EMI Archives - gettectonic.com - Page 4
healthcare Can prioritize ai governance

AI Data Privacy and Security

Three Key Generative AI Data Privacy and Security Concerns The rise of generative AI is reshaping the digital landscape, introducing powerful tools like ChatGPT and Microsoft Copilot into the hands of professionals, students, and casual users alike. From creating AI-generated art to summarizing complex texts, generative AI (GenAI) is transforming workflows and sparking innovation. However, for information security and privacy professionals, this rapid proliferation also brings significant challenges in data governance and protection. Below are three critical data privacy and security concerns tied to generative AI: 1. Who Owns the Data? Data ownership is a contentious issue in the age of generative AI. In the European Union, the General Data Protection Regulation (GDPR) asserts that individuals own their personal data. In contrast, data ownership laws in the United States are less clear-cut, with recent state-level regulations echoing GDPR’s principles but failing to resolve ambiguity. Generative AI often ingests vast amounts of data, much of which may not belong to the person uploading it. This creates legal risks for both users and AI model providers, especially when third-party data is involved. Cases surrounding intellectual property, such as controversies involving Slack, Reddit, and LinkedIn, highlight public resistance to having personal data used for AI training. As lawsuits in this arena emerge, prior intellectual property rulings could shape the legal landscape for generative AI. 2. What Data Can Be Derived from LLM Output? Generative AI models are designed to be helpful, but they can inadvertently expose sensitive or proprietary information submitted during training. This risk has made many wary of uploading critical data into AI models. Techniques like tokenization, anonymization, and pseudonymization can reduce these risks by obscuring sensitive data before it is fed into AI systems. However, these practices may compromise the model’s performance by limiting the quality and specificity of the training data. Advocates for GenAI stress that high-quality, accurate data is essential to achieving the best results, which adds to the complexity of balancing privacy with performance. 3. Can the Output Be Trusted? The phenomenon of “hallucinations” — when generative AI produces incorrect or fabricated information — poses another significant concern. Whether these errors stem from poor training, flawed data, or malicious intent, they raise questions about the reliability of GenAI outputs. The impact of hallucinations varies depending on the context. While some errors may cause minor inconveniences, others could have serious or even dangerous consequences, particularly in sensitive domains like healthcare or legal advisory. As generative AI continues to evolve, ensuring the accuracy and integrity of its outputs will remain a top priority. The Generative AI Data Governance Imperative Generative AI’s transformative power lies in its ability to leverage vast amounts of information. For information security, data privacy, and governance professionals, this means grappling with key questions, such as: With high stakes and no way to reverse intellectual property violations, the need for robust data governance frameworks is urgent. As society navigates this transformative era, balancing innovation with responsibility will determine whether generative AI becomes a tool for progress or a source of new challenges. While generative AI heralds a bold future, history reminds us that groundbreaking advancements often come with growing pains. It is the responsibility of stakeholders to anticipate and address these challenges to ensure a safer and more equitable AI-powered world. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Clean Energy Transition Campaign

Clean Energy Transition Campaign

EnergyFlex Launches Clean Energy Transition Campaign in Partnership with Carat SA EnergyFlex, an Australian veteran-owned energy analytics and renewables education company, has joined forces with Carat SA to launch its first-ever brand campaign. This initiative is designed to accelerate Australia’s clean energy transition by equipping individuals and businesses with the tools, knowledge, and confidence to become “Renewables Ready.” Empowering Australians with Free Energy Tools Founded in 2021, EnergyFlex aims to put every Australian on the path to free and clean energy. The company’s free app, launched in May, helps users: The app, available on both iOS and Android, is part of EnergyFlex’s mission to make renewable energy adoption accessible and impactful for all Australians. Voices from the Partnership Garry Harding, CEO and Co-Founder of EnergyFlex, emphasized the campaign’s focus on financial, community, and environmental benefits: “We want to make it as easy as possible for Australians to understand the positive impact of the renewable energy transition. Partnering with Carat SA enables us to raise awareness and bring these tools and education to homes and businesses across the country.” Adele Gibb, Managing Director of Carat SA, highlighted the synergy between the campaign and Carat’s values: “Working with a forward-thinking brand like EnergyFlex aligns perfectly with dentsu’s B2B2S philosophy—creating solutions that are good for business, people, and society.” About Carat SA As a leading global media agency, Carat SA operates across 190+ offices in 135+ countries, bringing expertise and innovation to drive impactful campaigns. With this collaboration, EnergyFlex and Carat SA are poised to inspire a nationwide shift toward renewable energy adoption, helping Australia lead ,.the way in sustainability. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentic AI Race

