- gettectonic.com
ai in supply chain

AI in Supply Chain

AI has the potential to transform supply chain management by boosting efficiency, enhancing forecasting, and improving customer satisfaction. However, it’s crucial for leaders to weigh the associated costs, technical challenges, and risks to ensure a smooth and strategic implementation. By addressing these disadvantages, companies can fully unlock AI’s benefits while minimizing its drawbacks.

Read More
user q and a

Marketing Cloud Engagement Send Times

How do I ensure emails from Marketing Cloud Engagement go to my recipients in the correct time zone? To configure a user’s time zone in Marketing Cloud Engagement, navigate to Setup > Users > [Select User] > Edit, and then select the desired time zone from the “Time Zone” dropdown menu within the “Locale Settings” section; this will update the user’s interface to display times according to their chosen time zone.  Key points to remember: If you need assistance configuring this in Marketing Cloud Engagement, contact Tectonic today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Salesforce Business Automation

Streamlining Business Automation: A Guide to Successful Salesforce Implementation Salesforce is a lightning jolt for business automation, offering powerful tools to enhance efficiency and productivity. However, implementing Salesforce is a complex process that requires strategic planning and execution. This insight will walk you through best practices for Salesforce implementation, helping you avoid common pitfalls and maximize the platform’s benefits. From defining clear business objectives to post-implementation performance measurement, we’ve got you covered. Understanding Salesforce Implementation Implementing Salesforce is more than simply installing software—it’s a strategic process that must align with your business goals. Successful implementation requires understanding each critical phase, including: Each phase builds toward a solution that drives operational improvements and delivers measurable results. The Role of Salesforce in Business Automation Salesforce transforms business processes by automating repetitive tasks, integrating workflows, and providing real-time analytics. These capabilities empower teams to focus on strategic activities, fostering growth and improving customer engagement. The platform’s automation features enhance decision-making, streamline operations, and deliver actionable insights, making it an essential tool for any data-driven organization. Best Practices for Salesforce Implementation 1. Define Clear Business Objectives Set specific, measurable, and strategic goals that Salesforce can address. Identify business challenges and align objectives with user needs to ensure widespread adoption and long-term success. 2. Conduct a Thorough Needs Analysis Analyze existing processes, identify gaps, and engage stakeholders to gather input. A detailed needs analysis ensures Salesforce is configured to address real pain points and deliver value. 3. Develop a Comprehensive Roadmap Create an implementation roadmap outlining timelines, responsibilities, resources, and risk mitigation strategies. A clear roadmap keeps the project on track and fosters effective communication. 4. Prioritize Data Quality and Governance Start by cleansing existing data to remove inaccuracies and duplicates. Implement governance policies to maintain data integrity, ensuring Salesforce delivers accurate insights. 5. Customize Thoughtfully Tailor Salesforce to enhance existing workflows rather than disrupting them. Engage users to understand their needs and avoid unnecessary complexity that could hinder usability or future updates. 6. Engage Certified Salesforce Partners Collaborate with experienced Salesforce partners to leverage best practices, avoid common pitfalls, and tailor the platform to your unique requirements. The Importance of User Adoption and Training User adoption is crucial for Salesforce’s success. Engage end-users early, involve them in the process, and provide tailored, hands-on training. Post-launch, offer continuous support and advanced training to help users unlock Salesforce’s full potential. Strategies to maximize adoption include: Post-Implementation Success Once Salesforce is live, focus on monitoring performance, gathering feedback, and fostering continuous improvement. 1. Measure Success with KPIs Track key performance indicators (KPIs) to evaluate Salesforce’s impact on your business objectives. Identify trends, address challenges, and ensure the platform remains aligned with your goals. 2. Establish a Feedback Mechanism Encourage users to share feedback and suggest improvements. Regularly review input to refine the system and ensure it evolves with your organization’s needs. 3. Provide Ongoing Support Maintain a dedicated support team to address queries and troubleshoot issues promptly. Continuous training sessions keep users updated and confident in leveraging new features. Avoiding Common Pitfalls Awareness of potential challenges can help you mitigate risks. Common pitfalls to avoid include: By addressing these challenges proactively, you set your Salesforce implementation up for success. Embracing the Salesforce Journey Implementing Salesforce is a transformative opportunity for your business. With strategic planning, stakeholder engagement, and a commitment to continuous improvement, Salesforce can revolutionize your operations. If you’re seeking a streamlined solution, consider leveraging tools like Sweep, an AI-powered visual workspace that simplifies Salesforce implementation. With Sweep’s no-code interface, you can design processes, customize fields, and automate workflows effortlessly. Ready to transform your business with Salesforce?Connect with our experts today and unlock the full potential of Salesforce for your organization. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI is revolutionizing BI by transforming it from a retrospective tool into a proactive, real-time decision-making engine.

