AWS Archives - gettectonic.com
AI and UX Design

The AI Frontier Code: Laws for Taming the Wild West of UX

The digital frontier is lawless. Interfaces without intelligence. Intelligence without empathy. Designers building for yesterday while AI reshapes tomorrow. Teams drowning in possibility, paralyzed by complexity, lost in the noise of a thousand AI snake oil salesmen peddling confusion. The old rulebooks are ashes. The familiar trails have vanished. We stand at the edge of a new territory, watching the very nature of human-machine interaction transform before our eyes. But from chaos comes order. Just as the Code of the West brought structure to the untamed frontier, the AI era demands new ironclad laws—unyielding principles to guide us through this uncharted land. These aren’t suggestions. These aren’t guidelines. These are the Laws of the AI Frontier—the difference between those who’ll shape the future and those who’ll be left in the dust. As trailblazer Rob Chappell observes: “The future ain’t about guiding users from point A to B. It’s about forging bonds between people and thinking machines.” These laws are your survival guide for that journey. Branded in silicon, etched in circuits, sworn by the pioneers who’ll build tomorrow. I. The Interface IS the Intelligence The First Law: In AI territory, your UI is your brain Forget pretty wrappers around dumb tools. In this new land, every pixel shapes how the AI thinks. Every interaction teaches it how to behave. Every design choice forges its character. When you craft a notification, you’re not picking colors—you’re setting when the AI interrupts. When you design a conversation, you’re not writing words—you’re teaching metal minds how to speak human. As scout Rachel Kobetz warns: “Intelligence ain’t hidden behind the interface no more—it IS the interface. When systems learn and adapt, experience ain’t downstream from strategy. It IS the strategy.” How to stay lawful: The punishment for lawbreakers: Interfaces that feel fake, AI that seems alien, and users who’ll never trust your metal partner enough to ride together. II. Scout Tomorrow’s Trails Today The Second Law: Pioneers blaze trails—settlers just follow ruts While greenhorns debate whether AI changes design, you should be building that change. The future belongs to those who see past the horizon, who bridge to lands that don’t exist yet, who turn raw possibility into working reality. Don’t wait for briefs—write ’em. Don’t wait for strategy—create it. Don’t wait for permission—plant your flag. How to stay lawful: The punishment for lawbreakers: Eternal catch-up, always reacting instead of leading, watching others claim the future you could’ve owned. III. Show Your Hand The Third Law: Trust is the only currency that matters Users need to know more than what happened—they need confidence in what’ll happen next. In a land of black-box algorithms, transparency is the bridge between human doubt and digital trust. But clarity beats raw disclosure. Your duty is to reveal AI’s workings in ways that enlighten, not overwhelm. Think control maps—not journey maps. Don’t just chart what users do. Show who’s holding the reins—human, AI, or both—and when that changes. As Chappell notes: “The question ain’t ‘What’s the user doing?’ It’s ‘Who’s calling the shots right now, and how does that change?’” How to stay lawful: The punishment for lawbreakers: Users who never fully trust your AI, limiting its potential, dooming it to be just another broken promise in this wild land. IV. Ride Together The Fourth Law: The future’s human AND AI—not human OR AI Your job ain’t to protect humans from machines or replace cowboys with automatons. Your mission is to choreograph the dance between human gut and machine logic—partnerships that bring out the best in both. Design for the “autonomy slider”—a fluid scale where control flows between: This ain’t an on-off switch—it’s a continuous flow, creating what the wise call “co-agency.” How to stay lawful: The punishment for lawbreakers: AI that feels threatening instead of helpful, users who fight your “improvements,” and missing the magic of true partnership. The Oath: Living by the Code These laws ain’t gentle suggestions—they’re the bedrock of tomorrow’s AI UX. Every designer who’ll matter in the intelligence era lives by them. Every product that truly transforms human potential reflects them. To follow this code is to: To ignore them is to: The choice is yours, pioneer. Every designer today faces a decision that’ll define not just their career, but how humans and machines will work together for generations. You can cling to the old ways—the comfortable rules of pre-AI UX, the safety of known patterns, the ease of reactive design. Or you can swear by this new code, strap on your tools, and help write the next chapter of human-digital history. The laws are carved. The trail awaits. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AWS Salesforce

