Design Archives - gettectonic.com - Page 21
Generative AI Replaces Legacy Systems

Securing AI for Efficiency and Building Customer Trust

As businesses increasingly adopt AI to enhance automation, decision-making, customer support, and growth, they face crucial security and privacy considerations. The Salesforce Platform, with its integrated Einstein Trust Layer, enables organizations to leverage AI securely by ensuring robust data protection, privacy compliance, transparent AI functionality, strict access controls, and detailed audit trails. Why Secure AI Workflows Matter AI technology empowers systems to mimic human-like behaviors, such as learning and problem-solving, through advanced algorithms and large datasets that leverage machine learning. As the volume of data grows, securing sensitive information used in AI systems becomes more challenging. A recent Salesforce study found that 68% of Analytics and IT teams expect data volumes to increase over the next 12 months, underscoring the need for secure AI implementations. AI for Business: Predictive and Generative Models In business, AI depends on trusted data to provide actionable recommendations. Two primary types of AI models support various business functions: Addressing Key LLM Risks Salesforce’s Einstein Trust Layer addresses common risks associated with large language models (LLMs) and offers guidance for secure Generative AI deployment. This includes ensuring data security, managing access, and maintaining transparency and accountability in AI-driven decisions. Leveraging AI to Boost Efficiency Businesses gain a competitive edge with AI by improving efficiency and customer experience through: Four Strategies for Secure AI Implementation To ensure data protection in AI workflows, businesses should consider: The Einstein Trust Layer: Protecting AI-Driven Data The Einstein Trust Layer in Salesforce safeguards generative AI data by providing: Salesforce’s Einstein Trust Layer addresses the security and privacy challenges of adopting AI in business, offering reliable data security, privacy protection, transparent AI operations, and robust access controls. Through this secure approach, businesses can maximize AI benefits while safeguarding customer trust and meeting compliance requirements. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Impact of Generative AI on Workforce

Impact of Generative AI on Workforce

The Impact of Generative AI on the Future of Work Automation has long been a source of concern and hope for the future of work. Now, generative AI is the latest technology fueling both fear and optimism. AI’s Role in Job Augmentation and Replacement While AI is expected to enhance many jobs, there’s a growing argument that job augmentation for some might lead to job replacement for others. For instance, if AI makes a worker’s tasks ten times easier, the roles created to support that job could become redundant. A June 2023 McKinsey report highlighted that generative AI (GenAI) could automate 60% to 70% of employee workloads. In fact, AI has already begun replacing jobs, contributing to nearly 4,000 job cuts in May 2023 alone, according to Challenger, Gray & Christmas Inc. OpenAI, the creator of ChatGPT, estimates that 80% of the U.S. workforce could see at least 10% of their jobs impacted by large language models (LLMs). Examples of AI Job Replacement One notable example involves a writer at a tech startup who was let go without explanation, only to later discover references to her as “Olivia/ChatGPT” in internal communications. Managers had discussed how ChatGPT was a cheaper alternative to employing a writer. This scenario, while not officially confirmed, strongly suggested that AI had replaced her role. The Writers Guild of America also went on strike, seeking not only higher wages and more residuals from streaming platforms but also more regulation of AI. Research from the Frank Hawkins Kenan Institute of Private Enterprise indicates that GenAI might disproportionately affect women, with 79% of working women holding positions susceptible to automation compared to 58% of working men. Unlike past automation that typically targeted repetitive tasks, GenAI is different—it automates creative work such as writing, coding, and even music production. For example, Paul McCartney used AI to partially generate his late bandmate John Lennon’s voice to create a posthumous Beatles song. In this case, AI enhanced creativity, but the broader implications could be more complex. Other Impacts of AI on Jobs AI’s impact on jobs goes beyond replacement. Human-machine collaboration presents a more positive angle, where AI helps improve the work experience by automating repetitive tasks. This could lead to a rise in AI-related jobs and a growing demand for AI skills. AI systems require significant human feedback, particularly in training processes like reinforcement learning, where models are fine-tuned based on human input. A May 2023 paper also warned about the risk of “model collapse,” where LLMs deteriorate without continuous human data. However, there’s also the risk that AI collaboration could hinder productivity. For example, generative AI might produce an overabundance of low-quality content, forcing editors to spend more time refining it, which could deprioritize more original work. Jobs Most Affected by AI AI Legislation and Regulation Despite the rapid advancement of AI, comprehensive federal regulation in the U.S. remains elusive. However, several states have introduced or passed AI-focused laws, and New York City has enacted regulations for AI in recruitment. On the global stage, the European Union has introduced the AI Act, setting a common legal framework for AI. Meanwhile, U.S. leaders, including Senate Majority Leader Chuck Schumer, have begun outlining plans for AI regulation, emphasizing the need to protect workers, national security, and intellectual property. In October 2023, President Joe Biden signed an executive order on AI, aiming to protect consumer privacy, support workers, and advance equity and civil rights in the justice system. AI regulation is becoming increasingly urgent, and it’s a question of when, not if, comprehensive laws will be enacted. As AI continues to evolve, its impact on the workforce will be profound and multifaceted, requiring careful consideration and regulation to ensure it benefits society as a whole. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Implementing Salesforce Education Cloud