AI in Business Intelligence

AI in Business Intelligence: Applications, Benefits, and Challenges AI is rapidly transforming business intelligence (BI) by enhancing analytics capabilities and streamlining processes. This shift is reshaping how organizations leverage data for decision-making. Here’s an in-depth look at how AI complements BI, its advantages, and the challenges it introduces. The Evolution of Business Intelligence with AI BI has traditionally focused on aggregating historical and current data to provide insights into business operations—a process known as descriptive analytics. However, many decision-makers seek more: insights into future trends (predictive analytics) and actionable recommendations (prescriptive analytics). AI bridges this gap. With advanced tools like natural language processing (NLP) and machine learning (ML), AI enables businesses to move beyond static dashboards to dynamic, real-time insights. It also simplifies complex analytics, making data more accessible to business users and fostering more informed, proactive decision-making. Key Benefits of AI in Business Intelligence AI brings significant benefits to BI, including: Real-World Applications of AI in BI AI’s integration into BI goes beyond internal efficiency, delivering external value by enhancing customer experiences and driving business growth. Notable applications include: Challenges of AI in Business Intelligence Despite its potential, integrating AI into BI comes with challenges: Best Practices for AI-Driven BI To successfully integrate AI with BI, organizations should: Future Trends in AI and BI AI is expected to augment rather than replace BI, enhancing its capabilities while keeping human expertise central. Emerging trends include: Conclusion AI is revolutionizing BI by transforming it from a retrospective tool into a proactive, real-time decision-making engine. While challenges remain, thoughtful implementation and adherence to best practices can help organizations unlock AI’s full potential in BI. By integrating AI into existing BI workflows, businesses can drive innovation, improve decision-making, and create more agile and data-driven operations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
user questions and answers

Marketing Cloud Account Engagement Send Times

Scheduled email sends are going out of Marketing Cloud at unexpected hours. Can this be fixed? To configure a user’s time zone in Marketing Cloud, navigate to Setup > Users > [Select User] > Edit, and then select the desired time zone from the “Time Zone” dropdown menu within the “Locale Settings” section; this will update the user’s interface to display times according to their chosen time zone.  Key points to remember: Please don’t hesitate to reach out to Tectonic if you need assistance configuring, have additional concerns, or just want to make Marketing Cloud greater. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