AWS Unveils New Agent-Based AI Tools

AWS Unveils New Agent-Based AI Tools, Doubles Down on Developer-Focused Innovation At the AWS Summit New York City 2025, Amazon Web Services (AWS) announced a suite of new agent-based AI tools, reinforcing its commitment to agentic AI—a paradigm shift where AI systems not only generate responses but autonomously take actions. Key Announcements: Why Agentic AI? AWS believes agentic AI is transforming technology by enabling hyper-automation—where AI doesn’t just analyze or summarize but acts on behalf of users. To accelerate adoption, AWS is investing an additional 0M in its Generative AI Innovation Center. “The goal is to help organizations move beyond generative AI to AI that can take action,” said Taimur Rashid, AWS Managing Director of Generative AI Innovation. Industry Reactions: A Developer-First Approach Analysts note AWS is targeting enterprise developers with advanced tooling, differentiating itself from low-code platforms like Salesforce. However, Mark Beccue (Omdia) cautions:“AWS risks missing buyers by focusing too narrowly on developers. They need a clearer end-to-end story.” Partner Perspective: Solving Real-World AI Challenges John Balsavage (A&I Solutions Inc.), an AWS partner, highlights AgentCore Observability as critical for improving AI agent accuracy:“90% accuracy isn’t enough—we need full traceability to reach 100%.” He also praised Kiro, AWS’s new agentic IDE, for simplifying AI prompting:“It generates better requirements, helping developers build more effectively.” AWS Marketplace Expansion & New Integrations AWS also launched: Challenges Ahead While AWS aims to simplify AI development, analysts question: “AWS is trying to be the middle ground between raw AI tools and fully packaged solutions,” said Andersen. “Execution will be key.” The Bottom Line AWS is betting big on agentic AI, arming developers with powerful tools—but success hinges on bridging the gap between technical capability and business impact. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AWS Salesforce

AWS Doubles Down on Agentic AI with New Developer Tools at NYC Summit

At its AWS Summit New York City 2025 conference, Amazon Web Services unveiled a comprehensive suite of agent-based AI tools, signaling its strategic bet on what it calls “the next fundamental shift in enterprise AI.” Core Offerings: Building Blocks for Agentic Systems The cloud leader introduced Amazon Bedrock AgentCore, now in preview, which provides seven foundational services for deploying AI agents at scale: “This represents a step function change in what’s possible for AI agents,” said Swami Sivasubramanian, AWS VP for Agentic AI, during his keynote. The suite supports any AI framework or model while addressing critical enterprise requirements around security and scalability. Complementary AI Infrastructure Updates AWS also announced: The company is backing these technical investments with an additional $100 million for its Generative AI Innovation Center, focusing on hyperautomation use cases. Developer-Centric Approach Faces Mixed Reactions Analysts note AWS’s strategy differs from competitors by targeting professional developers rather than citizen developers: “It’s geared toward the hardcore professional developer,” said Jason Andersen of Moor Insights & Strategy, contrasting AWS’s CLI-heavy approach with Salesforce’s low-code solutions. However, Omdia’s Mark Beccue cautioned: “When talking about agents, you must have the complete story.” He suggested the developer focus might overlook key decision-makers. Ecosystem Expansion Notable ecosystem developments include: Early adopters like A&I Solutions President John Balsavage highlight observability tools as critical for improving agent accuracy beyond current 90% benchmarks. Challenges Ahead While AWS aims to simplify complex AI orchestration, analysts question whether it can: The summit also revealed AWS Academy is providing free certification exam vouchers to over 6,600 students, potentially growing its AI-skilled workforce. Meanwhile, Anthropic (an AWS partner) launched new analytics for its Claude Code assistant. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
agent2agent protocol explained