Implementing Salesforce Education Cloud

Client OverviewThe client is a leading educational institution offering a wide array of programs, from undergraduate degrees to continuing education. With around 15,000 students and a global alumni network of over 50,000, they are dedicated to delivering a holistic educational experience while nurturing lifelong relationships with their alumni. ChallengesBefore implementing Salesforce Education Cloud, the client faced several large challenges: ObjectivesThe institution sought to achieve the following with Salesforce Education Cloud: Solution: Salesforce Education Expertise Strategy and Planning Design and Wireframing Development Testing Deployment Results: Before and After Aspect Before After Data Management Fragmented across multiple systems Centralized in Salesforce Education Cloud Communication Disjointed communication processes Streamlined internal and external channels Alumni Engagement Outdated tools for managing alumni relationships Modern tools for enhanced engagement Before and after Salesforce Education Cloud Quantifiable OutcomesWith Salesforce Education Cloud, the client achieved: Implementing Salesforce Education CloudBy implementing Salesforce Education Cloud, the Salesforce partner delivered a transformative solution that surpassed the institution’s objectives. The integration of centralized data, enhanced communication processes, and modern alumni management tools led to: These impressive results highlight Tectonic’s commitment to providing expert Salesforce solutions that aid education clients achieve their strategic goals. Contact us today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Collaboration and Engagement in Slack With iOS Widgets

Collaboration and Engagement in Slack With iOS Widgets

Slack Introduces New iOS App Widgets to Enhance Engagement and Collaboration Slack has launched four new widgets for its iOS app, aimed at boosting worker engagement and facilitating collaboration. The new additions include the “Catch Up” widget, two versions of the “Status” widget, and the “Slack Launcher” widget. These tools are designed to keep employees connected and productive, regardless of their location. While the first three widgets are available for the home screen, the “Slack Launcher” widget is specifically designed for iOS lock screens, allowing users to quickly access their workflows and projects. In an announcement on X, Slack stated: “Three new Slack iOS widgets are here to make your workday a whole lot easier. Add the Catch Up widget, Status widget, and Slack Launcher widget to your device and stay in the know on the go.” These updates align with Slack’s broader goal of evolving into a comprehensive collaboration and communication platform, offering some of the most advanced features in the market. To use these new features, Slack users should update their app to the latest version. After updating, they can add the new widgets by pressing and holding their Home or Lock Screen to select and place the widgets. Detailed Overview of the Widgets Recent Developments from Slack In April, Salesforce announced the availability of Slack AI for all paying customers. Previously limited to customers on Slack Enterprise plans and available only in US and UK English, Slack AI now supports businesses of all sizes. This tool leverages conversational data to help users work more efficiently and intelligently. Updates to Slack AI include a morning digest summary, personalized search answers, advanced conversation summaries, and expanded language support. Additionally, Salesforce introduced Slack Lists, a project and task management tool integrated into the Slack platform. This feature helps teams manage projects, inbound requests, and top priorities within Slack, streamlining workflows and reducing the need to switch between different apps. Earlier this month, Slack announced plans to delete data that is over a year old for free users. Previously, free users could access data up to 90 days old, with older data being hidden but retrievable upon upgrading to a paid account. Now, Slack may delete messages and shared files older than a year, in line with its service agreement and compliance regulations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Trust and Optimism