2024 The Year of Generative AI

Was 2024 the Year Generative AI Delivered? Here’s What Happened Industry experts hailed 2024 as the year generative AI would take center stage. Operational use cases were emerging, technology was simplifying access, and general artificial intelligence felt imminent. So, how much of that actually came true? Well… sort of. As the year wraps up, some predictions have hit their mark, while others — like general AI — remain firmly in development. Let’s break down the trends, insights from investor Tomasz Tunguz, and what’s ahead for 2025. 1. A World Without Reason Three years into our AI evolution, businesses are finding value, but not universally. Tomasz Tunguz categorizes AI’s current capabilities into: While prediction and search have gained traction, reasoning models still struggle. Why? Model accuracy. Tunguz notes that unless a model has repeatedly seen a specific pattern, it falters. For example, an AI generating an FP&A chart might succeed — but introduce a twist, like usage-based billing, and it’s lost. For now, copilots and modestly accurate search reign supreme. 2. Process Over Tooling A tool’s value lies in how well it fits into established processes. As data teams adopt AI, they’re realizing that production-ready AI demands robust processes, not just shiny tools. Take data quality — a critical pillar for AI success. Sampling a few dbt tests or point solutions won’t cut it anymore. Teams need comprehensive solutions that deliver immediate value. In 2025, expect a shift toward end-to-end platforms that simplify incident management, enhance data quality ownership, and enable domain-level solutions. The tools that integrate seamlessly and address these priorities will shape AI’s future. 3. AI: Cost Cutter, Not Revenue Generator For now, AI’s primary business value lies in cost reduction, not revenue generation. Tools like AI-driven SDRs can increase sales pipelines, but often at the cost of quality. Instead, companies are leveraging AI to cut costs in areas like labor. Examples include Klarna reducing two-thirds of its workforce and Microsoft boosting engineering productivity by 50-75%. Cost reduction works best in scenarios with repetitive tasks, hiring challenges, or labor shortages. Meanwhile, specialized services like EvenUp, which automates legal demand letters, show potential for revenue-focused AI use cases. 4. A Slower but Smarter Adoption Curve While 2023 saw a wave of experimentation with AI, 2024 marked a period of reflection. Early adopters have faced challenges with implementation, ROI, and rapidly changing tech. According to Tunguz, this “dress rehearsal” phase has informed organizations about what works and what doesn’t. Heading into 2025, expect a more calculated wave of AI adoption, with leaders focusing on tools that deliver measurable value — and faster. 5. Small Models for Big Gains In enterprise AI, small, fine-tuned models are gaining favor over massive, general-purpose ones. Why? Small models are cheaper to run and often outperform their larger counterparts when fine-tuned for specific tasks. For example, training an 8-billion-parameter model on 10,000 support tickets can yield better results than a general model trained on a broad corpus. Legal and cost challenges surrounding large proprietary models further push enterprises toward smaller, open-source solutions, especially in highly regulated industries. 6. Blurring Lines Between Analysts and Engineers The demand for data and AI solutions is driving a shift in responsibilities. AI-enabled pipelines are lowering barriers to entry, making self-serve data workflows more accessible. This trend could consolidate analytical and engineering roles, streamlining collaboration and boosting productivity in 2025. 7. Synthetic Data: A Necessary Stopgap With finite real-world training data, synthetic datasets are emerging as a stopgap solution. Tools like Tonic and Gretel create synthetic data for AI training, particularly in regulated industries. However, synthetic data has limits. Over time, relying too heavily on it could degrade model performance, akin to a diet lacking fresh nutrients. The challenge will be finding a balance between real and synthetic data as AI advances. 8. The Rise of the Unstructured Data Stack Unstructured data — long underutilized — is poised to become a cornerstone of enterprise AI. Only about half of unstructured data is analyzed today, but as AI adoption grows, this figure will rise. Organizations are exploring tools and strategies to harness unstructured data for training and analytics, unlocking its untapped potential. 2025 will likely see the emergence of a robust “unstructured data stack” designed to drive business value from this vast, underutilized resource. 9. Agentic AI: Not Ready for Prime Time While AI copilots have proven useful, multi-step AI agents still face significant challenges. Due to compounding accuracy issues (e.g., 90% accuracy over three steps drops to ~50%), these agents are not yet ready for production use. For now, agentic AI remains more of a conversation piece than a practical tool. 10. Data Pipelines Are Growing, But Quality Isn’t As enterprises scale their AI efforts, the number of data pipelines is exploding. Smaller, fine-tuned models are being deployed at scale, often requiring hundreds of millions of pipelines. However, this rapid growth introduces data quality risks. Without robust quality management practices, teams risk inconsistent outputs, bottlenecks, and missed opportunities. Looking Ahead to 2025 As AI evolves, enterprises will face growing pains, but the opportunities are undeniable. From streamlining processes to leveraging unstructured data, 2025 promises advancements that will redefine how organizations approach AI and data strategy. The real challenge? Turning potential into measurable, lasting impact. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Salesforce vs. Veeva