Google’s Agent2Agent Protocol Explained

Google’s Agent2Agent Protocol (A2A): The Open Standard for AI Agent Collaboration A New Era of AI Interoperability On April 9, 2025, Google introduced the Agent2Agent Protocol (A2A), a standardized framework enabling AI agents to discover, communicate, and collaborate across different platforms securely. Just months later, on June 23, 2025, Google donated A2A—including its specifications, SDKs, and developer tools—to the Linux Foundation, ensuring neutral, open governance for the protocol’s future. “By contributing A2A, Google is ensuring neutral governance for the project for the remainder of its existence.”— Mike Dolan, SVP, Legal & Strategic Programs, Linux Foundation This move prevents any single company from controlling A2A, fostering an open ecosystem where AI agents from different vendors can seamlessly interact. How A2A Works: Secure, Scalable AI Collaboration A2A defines two types of agents: Key Features 🔹 Agent Cards – Each agent advertises its capabilities (name, functions, authentication methods) without exposing proprietary logic or internal data.🔹 HTTPS-Based Messaging – Secure, real-time communication between agents.🔹 Task Delegation & Progress Tracking – Agents exchange structured messages to update on task status or request additional input.🔹 Enterprise-Grade Security – No exposure of internal states, ensuring data privacy and IP protection. Why A2A Matters Without a universal protocol, AI agent integration is manual, brittle, and hard to scale. A2A solves this by:✅ Eliminating point-to-point custom integrations✅ Enabling dynamic task routing & resource allocation✅ Reducing human intervention in automated workflows Early Adoption & Industry Support Over 100 companies—including AWS, Cisco, Microsoft, Salesforce, SAP, and ServiceNow—have endorsed A2A. A Technical Steering Committee (with members from these firms) now governs the protocol’s evolution. “PayPal, ServiceNow, and Salesforce already support A2A and are integrating it into their platforms.”— Rao Surapaneni, VP & GM, Google Cloud The Future of AI Agent Ecosystems While A2A has strong momentum, alternative protocols like: more are also emerging. However, A2A’s open governance, enterprise security, and broad industry backing position it as a leading candidate for universal AI agent interoperability. What’s Next? As businesses deploy more AI agents, A2A could become the TCP/IP of AI collaboration—a foundational layer enabling autonomous, cross-platform workflows. Sourced from Matt Vartabedian’s article in NoJitter. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More

Rise and Limits of GPT Models

The Rise and Limits of GPT Models: What They Can’t Do (And What Comes Next) GPT Models: The Engines of Modern AI GPT models have revolutionized AI, offering speed, flexibility, and generative power that older architectures like RNNs couldn’t match. Without their development—starting with GPT-1 (2018) and BERT (2018)—today’s AI landscape, especially generative AI, wouldn’t exist. Yet, despite their dominance, GPT models have fundamental flaws—hallucinations, reasoning gaps, and context constraints—that make them unsuitable for some critical tasks. So, what can’t GPT models do well? Which limitations can be fixed, and which are unavoidable? How GPT Models Work (And Why They’re Different) GPT models are transformer-based, meaning they process data in parallel (unlike sequential RNNs). This allows them to:✔ Analyze entire sentences at once✔ Generate coherent, context-aware responses✔ Scale efficiently with more data But this architecture also introduces key weaknesses. The 3 Biggest Limitations of GPT Models 1. Hallucinations: When AI Makes Things Up Why it happens: Can it be fixed? 2. Struggles with Long-Form Data Why it happens: Can it be fixed? 3. They Can’t Really “Reason” Why it happens: Can it be fixed? The Future: Can GPT Models Improve? Option 1: Patch the Transformer But these are band-aids, not true fixes. Option 2: Move Beyond Transformers New architectures are emerging: The Bottom Line ✅ GPT models are here to stay (for now)❌ But they’ll never be perfect at reasoning or long-context tasks🚀 The next AI breakthrough may come from a totally new architecture What’s next? Keep an eye on Mamba, Megalodon, and neurosymbolic AI—they might just dethrone transformers. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
ai agent interoperability