AI Trust and Optimism

Building Trust in AI: A Complex Yet Essential Task The Importance of Trust in AI Trust in artificial intelligence (AI) is ultimately what will make or break the technology. AI Trust and Optimism. Amid the hype and excitement of the past 18 months, it’s widely recognized that human beings need to have faith in this new wave of automation. This trust ensures that AI systems do not overstep boundaries or undermine personal freedoms. However, building this trust is a complicated task, thankfully receiving increasing attention from responsible thought leaders in the field. The Challenge of Responsible AI Development There is a growing concern that in the AI arms race, some individuals and companies prioritize making their technology as advanced as possible without considering long-term human-centric issues or the present-day realities. This concern was highlighted when OpenAI CEO Sam Altman presented AI hallucinations as a feature, not a bug, at last year’s Dreamforce, shortly after Salesforce CEO Marc Benioff emphasized the vital nature of trust. Insights from Salesforce’s Global Study Salesforce recently released the results of a global study involving 6,000 knowledge workers from various companies. The study reveals that while respondents trust AI to manage 43% of their work tasks, they still prefer human intervention in areas such as training, onboarding, and data handling. A notable finding is the difference in trust levels between leaders and rank-and-file workers. Leaders trust AI to handle over half (51%) of their work, while other workers trust it with 40%. Furthermore, 63% of respondents believe human involvement is key to building their trust in AI, though a subset is already comfortable offloading certain tasks to autonomous AI. Specifically: The study predicts that within three years, 41% of global workers will trust AI to operate autonomously, a significant increase from the 10% who feel comfortable with this today. Ethical Considerations in AI Paula Goldman, Salesforce’s Chief Ethical and Humane Use Officer, is responsible for establishing guidelines and best practices for technology adoption. Her interpretation of the study findings indicates that while workers are excited about a future with autonomous AI and are beginning to transition to it, trust gaps still need to be bridged. Goldman notes that workers are currently comfortable with AI handling tasks like writing code, uncovering data insights, and building communications. However, they are less comfortable delegating tasks such as inclusivity, onboarding, training employees, and data security to AI. Salesforce advocates for a “human at the helm” approach to AI. Goldman explains that human oversight builds trust in AI, but the way this oversight is designed must evolve to keep pace with AI’s rapid development. The traditional “human in the loop” model, where humans review every AI-generated output, is no longer feasible even with today’s sophisticated AI systems. Goldman emphasizes the need for more sophisticated controls that allow humans to focus on high-risk, high-judgment decisions while delegating other tasks. These controls should provide a macro view of AI performance and the ability to inspect it, which is crucial. Education and Training Goldman also highlights the importance of educating those steering AI systems. Trust and adoption of technology require that people are enabled to use it successfully. This includes comprehensive knowledge and training to make the most of AI capabilities. Optimism Amidst Skepticism Despite widespread fears about AI, Goldman finds a considerable amount of optimism and curiosity among workers. The study reflects a recognition of AI’s transformative potential and its rapid improvement. However, it is essential to distinguish between genuine optimism and hype-driven enthusiasm. Salesforce’s Stance on AI and Trust Salesforce has taken a strong stance on trust in relation to AI, emphasizing the non-silver bullet nature of this technology. The company acknowledges the balance between enthusiasm and pragmatism that many executives experience. While there is optimism about trusting autonomous AI within three years, this prediction needs to be substantiated with real-world evidence. Some organizations are already leading in generative AI adoption, while many others express interest in exploring its potential in the future. Conclusion Overall, this study contributes significantly to the ongoing debate about AI’s future. The concept of “human at the helm” is compelling and highlights the importance of ethical considerations in the AI-enabled future. Goldman’s role in presenting this research underscores Salesforce’s commitment to responsible AI development. For more insights, check out her blog on the subject. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Einstein Code Generation and Amazon SageMaker

