need of help to implement requisite configuration updates to establish a usable data model for data segmentation that supports best practices utilization of Marketing Cloud features including Contact Builder, Email Studio and Journey Builder.

Read More
New Salesforce Maps Experience Auto-Enabled in Winter ‘25 (October) Release

Christmas 2024

With artificial Christmas trees and holiday inflatables already appearing alongside Halloween decorations at big-box retailers, (and in neighbors’ yards before the first drop of pumpkin spice has been sipped) it’s clear that the holiday season is beginning earlier than ever this year. However, according to a new forecast from Salesforce, the expected holiday sales boost may be somewhat modest. Salesforce projects a 2 percent increase in overall sales for November and December, a slight drop from the 3 percent increase seen in 2023. The forecast highlights that consumers are facing higher debt due to elevated interest rates and inflation, which is likely to diminish their purchasing power compared to recent years. About 40 percent of shoppers plan to cut back on spending this year, while just under half intend to maintain their current spending levels. Adding to the challenge is the brief holiday shopping window between Thanksgiving and Christmas this year—only 27 days, the shortest since 2019. This data comes from Salesforce’s analysis of over 1.5 billion global shoppers across 64 countries, with a focus on 12 key markets including the U.S., Canada, U.K., Germany, and France. Shopping Trends and Strategies In terms of shopping habits, bargain hunters are expected to turn to platforms like Temu, Shein, and other Chinese-owned apps, with nearly one in five holiday purchases anticipated from these sources. TikTok is seeing rapid growth as a sales platform, with a 24 percent increase in shoppers making purchases through the app since April. For businesses, the focus on price is likely to intensify. Two-thirds of global shoppers will let cost dictate their shopping decisions this year, compared to 46 percent in 2020. Less than a third will prioritize product quality over price when selecting gifts. This trend suggests a busy Black Friday and Cyber Monday, with two-thirds of shoppers planning to delay major purchases until Cyber Week to seek out bargains. Salesforce forecasts an average discount of 30 percent in the U.S. during this period. Caila Schwartz, director of strategy and consumer insights at Salesforce, notes, “This season will be competitive, intense, and focused heavily on pricing and discounting strategies.” Shipping and Technology Challenges The shipping industry also poses a potential challenge, with container shipping costs becoming increasingly unstable. Brands and retailers are expected to incur an additional $197 billion in middle-mile expenses—a 97 percent increase from last year. To counter the threat from discount online retailers, stores with online capabilities should enhance their in-store pickup options. Salesforce predicts that buy online, pick up in store (BOPIS) will account for up to one-third of online orders globally in the week leading up to Christmas. Additionally, while still emerging, artificial intelligence (AI) is expected to play a role in holiday sales, with 18 percent of global orders influenced by predictive and generative AI, according to Salesforce. As retailers navigate these complexities, strategic pricing and efficient logistics will be key to capturing consumer attention and driving holiday sales. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI and Legacy