Salesforce Unveils Open AI Ecosystem with Agentforce and MCP Integration

Breaking the AI Interoperability Paradox Salesforce is solving the critical challenge facing enterprise AI adoption—how to balance open innovation with enterprise-grade security. With its upcoming Model Context Protocol (MCP) support for Agentforce, Salesforce is creating the first truly open yet governed ecosystem for AI agent collaboration. The $6T Digital Labor Opportunity Current barriers to AI adoption: Salesforce’s solution enables:✔ Native agent interoperability via open standards✔ Enterprise-grade governance baked into every connection✔ 16x faster deployment than DIY approaches AgentExchange: The Trusted Marketplace for AI Agents Key Innovations Partner Ecosystem in Action Partner AI Agent Capabilities Enabled AWS Unstructured data processing across Bedrock, Aurora DBs, and multimedia Box Intelligent contract analysis and automated workflow triggers Google Cloud Location-aware AI combining Maps, generative models, and transactional data PayPal End-to-end agentic commerce from product listing to dispute resolution Stripe Real-time payment operations and subscription management WRITER Compliant content generation within Salesforce workflows The Salesforce Advantage “With MCP, we’re creating a new category of agent-first businesses,” says Brian Landsman, CEO of AppExchange. “Partners build once and connect everywhere—without the security tradeoffs of traditional integrations.” Enterprise Benefits The Future of Digital Labor This announcement marks a pivotal shift in enterprise AI: Available in pilot July 2024, Salesforce’s MCP integration positions Agentforce as the hub for the next generation of enterprise AI—where security and innovation coexist to unlock the full trillion potential of digital labor. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
The AI Adoption Paradox

Dining and Virtual AI

Restaurants are increasingly adopting AI virtual assistants and bots to manage routine tasks like menu inquiries, loyalty program questions, and order tracking, allowing human staff to focus on complex service needs. Platforms like Salesforce Agentforce and Microsoft Copilot are integrated into customer-facing chat systems, apps, and call centers, handling common queries, updating loyalty credits, tracking deliveries, and escalating issues or creating internal tickets without human intervention. Some operators report a 50% reduction in simple inquiries, with guest satisfaction improving due to faster, consistent responses. Salesforce Agentforce, built on Service Cloud and Data Cloud, delivers a conversational concierge experience by analyzing customer history—past orders, loyalty status, and open cases—to provide instant answers or flag issues. For example, ezCater uses Agentforce for natural language order creation, while OpenTable scales global customer support, reducing reliance on human agents for basic tasks. Beyond chatbots, AI-powered operational tools are transforming restaurant efficiency. Computer vision systems, powered by platforms like NVIDIA NIM, Ultralytics, and Viso Suite, monitor dining areas, kitchens, and back-of-house spaces in real time. These systems actively analyze footage, detecting uncleared tables, long lines, or understaffed zones, and alerting staff to act—speeding up table turns and reducing wait times. In fast-casual settings, vision tools manage order queues and crowded pickup areas. In back-of-house, AI vision ensures food safety and equipment compliance, flagging open cooler doors or blocked pathways with automated alerts to managers or centralized teams. These systems reduce reliance on manual checks with real-time anomaly detection, integrating with facility management and workforce platforms for a cohesive response. Future applications could include predictive maintenance, labor forecasting based on traffic patterns, and training gap identification. As edge AI and APIs evolve, smart vision systems are becoming critical restaurant infrastructure. Smartbridge reports a global restaurant group processed over 6 million guest surveys using an Azure-based generative AI tool, automating sentiment analysis, ticket organization, and feedback summaries at scale. This helps chains quickly identify complaints and menu improvement opportunities. Behind the scenes, integrations rely on edge/cloud orchestration and API frameworks. Customer queries route through secure chat interfaces to Agentforce, pulling from CRM or ticket logs, while camera and sensor data feed into AI pipelines on AWS, Azure, or NVIDIA Jetson devices, triggering alerts in Slack, Jira, or ServiceNow. This enables instant responses to issues like spills, tech glitches, or guest requests without human triage. These virtual assistants form an invisible team, handling thousands of queries, freeing staff for hospitality, and moving restaurants toward “agentic AI” that proactively flags issues, prepares for busy periods, and manages inventory shortages. Virtual assistants are no longer just chatbots—they’re essential team members, enhancing operational efficiency, service consistency, and satisfaction for both customers and staff. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Why AI Won't Kill SaaS