Einstein Code Generation and Amazon SageMaker

Salesforce and the Evolution of AI-Driven CRM Solutions Salesforce, Inc., headquartered in San Francisco, California, is a leading American cloud-based software company specializing in customer relationship management (CRM) software and applications. Their offerings include sales, customer service, marketing automation, e-commerce, analytics, and application development. Salesforce is at the forefront of integrating artificial general intelligence (AGI) into its services, enhancing its flagship SaaS CRM platform with predictive and generative AI capabilities and advanced automation features. Einstein Code Generation and Amazon SageMaker. Salesforce Einstein: Pioneering AI in Business Applications Salesforce Einstein represents a suite of AI technologies embedded within Salesforce’s Customer Success Platform, designed to enhance productivity and client engagement. With over 60 features available across different pricing tiers, Einstein’s capabilities are categorized into machine learning (ML), natural language processing (NLP), computer vision, and automatic speech recognition. These tools empower businesses to deliver personalized and predictive customer experiences across various functions, such as sales and customer service. Key components include out-of-the-box AI features like sales email generation in Sales Cloud and service replies in Service Cloud, along with tools like Copilot, Prompt, and Model Builder within Einstein 1 Studio for custom AI development. The Salesforce Einstein AI Platform Team: Enhancing AI Capabilities The Salesforce Einstein AI Platform team is responsible for the ongoing development and enhancement of Einstein’s AI applications. They focus on advancing large language models (LLMs) to support a wide range of business applications, aiming to provide cutting-edge NLP capabilities. By partnering with leading technology providers and leveraging open-source communities and cloud services like AWS, the team ensures Salesforce customers have access to the latest AI technologies. Optimizing LLM Performance with Amazon SageMaker In early 2023, the Einstein team sought a solution to host CodeGen, Salesforce’s in-house open-source LLM for code understanding and generation. CodeGen enables translation from natural language to programming languages like Python and is particularly tuned for the Apex programming language, integral to Salesforce’s CRM functionality. The team required a hosting solution that could handle a high volume of inference requests and multiple concurrent sessions while meeting strict throughput and latency requirements for their EinsteinGPT for Developers tool, which aids in code generation and review. After evaluating various hosting solutions, the team selected Amazon SageMaker for its robust GPU access, scalability, flexibility, and performance optimization features. SageMaker’s specialized deep learning containers (DLCs), including the Large Model Inference (LMI) containers, provided a comprehensive solution for efficient LLM hosting and deployment. Key features included advanced batching strategies, efficient request routing, and access to high-end GPUs, which significantly enhanced the model’s performance. Key Achievements and Learnings Einstein Code Generation and Amazon SageMaker The integration of SageMaker resulted in a dramatic improvement in the performance of the CodeGen model, boosting throughput by over 6,500% and reducing latency significantly. The use of SageMaker’s tools and resources enabled the team to optimize their models, streamline deployment, and effectively manage resource use, setting a benchmark for future projects. Conclusion and Future Directions Salesforce’s experience with SageMaker highlights the critical importance of leveraging advanced tools and strategies in AI model optimization. The successful collaboration underscores the need for continuous innovation and adaptation in AI technologies, ensuring that Salesforce remains at the cutting edge of CRM solutions. For those interested in deploying their LLMs on SageMaker, Salesforce’s experience serves as a valuable case study, demonstrating the platform’s capabilities in enhancing AI performance and scalability. To begin hosting your own LLMs on SageMaker, consider exploring their detailed guides and resources. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Forecasting With Foundation Models