Salesforce vs. Veeva

Salesforce vs. Veeva: A High-Stakes Battle for Pharma CRM Dominance The pharmaceutical software industry is witnessing a seismic shift as Salesforce Inc. (CRM) positions itself to challenge Veeva Systems Inc. (VEEV), the long-time leader in pharmaceutical customer relationship management (CRM). Salesforce has already signed over 40 customers for its upcoming life sciences platform, including a major player among the top three global pharmaceutical companies, according to a Bloomberg report citing Jeff Amann, Salesforce’s executive vice president for industry-specific software. Notably, some of these new clients are transitioning away from Veeva, signaling a potential reshaping of the market. Veeva’s Longstanding Reign Veeva, which commands an estimated 80% share of the pharmaceutical CRM market, has built its dominance through highly specialized software tailored for the life sciences sector. The company, projected to generate .72 billion in revenue this fiscal year, provides not only CRM tools but also solutions for drug development tracking and analytics. Historically, Veeva’s CRM offerings were built on Salesforce’s platform under a non-compete agreement that allowed both companies to thrive without overlapping in the life sciences space. This partnership dissolved in late 2022 when Veeva decided to break away from Salesforce’s infrastructure, opting to develop its own suite of applications. This decision effectively ended the collaboration and opened the door for Salesforce to directly target Veeva’s core market with its own life sciences CRM solution. Salesforce’s Strategic Push Salesforce’s move into the pharmaceutical sector comes at a time of increasing demand from life sciences companies seeking alternatives to Veeva’s platform. According to Amann, many of these companies expressed a desire to avoid the disruption of switching away from Salesforce’s ecosystem, prompting the company to develop a dedicated life sciences product. The market has responded to this shift. On Tuesday, Veeva’s shares dropped over 3%, closing at $217.43, while Salesforce’s stock ticked up to $344.43, reflecting investor confidence in Salesforce’s strategy. Salesforce is now doubling down on its efforts, expanding its development teams and refining its life sciences product, which is set for a September launch. The company is reportedly engaged in discussions with several leading pharmaceutical firms as it seeks to erode Veeva’s market share. Veeva’s Counterattack Despite the emerging competition, Veeva remains confident. Paul Shawah, Veeva’s executive vice president, pointed out that most of its large clients, including industry giants like GSK Plc and Novo Nordisk A/S, have reaffirmed their loyalty. While Veeva has lost one of its top 20 customers to Salesforce, Shawah emphasized that Veeva’s deep focus on the complexities of the pharmaceutical industry gives it a significant edge in product optimization and pricing. Veeva is also using its newfound freedom from Salesforce to expand its product offerings. Previously restricted by its agreement with Salesforce, the company is now developing a CRM that will operate entirely on its own platform. This move allows Veeva to explore areas like customer service and patient management—domains that were previously off-limits. Shawah has cautioned potential defectors about Salesforce’s readiness to compete in life sciences, asserting that Veeva’s years of experience in the sector make its offerings more reliable and cost-effective. A Battle That Will Shape the Industry The competition between Salesforce and Veeva represents a classic clash between a market leader and an innovative challenger. Salesforce, a global CRM powerhouse, is leveraging its scale, AI capabilities, and integration strengths to gain a foothold in the pharmaceutical market. Meanwhile, Veeva is doubling down on its specialized expertise and long-standing relationships with life sciences companies. As the rivalry intensifies, its impact will extend beyond market share. The technological evolution of pharmaceutical CRM solutions—including advancements in AI, data management, and compliance—will likely accelerate, reshaping how pharmaceutical companies manage customer relationships and navigate complex regulatory environments. The outcome of this battle will set the tone for the future of CRM in life sciences, influencing both the competitive landscape and the technological trajectory of the industry. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
ThoughtSpot AI agent Spotter enables conversational BI