Agentforce Accelerator to Empower Nonprofits

Salesforce Introduces Agentforce Accelerator to Empower Nonprofits Salesforce has unveiled the Salesforce Accelerator — Agents for Impact, a groundbreaking initiative aimed at helping nonprofits harness the power of Agentforce. This suite of AI-driven tools enables organizations to build and deploy autonomous AI agents that can perform critical tasks across various functions. Through a combination of technology, funding, and expertise, the accelerator aims to empower nonprofits to enhance operational efficiency and amplify their impact in an AI-driven future. Why It Matters Nonprofits often face challenges such as staffing shortages and burnout, limiting their ability to address pressing social and environmental issues. AI agents can play a transformative role by augmenting nonprofit teams, enabling them to: While the potential is significant, developing and implementing AI solutions often remains financially and technically inaccessible for many nonprofits. How the Accelerator Works The Salesforce Accelerator — Agents for Impact bridges this gap by providing a comprehensive support package: Nonprofits from all focus areas can apply for the accelerator starting October 29, 2024, with selected organizations notified by December. Track Record of Impact The Agents for Impact initiative builds on Salesforce’s broader accelerator program, which has provided million since 2022 to support innovative nonprofit solutions in areas like AI, education, and climate action. Scaling Nonprofit Potential With the launch of Salesforce Accelerator — Agents for Impact, nonprofits now have unprecedented opportunities to adopt AI-driven solutions that enhance efficiency and scale their missions. This program reflects Salesforce’s ongoing commitment to empowering organizations to drive meaningful change in an increasingly AI-powered world. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Automate LinkedIn Outreach with We-Connect

Automate LinkedIn Outreach with We-Connect

Automate LinkedIn Outreach with We-Connect’s New Salesforce Integration Sales and marketing teams can now streamline their LinkedIn outreach and lead management efforts with We-Connect’s powerful new integration for Salesforce, the world’s leading CRM platform. We-Connect, the premier LinkedIn automation tool, has officially launched its native integration with Salesforce, enabling seamless synchronization of contact data, campaign metrics, and outreach activity. This integration provides sales and marketing teams with a unified platform to manage all LinkedIn outreach efforts directly within Salesforce’s familiar interface. Transforming LinkedIn Outreach for Sales and Marketing Teams Traditionally, LinkedIn outreach happens outside CRM systems, leaving teams without a clear way to track campaign effectiveness. Sales reps often resort to manual searches on LinkedIn rather than leveraging data already housed in their CRM. The We-Connect and Salesforce integration revolutionizes this process by: Key Features of the Integration A Game-Changer for Outreach Efforts “Our new Salesforce integration brings LinkedIn outreach into a single, unified platform,” said Gary Egan, Product Manager at We-Connect. “With this integration, sales and marketing teams can stay aligned, act on real-time insights, and scale their outreach efforts like never before.” By consolidating LinkedIn activities within Salesforce, teams can better measure campaign performance, maintain a consistent buyer journey, and boost efficiency—all while leveraging Salesforce’s powerful CRM capabilities. For more details, visit the We-Connect Salesforce Integration page. About We-Connect Founded in 2018, We-Connect is the leading LinkedIn automation tool for sales, marketing, recruiting, and business professionals. Its advanced features help users automate LinkedIn interactions, connect with the right people, and generate high-quality leads effortlessly. We-Connect empowers professionals to build meaningful relationships, drive growth, and achieve their business goals with efficiency and precision. Learn more about how We-Connect transforms LinkedIn outreach at We-Connect.io. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Informed Decision-Making