Forecasting With Foundation Models

On Hugging Face, there are 20 models tagged as “time series” at the time of writing. While this number is relatively low compared to the 125,950 results for the “text-generation-inference” tag, time series forecasting with foundation models has attracted significant interest from major companies such as Amazon, IBM, and Salesforce, which have developed their own models: Chronos, TinyTimeMixer, and Moirai, respectively. Currently, one of the most popular time series models on Hugging Face is Lag-Llama, a univariate probabilistic model developed by Kashif Rasul, Arjun Ashok, and their co-authors. Open-sourced in February 2024, the authors claim that Lag-Llama possesses strong zero-shot generalization capabilities across various datasets and domains. Once fine-tuned, they assert it becomes the best general-purpose model of its kind. In this insight, we showcase experience fine-tuning Lag-Llama and tests its capabilities against a more classical machine learning approach, specifically an XGBoost model designed for univariate time series data. Gradient boosting algorithms like XGBoost are widely regarded as the pinnacle of classical machine learning (as opposed to deep learning) and perform exceptionally well with tabular data. Therefore, it is fitting to benchmark Lag-Llama against XGBoost to determine if the foundation model lives up to its promises. The results, however, are not straightforward. The data used for this exercise is a four-year-long series of hourly wave heights off the coast of Ribadesella, a town in the Spanish region of Asturias. The data, available from the Spanish ports authority data portal, spans from June 18, 2020, to June 18, 2024. For the purposes of this study, the series is aggregated to a daily level by taking the maximum wave height recorded each day. This aggregation helps illustrate the concepts more clearly, as results become volatile with higher granularity. The target variable is the maximum height of the waves recorded each day, measured in meters. Several reasons influenced the choice of this series. First, the Lag-Llama model was trained on some weather-related data, making this type of data slightly challenging yet manageable for the model. Second, while meteorological forecasts are typically produced using numerical weather models, statistical models can complement these forecasts, especially for long-range predictions. In the era of climate change, statistical models can provide a baseline expectation and highlight deviations from typical patterns. The dataset is standard and requires minimal preprocessing, such as imputing a few missing values. After splitting the data into training, validation, and test sets, with the latter two covering five months each, the next step involves benchmarking Lag-Llama against XGBoost on two univariate forecasting tasks: point forecasting and probabilistic forecasting. Point forecasting gives a specific prediction, while probabilistic forecasting provides a confidence interval. While Lag-Llama was primarily trained for probabilistic forecasting, point forecasts are useful for illustrative purposes. Forecasts involve several considerations, such as the forecast horizon, the last observations fed into the model, and how often the model is updated. This study uses a recursive multi-step forecast without updating the model, with a step size of seven days. This means the model produces batches of seven forecasts at a time, using the latest predictions to generate the next set without retraining. Point forecasting performance is measured using Mean Absolute Error (MAE), while probabilistic forecasting is evaluated based on empirical coverage or coverage probability of 80%. The XGBoost model is defined using Skforecast, a library that facilitates the development and testing of forecasters. The ForecasterAutoreg object is created with an XGBoost regressor, and the optimal number of lags is determined through Bayesian optimization. The resulting model uses 21 lags of the target variable and various hyperparameters optimized through the search. The performance of the XGBoost forecaster is assessed through backtesting, which evaluates the model on a test set. The model’s MAE is 0.64, indicating that predictions are, on average, 64 cm off from the actual measurements. This performance is better than a simple rule-based forecast, which has an MAE of 0.84. For probabilistic forecasting, Skforecast calculates prediction intervals using bootstrapped residuals. The intervals cover 84.67% of the test set values, slightly above the target of 80%, with an interval area of 348.28. Next, the zero-shot performance of Lag-Llama is examined. Using context lengths of 32, 64, and 128 tokens, the model’s MAE ranges from 0.75 to 0.77, higher than the XGBoost forecaster’s MAE. Probabilistic forecasting with Lag-Llama shows varying coverage and interval areas, with the 128-token model achieving an 84.67% coverage and an area of 399.25, similar to XGBoost’s performance. Fine-tuning Lag-Llama involves adjusting context length and learning rate. Despite various configurations, the fine-tuned model does not significantly outperform the zero-shot model in terms of MAE or coverage. In conclusion, Lag-Llama’s performance, without training, is comparable to an optimized traditional forecaster like XGBoost. Fine-tuning does not yield substantial improvements, suggesting that more training data might be necessary. When choosing between Lag-Llama and XGBoost, factors such as ease of use, deployment, maintenance, and inference costs should be considered, with XGBoost likely having an edge in these areas. The code used in this study is publicly available on a GitHub repository for further exploration. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Can We Customize Manufacturing Cloud For Our Business

Can We Customize Manufacturing Cloud For Our Business?

Yes, Salesforce Manufacturing Cloud Can Be Customized to Meet Your Business Needs Salesforce Manufacturing Cloud is designed to be highly customizable, allowing manufacturing organizations to tailor it to their unique business requirements. Whether it’s adapting the platform to fit specific workflows, integrating with third-party systems, or enhancing reporting capabilities, Salesforce provides robust customization options to meet the specific needs of manufacturers. Here are key ways Salesforce Manufacturing Cloud can be customized: 1. Custom Data Models and Objects Salesforce allows you to create custom objects and fields to track data beyond the standard model. This flexibility enables businesses to manage unique production metrics or product configurations seamlessly within the platform. Customization Options: 2. Sales Agreement Customization Sales Agreements in Salesforce Manufacturing Cloud can be tailored to reflect your business’s specific contract terms and pricing models. You can adjust agreement structures, including the customization of terms, conditions, and rebate tracking. Customization Options: 3. Custom Workflows and Automation Salesforce offers tools like Flow Builder and Process Builder, allowing manufacturers to automate routine tasks and create custom workflows that streamline operations. Customization Options: 4. Integration with Third-Party Systems Salesforce Manufacturing Cloud can integrate seamlessly with ERP systems (like SAP or Oracle), inventory management platforms, and IoT devices to ensure a smooth data flow across departments. Integration Options: 5. Custom Reports and Dashboards With Salesforce’s robust reporting tools, you can create custom reports and dashboards that provide real-time insights into key performance indicators (KPIs) relevant to your manufacturing operations. Customization Options: 6. Custom User Interfaces Salesforce Lightning allows you to customize user interfaces to meet the needs of different roles within your organization, such as production managers or sales teams. This ensures users have quick access to relevant data. Customization Options: Conclusion Salesforce Manufacturing Cloud provides a wide range of customization options to suit the unique needs of your manufacturing business. Whether it’s adjusting data models, automating processes, or integrating with external systems, Manufacturing Cloud can be tailored to meet your operational goals. By leveraging these customizations, manufacturers can optimize their operations, improve data accuracy, and gain real-time insights to boost efficiency. If you need help customizing Salesforce Manufacturing Cloud, Service Cloud, or Sales Cloud for your business, our Salesforce Manufacturing Cloud Services team is here to assist. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce API Gen