Essential Framework for Enterprise AI Development

LangChain: The Essential Framework for Enterprise AI Development The Challenge: Bridging LLMs with Enterprise Systems Large language models (LLMs) hold immense potential, but their real-world impact is limited without seamless integration into existing software stacks. Developers face three key hurdles: 🔹 Data Access – LLMs struggle to query databases, APIs, and real-time streams.🔹 Workflow Orchestration – Complex AI apps require multi-step reasoning.🔹 Accuracy & Hallucinations – Models need grounding in trusted data sources. Enter LangChain – the open-source framework that standardizes LLM integration, making AI applications scalable, reliable, and production-ready. LangChain Core: Prompts, Tools & Chains 1. Prompts – The Starting Point 2. Tools – Modular Building Blocks LangChain provides pre-built integrations for:✔ Data Search (Tavily, SerpAPI)✔ Code Execution (Python REPL)✔ Math & Logic (Wolfram Alpha)✔ Custom APIs (Connect to internal systems) 3. Chains – Multi-Step Workflows Chain Type Use Case Generic Basic prompt → LLM → output Utility Combine tools (e.g., search → analyze → summarize) Async Parallelize tasks for speed Example: python Copy Download chain = ( fetch_financial_data_from_API → analyze_with_LLM → generate_report → email_results ) Supercharging LangChain with Big Data Apache Spark: High-Scale Data Processing Apache Kafka: Event-Driven AI Enterprise Architecture: text Copy Download Kafka (Real-Time Events) → Spark (Batch Processing) → LangChain (LLM Orchestration) → Business Apps 3 Best Practices for Production 1. Deploy with LangServe 2. Debug with LangSmith 3. Automate Feedback Loops When to Use LangChain vs. Raw Python Scenario LangChain Pure Python Quick Prototyping ✅ Low-code templates ❌ Manual wiring Complex Workflows ✅ Built-in chains ❌ Reinvent the wheel Enterprise Scaling ✅ Spark/Kafka integration ❌ Custom glue code Criticism Addressed: The Future: LangChain as the AI Orchestration Standard With retrieval-augmented generation (RAG) and multi-agent systems gaining traction, LangChain’s role is expanding: 🔮 Autonomous Agents – Chains that self-prompt for complex tasks.🔮 Semantic Caching – Reduce LLM costs by reusing past responses.🔮 No-Code Builders – Business users composing AI workflows visually. Bottom Line: LangChain isn’t just for researchers—it’s the missing middleware for enterprise AI. “LangChain does for LLMs what Kubernetes did for containers—it turns prototypes into production.” Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
amazon sagemaker

Amazon Sagemaker

Amazon SageMaker is a fully managed AWS machine learning service, enabling developers to build, train, and deploy machine learning models quickly and efficiently. It offers a range of tools and features for the entire ML lifecycle, including data preparation, model building, training, deployment, and monitoring. SageMaker supports various ML tasks, including classification, regression, and deep learning, and can be used for both online and batch inference.  Here’s a more in-depth look at SageMaker: Key Features and Capabilities: Benefits of using SageMaker:  Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AI Agents Are the Future of Enterprise