Informed Decision-Making

Informed Decision-Making Through Data Visualization: Power BI vs. Tableau Today’s businesses need to make informed decisions by leveraging organized and analyzed data. Data visualization is a key method for extracting insights from this data, and Power BI and Tableau are two leading tools that often spark debate among experts. Both are highly regarded for their ability to visualize data, and CTOs frequently compare Power BI vs. Tableau to determine the best fit for their needs. Why Power BI and Tableau Stand OutBoth tools excel at data visualization, making them top choices for business intelligence (BI) solutions. They offer seamless integration with various platforms, can handle large volumes of data, and provide predictive analytics capabilities. To help CTOs and other decision-makers boost efficiency, let’s dive into a comparison of Power BI vs. Tableau and examine how each tool measures up. Power BI Microsoft’s Power BI is a leading BI tool designed to transform data from diverse sources into insightful visual reports. It allows users to create, share, and manage analytical reports, ensuring accessibility at all times. As part of the Microsoft ecosystem, Power BI is ideal for large organizations that already use Microsoft products. Tableau Tableau delivers powerful data visualization with flexible deployment options, allowing users to seamlessly access insights. With its integration into Salesforce Data Cloud, Tableau offers a fast and scalable way to work with customer data in real time. Its strong data-handling capabilities make it popular among larger organizations and data experts. Power BI vs. Tableau: Key Differences Let’s explore the key differences between Power BI and Tableau to guide your informed decision-making. Data Visualization and User Interface Data Integration and Connectivity for Informed Decision-Making Data Handling and Performance Ease of Learning Programming Tools Support Pricing Microsoft Power BI vs. Salesforce Tableau: Pros and Cons Power BI Pros Tableau Pros Which is Better: Power BI or Tableau? When comparing Microsoft Power BI vs. Tableau, the right choice depends on your organization’s size, technical expertise, and specific needs. For smaller businesses and those already using Microsoft tools, Power BI is often the best fit. On the other hand, larger organizations managing substantial datasets might favor Tableau for its advanced capabilities. Ultimately, the decision between Power BI vs. Tableau should be based on your unique business requirements and the level of technical expertise available within your team. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Provider Hybrid Care Model