Salesforce API Gen

Function-calling agent models, a significant advancement within large language models (LLMs), encounter challenges in requiring high-quality, diverse, and verifiable datasets. These models interpret natural language instructions to execute API calls crucial for real-time interactions with various digital services. However, existing datasets often lack comprehensive verification and diversity, resulting in inaccuracies and inefficiencies. Overcoming these challenges is critical for deploying function-calling agents reliably in real-world applications, such as retrieving stock market data or managing social media interactions. Salesforce API Gen. Current approaches to training these agents rely on static datasets that lack thorough verification, hampering adaptability and performance when encountering new or unseen APIs. For example, models trained on restaurant booking APIs may struggle with tasks like stock market data retrieval due to insufficient relevant training data. Addressing these limitations, researchers from Salesforce AI Research propose APIGen, an automated pipeline designed to generate diverse and verifiable function-calling datasets. APIGen integrates a multi-stage verification process to ensure data reliability and correctness. This innovative approach includes format checking, actual function executions, and semantic verification, rigorously verifying each data point to produce high-quality datasets. Salesforce API Gen APIGen initiates its data generation process by sampling APIs and query-answer pairs from a library, formatting them into standardized JSON format. The pipeline then progresses through a series of verification stages: format checking to validate JSON structure, function call execution to verify operational correctness, and semantic checking to align function calls, execution results, and query objectives. This meticulous process results in a comprehensive dataset comprising 60,000 entries, covering 3,673 APIs across 21 categories, accessible via Huggingface. The datasets generated by APIGen significantly enhance model performance, achieving state-of-the-art results on the Berkeley Function-Calling Benchmark. Models trained on these datasets outperform multiple GPT-4 models, demonstrating substantial improvements in accuracy and efficiency. For instance, a model with 7 billion parameters achieves an accuracy of 87.5%, surpassing previous benchmarks by a notable margin. These outcomes underscore the robustness and reliability of APIGen-generated datasets in advancing the capabilities of function-calling agents. In conclusion, APIGen presents a novel framework for generating high-quality, diverse datasets for function-calling agents, addressing critical challenges in AI research. Its multi-stage verification process ensures data reliability, empowering even smaller models to achieve competitive results. APIGen opens avenues for developing efficient and powerful language models, emphasizing the pivotal role of high-quality data in AI advancements. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Einstein Service Agent is Coming

Einstein Service Agent is Coming

Salesforce is entering the AI agent arena with a new service built on its Einstein AI platform. Introducing the Einstein Service Agent, a generative AI-powered self-service tool designed for end customers. This agent provides a conversational AI interface to answer questions and resolve various issues. Similar to the employee-facing Einstein Copilot used internally within organizations, the Einstein Service Agent can take action on behalf of users, such as processing product returns or issuing refunds. It can handle both simple and complex multi-step interactions, leveraging approved company workflows already established in Salesforce. Initially, Einstein Service Agent will be deployed for customer service scenarios, with plans to expand to other Salesforce clouds in the future. What sets Einstein Service Agents apart from other AI-driven workflows is their seamless integration with Salesforce’s existing customer data and workflows. “Einstein Service Agent is a generative AI-powered, self-service conversational experience built on our Einstein trust layer and platform,” Clara Shih, CEO of Salesforce AI, told VentureBeat. “Everything is grounded in our trust layer, as well as all the customer data and official business workflows that companies have been adding into Salesforce for the last 25 years.” Distinguishing AI Agent from AI Copilot Over the past year, Salesforce has detailed various aspects of its generative AI efforts, including the development of the Einstein Copilot, which became generally available at the end of April. The Einstein Copilot enables a wide range of conversational AI experiences for Salesforce users, focusing on direct users of the Salesforce platform. “Einstein Copilot is employee-facing, for salespeople, customer service reps, marketers, and knowledge workers,” Shih explained. “Einstein Service Agent is for our customers’ customers, for their self-service.” The concept of a conversational AI bot answering basic customer questions isn’t new, but Shih emphasized that Einstein Service Agent is different. It benefits from all the data and generative AI work Salesforce has done in recent years. This agent approach is not just about answering simple questions but also about delivering knowledge-based responses and taking action. With a copilot, multiple AI engines and responses can be chained together. The AI agent approach also chains AI models together. For Shih, the difference is a matter of semantics. “It’s a spectrum toward more and more autonomy,” Shih said. Driving AI Agent Approach with Customer Workflows As an example, Shih mentioned that Salesforce is working with a major apparel company as a pilot customer for Einstein Service Agent. If a customer places an online order and receives the wrong item, they could call the retailer during business hours for assistance from a human agent, who might be using the Einstein Copilot. If the customer reaches out when human agents aren’t available or chooses a self-service route, Einstein Service Agent can step in. The customer will be able to ask about the issue and, if enabled in the workflow, get a resolution. The workflow that understands who the customer is and how to handle the issue is already part of the Salesforce Service Cloud. Shih explained that Einstein Studio is where all administrative and configuration work for Einstein AI, including Service Agents, takes place, utilizing existing Salesforce data. The Einstein Service Agent provides a new layer for customers to interact with existing logic to solve issues. “Everything seemingly that the company has invested in over the last 25 years has come to light in the last 18 months, allowing customers to securely take advantage of generative AI in a trusted way,” Shih said. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Perplexity has launched an upgraded version of Pro Search