Persona-Centric Intelligence at Scale

The CIO’s Playbook for AI Success: Persona-Centric Intelligence at Scale The New Imperative: AI That Works the Way Your Teams Do In today’s digital-first economy, AI isn’t just a tool—it’s the operating system of modern business. But too many enterprises treat AI as a one-size-fits-all solution, leading to low adoption, wasted investment, and fragmented value. The winning strategy? Persona-based AI—designing intelligence that adapts to how different roles actually work. From Siloed to Strategic: The Evolution of Enterprise AI The Problem With Platform-Locked AI Most organizations deploy AI in disconnected pockets—Salesforce for sales, Workday for HR, SAP for finance. This creates:🔴 Duplicated efforts (multiple AI models doing similar tasks)🔴 Inconsistent insights (CRM AI says one thing, ERP AI another)🔴 Vendor lock-in (intelligence trapped in specific systems) The Solution: System-Agnostic Intelligence Forward-thinking CIOs are shifting to centralized AI “as a service”—decoupling intelligence from individual platforms to power seamless, cross-functional workflows. Example: 4 Pillars of a Persona-Based AI Strategy 1. Role-Specific Intelligence AI should augment, not disrupt existing workflows:🔹 Sales Reps: Real-time deal coaching, automated lead scoring🔹 Customer Support: AI-generated case summaries, sentiment-triggered escalations🔹 HR Teams: Smart resume screening, personalized onboarding bots Real-World Impact: *”Salesforce’s Agentforce cuts rep ramp time by 40% with AI role-plays tailored to each rep’s deal pipeline.”* 2. Generative AI That Works Behind the Scenes GenAI isn’t just for drafting emails—it’s automating high-value workflows:✔ Marketing: Dynamically localizing campaign creatives✔ Legal: Auto-redlining contracts against playbooks✔ IT: Converting trouble tickets into executable scripts Key Consideration: Guardrails matter—implement strict controls for data privacy and IP protection. 3. Edge AI for Real-Time Action Smart Cities Example:📍 Problem: Mumbai’s traffic gridlock costs $22B/year in lost productivity📍 AI Solution: Edge-powered cameras + sensors dynamically reroute vehicles without cloud latency📍 Outcome: 30% faster emergency response times Enterprise Use Cases: 4. Intelligent Automation: The Silent Productivity Engine Combining RPA + AI automates complex processes end-to-end:🔸 Finance: Invoice matching → fraud detection → payment approvals🔸 Supply Chain: Demand forecasting → autonomous PO generation🔸 IT: Self-healing network alerts → auto-remediation The CIO Action Plan 1. Audit Existing AI Deployments 2. Build a Central AI Layer 3. Start With High-Impact Personas Prioritize roles where AI drives measurable ROI:🎯 Field Service Techs: AR-guided repairs + parts forecasting🎯 Account Managers: Churn risk alerts + upsell scripts 4. Measure What Matters Track persona-specific metrics: The Future Is Adaptive The next frontier? “Living Intelligence”—AI that evolves with user behavior: *”By 2026, persona-driven AI will boost enterprise productivity by 35%.”*—Gartner “The best AI doesn’t feel like AI—it feels like a smarter way to work.” Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
unpatched ai