ThoughtSpot AI agent Spotter enables conversational BI

ThoughtSpot Unveils Spotter: A Generative AI-Powered Data Agent ThoughtSpot, a leading analytics vendor, has launched Spotter, an advanced generative AI-powered agent designed to revolutionize how users interact with data. Spotter enables conversational data exploration, contextual understanding, and autonomous analysis, making it a significant leap forward in the analytics landscape. Spotter’s Role in ThoughtSpot’s Evolution Spotter replaces Sage, ThoughtSpot’s earlier generative AI-powered interface, which debuted in March 2023. Despite moving from private to public preview and gaining new capabilities, Sage never reached general availability. Spotter is now generally available for ThoughtSpot Analytics, while its embedded version is in beta testing. Unlike earlier AI tools that focused on question-and-answer interactions, such as Sage and Microsoft’s copilots, Spotter takes the concept further by integrating contextual awareness and autonomous decision-making. Spotter doesn’t just respond to queries; it suggests follow-up questions, identifies anomalies, and provides proactive insights, functioning more like a virtual analyst than a reactive chatbot. Key Features of Spotter Spotter is built to enhance productivity and insight generation through the following capabilities: Generative AI’s Growing Impact on BI ThoughtSpot has long aimed to make analytics accessible to non-technical users through natural language search. However, previous NLP tools often required users to learn specific vocabularies, limiting widespread adoption. Generative AI bridges this gap. By leveraging extensive vocabularies and LLM technology, tools like Spotter enable users of all skill levels to access and analyze data effortlessly. Spotter stands out with its ability to deliver proactive insights, identify trends, and adapt to user behavior, enhancing the decision-making process. Expert Perspectives on Spotter Donald Farmer, founder of TreeHive Strategy, highlighted Spotter’s autonomy as a game-changer: “Spotter is a big move forward for ThoughtSpot and AI. The natural language interface is more conversational, but the key advantage is its autonomous analysis, which identifies trends and insights without users needing to ask.” Mike Leone, an analyst at TechTarget’s Enterprise Strategy Group, emphasized Spotter’s ability to adapt to users: “Spotter’s ability to deliver personalized and contextually relevant responses is critical for organizations pursuing generative AI initiatives. This goes a long way in delivering unique value across a business.” Farmer also pointed to Spotter’s embedded capabilities, noting its growing appeal as an embedded analytics solution integrated with productivity tools like Salesforce and ServiceNow. Competitive Positioning Spotter aligns ThoughtSpot with other vendors embracing agentic AI in analytics. Google recently introduced Conversational Analytics in Looker, and Salesforce’s Tableau platform now includes Tableau Agent. ThoughtSpot’s approach builds on its core strength in search-based analytics while expanding into generative AI-driven capabilities. Leone observed: “ThoughtSpot is right in line with the market in delivering an agentic experience and is laying the groundwork for broader AI functionality over time.” A Step Toward the Future of Analytics With Spotter, ThoughtSpot is redefining the role of AI in business intelligence. The tool combines conversational ease, proactive insights, and seamless integration, empowering users to make data-driven decisions more efficiently. As generative AI continues to evolve, tools like Spotter demonstrate how businesses can unlock the full potential of their data. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Sales Email Prompt Template