Perplexity has launched an upgraded version of Pro Search

Key Enhancements 1. Multi-step ReasoningPro Search now handles complex questions requiring planning and multiple steps to achieve a goal. Unlike standard search, it comprehensively analyzes results and performs smart follow-up actions based on its findings. It can conduct successive searches that build upon previous answers, enabling a more structured approach to complex queries. 2. Advanced Math and Programming CapabilitiesPro Search integrates with the Wolfram|Alpha engine, enhancing its proficiency in advanced math, programming, and data analysis for high-precision tasks. Quick Search vs. Pro Search While Quick Search provides fast, straightforward answers for quick queries, Pro Search caters to in-depth research needs, offering detailed analysis, comprehensive reporting, and access to a broad range of credible sources. Features: Usage and Subscription Options Pro Search is available with limited free access or through a subscription: Application Areas The new Pro Search upgrade is designed not just for general searches but also to support specific professional fields: Summary of Key Benefits Pro Search elevates research capabilities across various fields by providing smarter search solutions, a more structured approach to complex problems, and advanced computational support. Perplexity has launched an upgraded version of Pro Search, an advanced tool tailored for solving complex problems and streamlining research. This enhanced Pro Search features multi-step reasoning, advanced math, programming capabilities, and delivers more in-depth research insights. Key Enhancements 1. Multi-step ReasoningPro Search now handles complex questions requiring planning and multiple steps to achieve a goal. Unlike standard search, it comprehensively analyzes results and performs smart follow-up actions based on its findings. It can conduct successive searches that build upon previous answers, enabling a more structured approach to complex queries. 2. Advanced Math and Programming CapabilitiesPro Search integrates with the Wolfram|Alpha engine, enhancing its proficiency in advanced math, programming, and data analysis for high-precision tasks. Quick Search vs. Pro Search While Quick Search provides fast, straightforward answers for quick queries, Pro Search caters to in-depth research needs, offering detailed analysis, comprehensive reporting, and access to a broad range of credible sources. Features: Usage and Subscription Options Pro Search is available with limited free access or through a subscription: Application Areas The new Pro Search upgrade is designed not just for general searches but also to support specific professional fields: Summary of Key Benefits Pro Search elevates research capabilities across various fields by providing smarter search solutions, a more structured approach to complex problems, and advanced computational support. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Confidence Scores