Scrape the Web for Training Data

Do AI Companies Have the Right to Scrape the Web for Training Data? For the past two years, generative AI companies have faced lawsuits—some from high-profile authors and publishers—while simultaneously striking multi-million-dollar data licensing deals. Despite the legal battles, the political tide seems to be shifting in favor of AI firms. Both the European Union and the UK appear to be leaning toward an “opt-out” model, where web scraping is permitted unless content owners explicitly forbid it. But critical questions remain: How exactly does “opting out” work? And do creators and publishers truly have a fair chance to do so? Data as the New Oil The most valuable asset in AI isn’t GPUs or data centers—it’s the training data itself. Without the vast troves of text, images, videos, and artwork produced over decades (or even centuries), there would be no ChatGPT, Gemini, or Claude. Web scraping is nothing new. Search engines like Google have relied on crawlers for decades, indexing the web to deliver search results. But the rules of the game have changed. Old Conventions, New Conflicts Historically, website owners welcomed search engine crawlers to boost visibility while others (especially news publishers) saw them as competitors. The Robots Exclusion Standard (robots.txt) emerged as a gentleman’s agreement—a way for sites to signal which pages could be crawled. While robots.txt isn’t legally binding, reputable search engines like Google and Bing generally respect it. The arrangement was symbiotic: websites got traffic, and search engines got data. But AI crawlers operate differently. They don’t drive traffic—they consume content to generate competing products, often commercializing it via AI services. Will AI companies play fair? Nick Clegg, former UK deputy PM and current Meta executive, bluntly stated that requiring permission from artists would “kill” the AI industry. If unfettered data access is seen as existential, can we expect AI firms to respect opt-outs? Can Websites Really Block AI Crawlers? Theoretically, yes—by blocking AI user agents or monitoring suspicious traffic. But this is a game of whack-a-mole, requiring constant vigilance. And what about offline content? Books, research papers, and proprietary datasets aren’t protected by robots.txt. Some AI companies have allegedly bypassed ethical scraping altogether, sourcing data from shadowy corners of the internet—like torrent sites—as revealed in a recent lawsuit against Meta. The Transparency Problem Even if content owners could opt out, how would they know if their data was already used? Why resist transparency? Only two explanations make sense: Neither is a good look. Beyond Copyright: The Bigger Questions This debate isn’t just about copyright—it’s about: And what happens when Google replaces traditional search with AI summaries? Websites may face an impossible choice: Allow AI training or disappear from search results altogether. The Future of the Open Web If AI companies continue scraping indiscriminately, the open web could shrink further, with more content locked behind paywalls and logins. Ironically, the very ecosystem AI relies on may be destroyed by its own hunger for data. The question isn’t just whether AI firms have the right to scrape the web—but whether the web as we know it will survive their appetite. Footnotes Key Takeaways ✅ AI companies are winning the legal/political battle for web scraping rights.⚠️ Opt-out mechanisms (like robots.txt) may be ignored.🔍 Transparency is lacking—many AI firms won’t disclose training data sources.🌐 Indiscriminate scraping could kill the open web, pushing content behind paywalls. Would love to hear your thoughts—should AI companies have free rein over web data, or do content creators deserve more control? Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
when ai decides