Sales Email Prompt Template

Salesforce Guide: Creating a Sales Email Prompt Template Want to create personalized, targeted sales emails efficiently? By leveraging Salesforce’s LLM capabilities, you can design a Sales Email Prompt Template that uses customer insights and relationship history to generate high-quality emails at scale. Reusable for different products and audiences, these templates save time and simplify workflows. Here’s how to set it up: 1. Enable Einstein Setup 2. Enable Einstein for Sales 3. Create a Sales Email Prompt Template 4. Draft and Ground the Prompt in the Template Workspace 🔔🔔  Follow us on LinkedIn  🔔🔔 Example Prompt: plaintextCopy codeYou are a {!$Input:Sender.Title} and your name is {!$Input:Sender.Name} from {!$Input:Sender.CompanyName}. Your prospect is {!$Input:Recipient.Name}, a {!$Input:Recipient.Title}. They are based in {!$Input:Recipient.MailingCity}. In the email, invite the prospect to attend the event “Floating on Clouds: Ontario Kickoff” on September 18. This event is for customers of Cloud Kicks, new and old, to network and preview upcoming products. Keep the email within 70 words, explain the benefits of attending, and mention that you’d be happy to chat further at the event or online if needed. 5. Preview the Template 6. Save and Activate the Prompt 7. Send Emails Using the Prompt 8. Adjust and Finalize the Email By following these steps, you can seamlessly create and use dynamic sales email templates to elevate your outreach efforts. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Omni-Channel

Salesforce Channels

Channels Email Messaging Voice Open CTI Social Media Chat Channel Tools Email Updates Messaging Enhancements Voice Improvements Social Media Chat Updates Other Channel Tools These updates enhance the messaging, email, voice, and chat experiences, streamlining agent workflows, improving customer interactions, and providing greater customization. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Leader Salesforce

Sales Leads and Lead Scoring

Sales teams often face a growing pile of leads, making it overwhelming to determine where to focus their energy. How do you prioritize effectively? Lead scoring is the answer. This methodology helps rank prospects based on their likelihood to convert into customers. By mastering lead scoring, sales teams can win more deals and drive revenue growth. What is Lead Scoring? Lead scoring is a strategy used by sales teams to evaluate and rank potential customers by assigning values based on their behavior, demographics, and interactions with the business. This process identifies high-quality leads and determines their likelihood of conversion. By implementing lead scoring, sales teams can focus their time and resources on the most promising prospects. Why is Lead Scoring Important? According to the Salesforce State of Sales Report, sales reps spend 25% of their workweek researching, prospecting, and prioritizing leads. These activities are essential for moving prospects through the sales funnel, yet balancing them with other responsibilities is a challenge. Lead scoring streamlines this process, enabling teams to be more productive by focusing on high-value leads. This improves conversion rates while helping sales leadership better forecast pipelines and revenue. For example, imagine a sales rep for a medical software company trying to close deals with 100 hospital leads. Pursuing them randomly wastes time. However, with lead scoring, they can identify the top 10 most promising leads based on specific criteria, saving time and increasing success rates. Key Components of an Effective Lead Scoring System 1. Data Categories 2. Implicit vs. Explicit Data 3. Quality Data A reliable lead scoring system depends on accurate and up-to-date data. Keeping CRM records current and synced ensures a dependable scoring process. 4. Rule Definition Define criteria based on your most successful customer profiles. Identify patterns of attributes and behaviors that consistently lead to conversion. Similarly, assess unconverted leads to understand traits that signal low potential. 5. Manual vs. Predictive Scoring Steps to Implement Lead Scoring Common Lead Scoring Mistakes to Avoid Tools and Software for Lead Scoring The right tools can make lead scoring more efficient: If you’re short on data, opt for tools that can leverage anonymized external datasets to build your scoring model, transitioning to your own data over time as you scale. Real-World Examples Lead Scoring: Your Path to Higher Conversions By effectively implementing lead scoring, your sales team can prioritize high-value leads, boost conversion rates, and achieve sustainable revenue growth. Whether you choose manual or predictive methods, the key is to focus on what drives success for your business. Take control of your sales pipeline—lead scoring will show you the way. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