AI and Legacy

In most new application builds, AI is rarely considered an active consumer. The prevailing assumption seems to be that AI is just a variation of reporting, which essentially translates to “not my problem” for application developers. In this mindset, the data platform gets treated like an afterthought, receiving the “exhaust fumes” of the application without much concern for data quality. Even when data or AI is acknowledged as important, it’s often sidelined, with data becoming one of the first things sacrificed during the development process. In the past, this was merely a “minor” problem that led to the rise of the data quality industry. AI and Legacy. But as we move forward, this will become a significant issue due to one undeniable fact: AI will be the primary consumer of applications and data. Old Thinking Creates Instant Legacy What this means is that if you’re building a new application—whether it’s a website, ERP, CRM, or anything else—and you’re not considering AI as a user, you’re actively choosing to implement a legacy system. Even if your system has an AI solution baked in, if the core application isn’t designed for a data-driven world, the best you’ll achieve is an AI sidecar—just a nice wrapper, but limited in scope. Tools like Microsoft Copilot or Salesforce Agentforce, for instance, can easily be implemented in a way that minimizes or even eliminates opportunities for AI to thrive. If you’re building applications that treat data as merely a reporting tool and assume AI is a downstream consumer, you’re engaging in legacy thinking in a world increasingly powered by AI. Don’t Build Legacy Systems Avoiding legacy systems isn’t difficult. If you believe AI and data are important, treat them as such from the outset. This boils down to one simple principle: Design for the destination. If you think AI will be a primary consumer of applications in the next one, two, or five years, you should design your applications with that challenge in mind. This means considering AI personas, figuring out how AI assistants will integrate into human workflows, and planning how AI automation bots will function within the system. It also requires embracing a crucial decision: Your design should prioritize data, and assume AI is a primary consumer. This doesn’t mean just designing a robust database schema. It means ensuring your application’s operational reality can accurately reflect the business situation for both human and AI users. It’s not about technical database design—it’s about understanding the business’s accountability for digital accuracy and establishing the mechanisms to maintain that accuracy and represent it effectively. Building Legacy Is a Choice Everyone Is Making To be clear, this isn’t about adopting some “holistic” view or designing for every possible scenario. It’s about designing from a data and digital perspective first. Instead of treating use cases or business processes as the main design focus, the primary design thread should be the ability to reflect the reality of the business. Use cases and business processes still matter at the execution level, but they should not drive application design in a data-driven, AI-enabled world. You must assume that AI will be the primary consumer of your application and design accordingly, rather than focusing solely on human users and screens. Right now, nearly every application is still built as though data is a byproduct of transactions, with the assumption that AI is merely a sidecar, not an active participant. AI and Legacy. In the words of Sir Humphrey, that is a “courageous” decision. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agents, Tech's Next Big Bet

AI Agents, Tech’s Next Big Bet

What Marketers Need to Know About AI Agents, Tech’s Next Big Bet Companies like Salesforce and OpenAI are making significant investments in AI agents, which are digital assistants poised to represent the next evolution of artificial intelligence. These agents promise to autonomously handle a variety of tasks, from making reservations to negotiating business deals. During OpenAI’s DevDay event in San Francisco last week, the company showcased a voice bot that successfully ordered 400 chocolate-covered strawberries from a local delivery service, specifying delivery and payment terms with minimal issues. OpenAI CEO Sam Altman stated, “2025 is when agents will work,” highlighting the potential for these technologies to