When AI Decides

The Algorithm That Sentenced a Man—And No One Knows Why Meet Eric Loomis. In 2016, he was pulled over in La Crosse, Wisconsin, driving a car linked to a recent shooting. Loomis wasn’t charged with the shooting itself but pleaded guilty to lesser offenses: attempting to flee an officer and driving a vehicle without the owner’s consent. On paper, these were relatively minor felonies. But when it came time for sentencing, something unusual happened. Loomis’s fate wasn’t decided solely by a judge or jury—it was shaped by an algorithm. Wisconsin had adopted a proprietary risk-assessment tool called COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) as part of a push for “data-driven justice.” The software was designed to predict a defendant’s likelihood of reoffending, theoretically helping judges make fairer sentencing decisions. COMPAS scored Loomis as high-risk, suggesting he was likely to commit another crime. That score became a key factor in the judge’s decision to sentence him to six years in prison. Here’s the catch: No one—not Loomis, not his lawyers, not even the judge—knew how that score was calculated. The algorithm was a black box, its inner workings kept secret by its developers. What data was used? What factors mattered most? No one could say. Loomis appealed, arguing that sentencing someone based on unreviewable, unexplained evidence violated due process. The case reached the Wisconsin Supreme Court, which ruled—shockingly—that the use of COMPAS was acceptable. The court acknowledged the tool’s flaws and warned against overreliance on it but ultimately decided that as long as a human judge had the final say, the algorithm’s role was permissible. In other words: An AI made a life-altering decision, no one could explain why, and the court said that was fine—as long as a human rubber-stamped it. Trucks may not yet be pulling up to gas stations demanding we mere humans use our opposable thumbs to fill their tanks, but they could be thinking about it. Accountability: From Campfires to Courtrooms Accountability isn’t just a human invention—it’s a biological imperative. Social species, from apes to humans, enforce norms to maintain order. Apes punish cheaters, share food based on contribution, and even exhibit a rudimentary sense of fairness. For early humans, accountability was immediate and visceral. Steal from the tribe? Face exile. Endanger the group? Risk death. Over millennia, these instincts hardened into customs, then laws. The evolution of justice has been a slow march from arbitrary power to reasoned rule. Kings once claimed divine right—rule “because I said so.” But revolutions in thought—Magna Carta, Locke’s social contract, Beccaria’s arguments for proportionate punishment—shifted accountability from gods to people. Yet now, after centuries of demanding transparency from power, we’re handing decision-making back to unquestionable authorities—not kings or priests, but algorithms we can’t interrogate. The Problem with Machine “Decisions” When a human makes a choice, we expect a reason. Maybe it’s flawed, maybe it’s biased—but it’s something we can challenge, debate, and refine. Machines don’t work that way. AI doesn’t reason—it calculates. It doesn’t weigh morality—it optimizes for probability. Ask an AI why it made a decision, and the answer is always some variation of: “Because the data suggested it.” Consider AlphaGo, the AI that defeated world champion Lee Sedol in 2016. At one point, it made a move so bizarre that commentators thought it was a glitch. But Move 37 wasn’t a mistake—it was a game-winning play. When engineers asked why AlphaGo made that move, the answer was simple: It didn’t know. It had just calculated that the move had the highest chance of success. Brilliant? Yes. Explainable? No. Agentic AI: Decision-Making Without Oversight If black-box algorithms in courtrooms worry you, brace yourself. AI isn’t just recommending decisions anymore—it’s acting autonomously. Enter Agentic AI: systems that don’t wait for instructions but pursue goals independently. They schedule meetings, draft reports, negotiate deals, and even delegate tasks to other AIs—all without human input. Google’s Agent-to-Agent (A2A) protocol enables AI systems to coordinate directly. Workday touts AI handshakes, where agents manage workflows like hyper-efficient middle managers. But here’s the terrifying part: We can’t audit these systems. As Dr. Adnan Masood, Chief AI Architect at UST, warns: “AI-to-AI interactions operate at a speed and complexity that makes traditional debugging and inspection almost useless.” When AI agents collaborate, their decision chains become unfathomably complex. “Explainable AI” tools offer plausible-sounding rationales, but they’re often post-hoc justifications, not true explanations. Who’s Responsible When AI Goes Rogue? In human systems, accountability is clear. If a judge sentences someone unfairly, we can vote them out. If a manager makes a bad call, they can be fired. But in an AI-driven world, who takes the blame? The answer is no one—or worse, everyone and no one at the same time. The Future: “Because the Algorithm Said So” Eric Loomis’s case was a warning. Today, AI shapes who gets hired, who gets loans, who gets parole. Tomorrow, it could dictate medical treatments, military strikes, and legal outcomes—all without explanation. We’re outsourcing judgment to machines that can’t justify their choices. And once we accept that, we’re left with only one answer when we ask why: “Because the AI said so.” Is that the future we want? Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AI evolves with tools like Agentforce and Atlas

AI Development Agents: The New Productivity Powerhouse for Tech Teams

The New Productivity Powerhouse for Tech Teams The Rise of AI in Software Development Tech companies are rapidly adopting AI-powered developer agents to supercharge productivity and accelerate generative AI integration. These intelligent systems are transforming key workflows—from code generation to large-scale system migrations—delivering unprecedented efficiency gains. How AI Agents Are Revolutionizing Development According to Anupam Mishra, Director of Developer Programs at AWS India and South Asia, AI agents are now handling:✔ Moderate-complexity coding tasks✔ Automated test case generation✔ Security vulnerability detection✔ Legacy system modernization Real-World Impact: AWS Case Studies At the AWS Summit Bengaluru 2025, Mishra revealed staggering results from AI-assisted development: 1. 4X Faster .NET to Linux Migration 2. 83% Faster Java Version Upgrades 3. $260M Annual Savings from AI Automation Why AI Development Agents Are a Game-Changer ✅ Faster time-to-market – Automate repetitive coding tasks✅ Lower costs – Reduce manual debugging & refactoring✅ Enhanced security – Proactively detect vulnerabilities✅ Seamless legacy modernization – Accelerate cloud migrations The Future of AI-Assisted Development As AI agents grow more sophisticated, expect:🔹 Autonomous feature development🔹 Self-healing code that fixes bugs in real time🔹 AI-powered DevOps pipelines “We’re entering an era where AI doesn’t just assist developers—it collaborates with them,” says Mishra. “The best developers won’t be replaced by AI—they’ll be the ones using it best.” Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
gettectonic.com