1 Billion Enterprise AI Agents

Inside Salesforce’s Ambition to Deploy 1 Billion Enterprise AI Agents Salesforce is making a bold play in the enterprise AI space with its recently launched Agentforce platform. Introduced at the annual Dreamforce conference, Agentforce is positioned to revolutionize sales, marketing, commerce, and operations with autonomous AI agents, marking a significant evolution from Salesforce’s previous Einstein AI platform. What Makes Agentforce Different? Agentforce operates as more than just a chatbot platform. It uses real-time data and user-defined business rules to proactively manage tasks, aiming to boost efficiency and enhance customer satisfaction. Built on Salesforce’s Data Cloud, the platform simplifies deployment while maintaining powerful customization capabilities: “Salesforce takes care of 80% of the foundational work, leaving customers to focus on the 20% that truly differentiates their business,” explains Adam Forrest, SVP of Marketing at Salesforce. Forrest highlights how Agentforce enables businesses to build custom agents tailored to specific needs by incorporating their own rules and data sources. This user-centric approach empowers admins, developers, and technology teams to deploy AI without extensive technical resources. Early Adoption Across Industries Major brands have already adopted Agentforce for diverse use cases: These real-world applications illustrate Agentforce’s potential to transform workflows in industries ranging from retail to hospitality and education. AI Agents in Marketing: The New Frontier Salesforce emphasizes that Agentforce isn’t just for operations; it’s poised to redefine marketing. AI agents can automate lead qualification, optimize outreach strategies, and enhance personalization. For example, in account-based marketing, agents can analyze customer data to identify high-value opportunities, craft tailored strategies, and recommend optimal engagement times based on user behavior. “AI agents streamline lead qualification by evaluating intent signals and scoring leads, allowing sales teams to focus on high-priority prospects,” says Jonathan Franchell, CEO of B2B marketing agency Ironpaper. Once campaigns are launched, Agentforce monitors performance in real time, offering suggestions to improve ROI and resource allocation. By integrating seamlessly with CRM platforms, the tool also facilitates better collaboration between marketing and sales teams. Beyond B2C applications, AI agents in B2B contexts can evaluate customer-specific needs and provide tailored product or service recommendations, further enhancing client relationships. Enabling Creativity Through Automation By automating repetitive tasks, Agentforce aims to free marketers to focus on strategy and creativity. Dan Gardner, co-founder of Code and Theory, describes this vision: “Agentic AI eliminates friction and dissolves silos in data, organizational structures, and customer touchpoints. The result? Smarter insights, efficient distribution, and more time for creatives to do what they do best: creating.” Competitive Landscape and Challenges Despite its promise, Salesforce faces stiff competition. Microsoft—backed by its integration with OpenAI’s ChatGPT—has unveiled AI tools like Copilot, and other players such as Google, ServiceNow, and HubSpot are advancing their own AI platforms. Salesforce CEO Marc Benioff has not shied away from the rivalry. On the Masters of Scale podcast, he criticized Microsoft for overpromising on products like Copilot, asserting that Salesforce delivers tangible value: “Our tools show users exactly what is possible, what is real, and how easy it is to derive huge value from AI.” Salesforce must also demonstrate Agentforce’s scalability across diverse industries to capture a significant share of the enterprise AI market. A Transformative Vision for the Future Agentforce represents Salesforce’s commitment to bringing AI-powered automation to the forefront of enterprise operations. With its focus on seamless deployment, powerful customization, and real-time capabilities, the platform aims to reshape how businesses interact with customers and optimize internal processes. By targeting diverse use cases and emphasizing accessibility for both technical and non-technical users, Salesforce is betting on Agentforce to drive adoption at scale—and position itself as a leader in the increasingly competitive AI market. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Enhance Customer Service with Salesforce