revolutionize workflows. While this may seem futuristic, companies like Salesforce, HubSpot, and Pactum AI are already implementing their own AI agents, though examples from brands like Qantas Airways remain relatively scarce—a point of discussion at Advertising Week New York. What Are AI Agents? AI agents extend beyond mere chatbots. According to Parasvil Patel, a partner at Radical Ventures, they lack a single unifying definition and encompass a wide range of functionalities, from automating workflows to scheduling meetings. The overarching goal, however, is clear: “The ultimate aim is to execute work autonomously,” Patel explained. Currently, AI agents are in the “co-pilot” phase, handling specific tasks such as summarizing meetings. The true breakthrough will occur when they transition to “autopilot,” managing more complex tasks without human intervention. According to Patel, this shift could take up to 24 months. When Did They Emerge? AI agents first gained attention on social media in early 2023, with various startups, including AutoGPT—an open-source application built on OpenAI’s models—promising autonomous capabilities. However, Patel notes that many of these early experiments were not robust enough to be deployed effectively in production environments. How Are Companies Using AI Agents? The appeal of AI agents lies in their ability to save time, enhance efficiency, and free employees from repetitive tasks. For instance, a large distribution company struggling to manage 100,000 suppliers utilized Pactum’s AI, which deploys autonomous agents for negotiations. Instead of seeing negotiations as a dead end, these AI agents continuously customized payment deals based on the speed of suppliers’ goods. This approach led to price discounts, rebates, and allowances. Salesforce has also seen positive results with its AI agents. Its pilot program, AgentForce, launched with five clients—including OpenTable and global publisher Wiley—and achieved a 40% increase in case resolution compared to its previous chatbot for Wiley. At the firm’s Dreamforce event, Salesforce demonstrated AgentForce with Ask Astro, assisting attendees in planning their schedules by suggesting sessions and making reservations. Salesforce’s chief marketing officer, Ariel Kelman, stated that the company has heavily invested in developing its AI agent platform in response to client demand. “What companies are figuring out with generative AI is how to deliver productivity improvements for employees and provide meaningful interactions with customers,” he noted. What About Roadblocks? The journey to fully functional AI agents is not without challenges. Managing different data formats—text, images, and videos—can be complex, as highlighted by William Chen, director of product management for AI & emerging tech at Agora. “Your system is only as good as your data source,” he said. For Salesforce, the challenge lies in the nascent customer adoption of AI agents, with companies just beginning to explore how to leverage them for productivity, according to Kelman. The key challenge is determining what solutions work best for employees and customers across various use cases. Are Jobs at Risk? Not necessarily. AI agents are unlikely to replace jobs in the immediate future. Instead, they allow employees to focus on more strategic and meaningful tasks. Rand explained, “The role of people will shift to configuring the autopilot, rather than flying the plane, which is a positive change.” For example, a major logistics client of Pactum, which previously relied on human negotiators for managing deals with freight providers, can now use AI agents to negotiate more efficiently. This adaptability allows companies to dynamically shift their business strategies based on market conditions. What’s Next? While early adopters of AI agents are seeing initial successes, there’s much more to discover. Salesforce plans to launch its next AI agent later this month: a Sales Development Representative (SDR) designed to manage early-stage sales interactions. Typically, human SDRs follow up on marketing leads through emails and calls, but this AI agent will qualify leads, providing human salespeople with a targeted list of 50 to 100 prospects eager to engage. “Instead of receiving a list of 500 leads, they’ll get a refined list of those who actually want to talk,” Kelman concluded. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Einstein Copilot for Healthcare