AI Confidence Scores

In this insight, the focus is on exploring the use of confidence scores available through the OpenAI API. The first section delves into these scores and explains their significance using a custom chat interface. The second section demonstrates how to apply confidence scores programmatically in code. Understanding Confidence Scores To begin, it’s important to understand what an LLM (Large Language Model) is doing for each token in its response: However, it’s essential to clarify that the term “probabilities” here is somewhat misleading. While mathematically, they qualify as a “probability distribution” (the values add up to one), they don’t necessarily reflect true confidence or likelihood in the way we might expect. In this sense, these values should be treated with caution. A useful way to think about these values is to consider them as “confidence” scores, though it’s crucial to remember that, much like humans, LLMs can be confident and still be wrong. The values themselves are not inherently meaningful without additional context or validation. Example: Using a Chat Interface An example of exploring these confidence scores can be seen in a chat interface where: In one case, when asked to “pick a number,” the LLM chose the word “choose” despite it having only a 21% chance of being selected. This demonstrates that LLMs don’t always pick the most likely token unless configured to do so. Additionally, this interface shows how the model might struggle with questions that have no clear answer, offering insights into detecting possible hallucinations. For example, when asked to list famous people with an interpunct in their name, the model shows low confidence in its guesses. This behavior indicates uncertainty and can be an indicator of a forthcoming incorrect response. Hallucinations and Confidence Scores The discussion also touches on the question of whether low confidence scores can help detect hallucinations—cases where the model generates false information. While low confidence often correlates with potential hallucinations, it’s not a foolproof indicator. Some hallucinations may come with high confidence, while low-confidence tokens might simply reflect natural variability in language. For instance, when asked about the capital of Kazakhstan, the model shows uncertainty due to the historical changes between Astana and Nur-Sultan. The confidence scores reflect this inconsistency, highlighting how the model can still select an answer despite having conflicting information. Using Confidence Scores in Code The next part of the discussion covers how to leverage confidence scores programmatically. For simple yes/no questions, it’s possible to compress the response into a single token and calculate the confidence score using OpenAI’s API. Key API settings include: Using this setup, one can extract the model’s confidence in its response, converting log probabilities back into regular probabilities using math.exp. Expanding to Real-World Applications The post extends this concept to more complex scenarios, such as verifying whether an image of a driver’s license is valid. By analyzing the model’s confidence in its answer, developers can determine when to flag responses for human review based on predefined confidence thresholds. This technique can also be applied to multiple-choice questions, allowing developers to extract not only the top token but also the top 10 options, along with their confidence scores. Conclusion While confidence scores from LLMs aren’t a perfect solution for detecting accuracy or truthfulness, they can provide useful insights in certain scenarios. With careful application and evaluation, developers can make informed decisions about when to trust the model’s responses and when to intervene. The final takeaway is that confidence scores, while not foolproof, can play a role in improving the reliability of LLM outputs—especially when combined with thoughtful design and ongoing calibration. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Where Will the Data Scientists Go

Where Will the Data Scientists Go

What Is to Become of the Data Scientist Role? This question frequently arises among executives, particularly as they navigate the changing roles of data teams, such as those at DataRobot. Where Will the Data Scientists Go may not be as relevant as what new places can they go with AI? The short answer? While tools may evolve, the core of data science remains steadfast. As the field of data science continues to expand, the role of the data scientist becomes increasingly vital. The need will grow, even as the role changes. Trust in AI is dependant upon human oversight. Beyond the Hype of Consumer AI The surge in consumer AI products has raised concerns among data scientists about the implications for their careers. However, these technologies are built on data and generate vast amounts of new data, presenting numerous opportunities. The real transformative potential lies in enterprise-scale automation. Enterprise-Scale Automation: The Data Scientist’s Domain Enterprise-scale automation involves creating large-scale, reliable systems. Data scientists are crucial in this effort, as they bring expertise in data exploration and systematic inference. They are uniquely positioned to identify automation opportunities, design testing and monitoring strategies, and collaborate with cross-functional teams to bring AI solutions from concept to implementation. As automation grows, the role of the data scientist is essential in ensuring these systems function effectively and safely, particularly in environments without human oversight. New Skills for Data Scientists: The Guardians of AI Applications Data scientists will need to acquire new skills to manage automation at scale, including securing the systems they build. Generative AI introduces new risks, such as potential vulnerabilities to prompt injections or other security threats. Governance and ensuring positive business impacts will become increasingly important, requiring a data science mindset. Building Great Data Teams in the Age of AI The future of data science will not be about automation replacing data scientists but about the evolution of roles and skills. Data scientists need to focus on the core foundations of their discipline rather than the specific tools they use, as tools will continue to evolve. Teams must be built intentionally, encompassing a range of skills and personalities necessary for successful enterprise automation. Business Leaders: Navigating the AI Landscape Business leaders will need to excel in decision-making, understanding the problems they aim to solve, and selecting the appropriate tools and teams. They will also need to manage evolving regulations, particularly those related to the design and deployment of AI systems. Data Scientists: Precision Thinkers at the Forefront Contrary to the belief that AI could replace coding skills, the essence of data science lies in precise thinking and clear communication. Data scientists excel in translating business needs into data-driven decisions and AI applications, ensuring that solutions are not only technically sound but also aligned with business objectives. This skill set will be crucial in the era of AI, as data scientists will play a key role in optimizing workflows, designing AI safety nets, and protecting their organization’s brand and reputation. The Evolving Role of Data Science The demand for precise, data-literate thinkers will only grow with the rise of enterprise AI systems. Whether they are called data scientists or another name, professionals who delve deeply into data and provide critical insights will remain essential in navigating the complexities of modern technology and business landscapes. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com