Delivering exceptional customer service is essential for success in today’s financial industry. Transform your operations by embracing Salesforce Financial Services Cloud, powered by Einstein AI, and Tectonic’s Salesforce expertise. Or the base Salesforce platform. Together, these tools can help you reduce operating costs, modernize service delivery, and exceed customer expectations. Revolutionize Financial Services with Salesforce & AI Salesforce Financial Services Cloud, combined with Einstein AI, offers everything you need to build a modern digital platform with AI-driven processes. Features such as Salesforce Service Voice and multi-channel support enhance customer engagement, increase loyalty, and improve satisfaction metrics. At the same time, these solutions strengthen the experience and retention of both front-line representatives and back-office teams. Tectonic + Salesforce can help you: Achieve More with Salesforce Financial Services Cloud and Einstein AI By partnering with Tectonic, your business can unlock the full potential of Salesforce Financial Services Cloud and Einstein AI to: Learn More About Transforming Financial Services Want to discover how Tectonic and Salesforce can help you modernize your financial services operations? Let’s Connect!We’d love to hear about your business needs. Schedule a consultation with Tectonic today! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Why Build a General-Purpose Agent?

A general-purpose LLM agent serves as an excellent starting point for prototyping use cases and establishing the foundation for a custom agentic architecture tailored to your needs. What is an LLM Agent? An LLM (Large Language Model) agent is a program where execution logic is governed by the underlying model. Unlike approaches such as few-shot prompting or fixed workflows, LLM agents adapt dynamically. They can determine which tools to use (e.g., web search or code execution), how to use them, and iterate based on results. This adaptability enables handling diverse tasks with minimal configuration. Agentic Architectures Explained:Agentic systems range from the reliability of fixed workflows to the flexibility of autonomous agents. For instance: Your architecture choice will depend on the desired balance between reliability and flexibility for your use case. Building a General-Purpose LLM Agent Step 1: Select the Right LLM Choosing the right model is critical for performance. Evaluate based on: Model Recommendations (as of now): For simpler use cases, smaller models running locally can also be effective, but with limited functionality. Step 2: Define the Agent’s Control Logic The system prompt differentiates an LLM agent from a standalone model. This prompt contains rules, instructions, and structures that guide the agent’s behavior. Common Agentic Patterns: Starting with ReAct or Plan-then-Execute patterns is recommended for general-purpose agents. Step 3: Define the Agent’s Core Instructions To optimize the agent’s behavior, clearly define its features and constraints in the system prompt: Example Instructions: Step 4: Define and Optimize Core Tools Tools expand an agent’s capabilities. Common tools include: For each tool, define: Example: Implementing an Arxiv API tool for scientific queries. Step 5: Memory Handling Strategy Since LLMs have limited memory (context window), a strategy is necessary to manage past interactions. Common approaches include: For personalization, long-term memory can store user preferences or critical information. Step 6: Parse the Agent’s Output To make raw LLM outputs actionable, implement a parser to convert outputs into a structured format like JSON. Structured outputs simplify execution and ensure consistency. Step 7: Orchestrate the Agent’s Workflow Define orchestration logic to handle the agent’s next steps after receiving an output: Example Orchestration Code: pythonCopy codedef orchestrator(llm_agent, llm_output, tools, user_query): while True: action = llm_output.get(“action”) if action == “tool_call”: tool_name = llm_output.get(“tool_name”) tool_params = llm_output.get(“tool_params”, {}) if tool_name in tools: try: tool_result = tools[tool_name](**tool_params) llm_output = llm_agent({“tool_output”: tool_result}) except Exception as e: return f”Error executing tool ‘{tool_name}’: {str(e)}” else: return f”Error: Tool ‘{tool_name}’ not found.” elif action == “return_answer”: return llm_output.get(“answer”, “No answer provided.”) else: return “Error: Unrecognized action type from LLM output.” This orchestration ensures seamless interaction between tools, memory, and user queries. When to Consider Multi-Agent Systems A single-agent setup works well for prototyping but may hit limits with complex workflows or extensive toolsets. Multi-agent architectures can: Starting with a single agent helps refine workflows, identify bottlenecks, and scale effectively. By following these steps, you’ll have a versatile system capable of handling diverse use cases, from competitive analysis to automating workflows. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
gettectonic.com