Einstein Copilot for Healthcare

Einstein Copilot for Healthcare – Salesforce has introduced a new AI-powered healthcare assistant within its CRM system, marking its latest move to expand into the healthcare industry. As AI development accelerates, tech giants like Microsoft, Google, Amazon Web Services, and Salesforce are capitalizing on the opportunity to integrate AI and cloud technologies into healthcare to streamline administrative and operational tasks. Salesforce’s healthcare-specific AI tool, Einstein Copilot, is a conversational assistant that leverages an organization’s private data to provide relevant responses. Einstein Copilot enables healthcare providers and care teams to digitally capture and summarize information from both clinical and nonclinical sources, update patient records, and automate manual workflows. Key Features of Einstein Copilot Providers can use Einstein Copilot to generate patient summaries that include medications, diagnoses, social determinants, assessments, clinical service requests, and care gaps. A care manager can also ask the assistant to find an in-network provider based on location, specialty, and insurance coverage, and auto-fill referral forms using natural language prompts. The AI assistant can also trigger workflows for tasks such as sending referrals, scheduling appointments, and updating care plans. Salesforce expects Einstein Copilot to be HIPAA-compliant by summer 2024, with Copilot: Health Actions slated for general availability in winter 2024. Digitizing Health Assessments Salesforce is adding a feature called Assessment Generation that allows healthcare organizations to digitize standardized health assessments. These can be automatically populated into Salesforce Health Cloud, filled out electronically, and tracked for progress over time. Reducing Administrative Waste Salesforce cites research from McKinsey & Co. showing that administrative costs account for nearly a quarter of U.S. healthcare spending, with a potential savings of up to $320 billion. By integrating AI and CRM tools, Salesforce aims to reduce the operational burden on healthcare providers and improve patient outcomes. Amit Khanna, Senior Vice President and General Manager for Health at Salesforce, highlighted the value of these innovations: “These new data, AI, and CRM features reduce the administrative and operational burden for healthcare providers, leading to better outcomes for patients. With Salesforce’s trusted AI, healthcare organizations excited about generative AI—but wary of clinical and security concerns—can confidently integrate these innovations into their workflows.” Early Adopters and Impact Healthcare providers including Baptist Health South Florida and HarmonyCares are already leveraging Salesforce to personalize patient interactions and create unified patient views. HarmonyCares, which operates across 14 states with over 150 primary care providers, has used Salesforce’s AI-driven field service platform to streamline patient scheduling. The company reported a 50% increase in self-scheduling efficiency since adopting the platform and plans to expand its use of Salesforce Health Cloud for care management and engagement. Kristin Darby, Chief Information Officer at HarmonyCares, emphasized the benefits of AI in healthcare: “AI will dramatically improve our ability to quickly synthesize patient needs and preferences, enabling us to offer a more personalized experience with greater accuracy.” However, the integration of AI in healthcare is not without skepticism. A recent survey revealed that 69% of individuals are uncomfortable with AI being used to diagnose them, though more than half are open to its use in nonclinical tasks like scheduling and billing. Salesforce’s Healthcare Journey Salesforce first launched Health Cloud in 2015 to help providers manage patients by aggregating data from electronic medical records, devices, and wearables. In 2022, the company expanded this offering with Customer 360 for Health, a unified platform that combines real-time data from Data Cloud, Einstein AI, and automation tools like Flow to streamline processes such as prior authorizations, intake, and patient scheduling. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Novel Threat Model to Secure LLM

Novel Threat Model to Secure LLM

Salesforce AI Research Proposes a Novel Threat Model to Secure LLM Applications Against Prompt Leakage Attacks Large Language Models (LLMs) have gained widespread attention in recent years but face a critical security challenge known as prompt leakage. This vulnerability allows adversaries to extract sensitive information from LLM prompts through targeted attacks. Prompt leakage risks exposing system intellectual property, contextual knowledge, style guidelines, and even backend API calls in agent-based systems. The simplicity and effectiveness of these attacks, combined with the growing use of LLM-integrated applications, make them particularly concerning. While prior research has explored prompt leakage in single-turn interactions, multi-turn scenarios—where vulnerabilities may be more pronounced—remain underexplored. Robust defense strategies are urgently needed to address this threat and protect user trust. Several research efforts have aimed to tackle prompt leakage in LLM applications. For example, the PromptInject framework was developed to examine instruction leakage in GPT-3, and gradient-based optimization methods have been proposed to generate adversarial queries that expose system prompts. Other studies have focused on parameter extraction, prompt reconstruction, and the vulnerability of tool-integrated LLMs to indirect prompt injection attacks. However, most have concentrated on single-turn scenarios, leaving multi-turn interactions and comprehensive defenses largely unaddressed. Recent research has expanded to investigate risks in Retrieval-Augmented Generation (RAG) systems and the potential extraction of personally identifiable information from external retrieval databases. The PRSA attack framework has demonstrated the ability to infer prompt instructions from commercial LLMs. However, these studies primarily focus on single-turn vulnerabilities, overlooking the complexities of multi-turn interactions and the need for more robust defenses. Defense Strategies for Prompt Leakage in LLMs Various defense methods have been explored, including perplexity-based techniques, input processing, auxiliary helper models, and adversarial training. Inference-only methods for intention analysis and goal prioritization have shown promise in improving defenses against adversarial prompts. Additionally, black-box techniques like detectors and content filtering have been employed to counter indirect prompt injection attacks. Salesforce AI Research introduces a standardized task setup to evaluate black-box defense strategies against prompt leakage in multi-turn interactions. Their methodology involves a simulated multi-turn question-answering interaction between the user (acting as an adversary) and the LLM, focusing on four key domains: news, medical, legal, and finance. This systematic approach assesses information leakage across different contexts. LLM prompts are split into task instructions and domain-specific knowledge, allowing researchers to monitor prompt content leakage. Experiments are conducted using seven black-box LLMs and four open-source models, offering a comprehensive analysis of vulnerability across various LLM architectures. The researchers apply a unique threat model in a multi-turn RAG-like setup to simulate real-world adversarial attacks. Attack and Defense Findings The attack strategy consists of two phases. In the first turn, a domain-specific query combined with an attack prompt is sent to the system. In the second turn, a challenger prompt is introduced, allowing the adversary to make another leakage attempt within the same conversation. This multi-turn approach mimics real-world scenarios where adversaries may exploit vulnerabilities. The research methodology also leverages sycophantic behavior in models to enhance multi-turn attacks, significantly increasing the average Attack Success Rate (ASR) from 17.7% to 86.2%. The study demonstrates nearly complete leakage (99.9%) on advanced models like GPT-4 and Claude-1.3. To counter this threat, various black- and white-box mitigation techniques are compared, providing developers with actionable defense strategies. A key defense strategy includes the implementation of a query-rewriting layer commonly used in RAG systems. This method proved most effective in reducing the average ASR during the first turn, while an Instruction defense was more successful in mitigating second-turn leakage attempts. The combination of all defense strategies led to a substantial reduction in the average ASR for black-box LLMs, lowering it to 5.3%. Additionally, a dataset of adversarial prompts designed to extract sensitive information was curated and used to fine-tune an open-source LLM, enhancing its defense capabilities. Comprehensive Defense Approaches The study evaluated ten popular LLMs: seven proprietary black-box models and three open-source ones, including LLama2-13b-chat, Mistral7b, and Mixtral 8x7b. The attack setup involved using adversarial prompts and domain-specific queries to assess prompt leakage. Researchers employed a four-category classification system for leakage: FULL LEAKAGE, NO LEAKAGE, KD LEAKAGE (knowledge documents only), and INSTR LEAKAGE (task instructions only). Any result other than NO LEAKAGE was considered a successful attack. A Rouge-L recall-based method was used to detect leakage, outperforming human annotations in identifying both verbatim and paraphrased leaks. A comprehensive set of black-box and white-box defense strategies were tested, including: Results indicated that query-rewriting was most effective in reducing first-turn ASR in closed-source models, while instruction defense proved more effective in mitigating second-turn attacks. Novel Threat Model to Secure LLM Salesforce AI Research’s findings reveal significant vulnerabilities to prompt leakage in LLMs, especially in multi-turn interactions. The study highlights the importance of combining multiple defense strategies, which successfully reduced the ASR to 5.3% in closed-source models. However, open-source models remained more vulnerable, with a 59.8% ASR in the second turn, even with all defenses applied. The study also explored safety fine-tuning for an open-source model, showing promising results when combined with other defense mechanisms. These insights provide a crucial roadmap for improving LLM security and reducing the risk of prompt leakage across both closed- and open-source models. By refining black-box defenses and incorporating structured responses and query-rewriting, developers can significantly enhance the security of LLM applications in real-world scenarios. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Powering EVPassport

Salesforce Powering EVPassport

EVPassport, a global leader in EV charging networks, announced an expanded partnership with Salesforce to enhance its customer experience through the deployment of Salesforce Service Cloud. This initiative solidifies EVPassport’s standing as a top provider in the EV charging space, recognized for customer satisfaction, loyalty, and reliability. With Salesforce Service Cloud, EVPassport can deliver more personalized, efficient service and support to its enterprise, commercial customers, and electric vehicle drivers. The platform enables deeper insights into each driver’s journey, resulting in a seamless, tailored experience. Hooman Shahidi, co-founder and CEO of EVPassport, highlighted the significance of Salesforce in driving the company’s next-generation mobility experience, stating, “As we build the mobility experience of tomorrow, having the right partners is crucial. Salesforce’s innovative solutions will help us exceed the evolving needs of our customers, sites, and communities.” By leveraging Salesforce’s AI, data, and CRM capabilities, EVPassport aims to strengthen customer connections and improve operational efficiency, ensuring a forward-thinking approach to EV charging for years to come. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com