Provider Hybrid Care Model

Primary care in the United States urgently needs a redesign, as rural hospital closures and a shortage of providers are severely limiting access for nearly one-third of the population. While advanced technologies like virtual care have helped expand primary care access, there is still a strong preference for in-person visits. To address this, healthcare providers must create a hybrid care model that integrates both virtual and in-person services to better meet patient needs. Hackensack Meridian Health, a New Jersey-based health system, has embraced an AI-based solution to establish this hybrid care model. Through a partnership with K Health, the system aims to create a seamless patient journey that fluidly transitions between virtual and in-person care as needed. According to Dr. Daniel Varga, chief physician executive at Hackensack Meridian Health, the need for this partnership became apparent during the COVID-19 pandemic, which disrupted in-person care across New Jersey. “Before the pandemic, we did zero virtual visits in our offices,” Varga said. “By early 2020, we were doing thousands per day, and we realized there was real demand for it, but we didn’t have the skill set to execute it properly.” With the support of K Health, Varga believes the health system now has the technology and expertise to integrate AI-driven virtual care into its network of 18 hospitals. However, successful implementation requires overcoming technology integration challenges. The AI-Powered Virtual Care Solution The partnership between Hackensack Meridian Health and K Health has two key components, Varga explained. The first is a 24/7 AI-driven virtual care service, and the second is a professional services agreement between K Health’s doctors and the Hackensack medical group. The AI system used in the virtual care platform is built to learn from clinical data, distinguishing it from traditional symptom-checking tools. According to K Health co-founder Ran Shaul, the AI analyzes data from patients’ EHRs and symptom inputs to provide detailed insights into the patient’s health history, giving primary care providers a comprehensive view of the patient‘s current health concerns. “We know about your chronic conditions, your recent visits, and whether you’ve followed up on key health checks like mammograms,” Shaul explained. “It creates a targeted medical chart rather than a generic symptom analysis.” In addition, K Health’s virtual physicians and Hackensack Meridian’s medical group are integrated, sharing the same tax ID and EHR system, which ensures continuity of care between virtual and in-person visits. Varga highlighted that this integration allows for seamless transitions between care settings, where virtual doctors’ notes are readily available to in-person providers the following day. “If a patient sees a virtual doctor at 2 a.m., I have the 24/7 notes right in front of me the next morning in the office,” Varga said. The service is accessible to all patients, including new patients and those recently discharged from Hackensack Meridian Health’s inpatient services who require follow-up care. Overcoming Challenges in Implementation Deploying an AI-driven virtual care system across 18 hospitals presents significant challenges, but Hackensack Meridian Health has developed several strategies to ensure smooth implementation. First, the health system provided training to all 36,000 team members to familiarize them with the platform. Additionally, a dedicated team was created to enhance collaboration between the traditional medical group and the virtual care team. One major focus was connecting hospitals and 24/7 virtual care services to ensure continuity of care for patients leaving emergency departments or being discharged from inpatient care. “Many patients don’t have a primary care doctor when they leave the hospital,” Varga explained. “With this virtual service, we can immediately book a virtual appointment for them before they leave the ED.” Provider Hybrid Care Models provide better patient care, follow-up, and outcomes. The system also offers language accessibility, with patients able to interact with the platform in Spanish and request Spanish-speaking clinicians. This feature is part of the health system’s broader strategy to break down barriers to care access and improve health equity. Improving Access and Health Equity-Provider Hybrid Care Model Shaul noted that the convenience of scheduling virtual appointments at any time helps patients who would otherwise struggle to see a doctor due to work schedules or long travel distances. The virtual care service also addresses the needs of patients with limited English proficiency, allowing them to access care in their native language. By connecting patients who lack a usual source of care with primary care providers through the virtual platform, Hackensack Meridian Health aims to close care gaps. Access to primary care is critical for improving health outcomes, yet the number of Americans with a regular source of care has dropped by 10% in the past 18 years. This decline disproportionately affects Hispanic individuals, those with lower education levels, and the uninsured. Varga emphasized that the virtual care service aligns with Hackensack’s goal of meeting patients where they are—whether virtually, in their hospitals, or at brick-and-mortar medical offices. “The reason we have such a geographically diverse spread of sites is that we believe in meeting patients where they are,” Varga said. “If that means a virtual visit, we’ll meet them there. If it means the No. 1 ranked hospital in New Jersey, we’ll meet them there. And if it’s a medical office, that’s where we’ll meet them.” Salesforce and Tectonic can help your provider solution offer the same diversity. Contact us today! Heath and Life Sciences are winning a competitive edge with Salesforce for better patient outcomes. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its

Read More
More AI Tools to Use

More AI Tools to Use

Additionally, Arc’s collaboration with Perplexity elevates browsing by transforming search experiences. Perplexity functions as a personal AI research assistant, fetching and summarizing information along with sources, visuals, and follow-up questions. Premium users even have access to advanced large language models like GPT-4 and Claude. Together, Arc and Perplexity revolutionize how users navigate the web. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Market Insights and Forecast for Quote Generation Software

Market Insights and Forecast for Quote Generation Software

Market Insights and Forecast for Quote Generation Software for Salesforce (2024-2031): Key Players, Technology Advancements, and Growth Opportunities A recent research report by WMR delves into the Quote Generation Software for Salesforce Market, offering over 150 pages of in-depth analysis on business strategies employed by both leading and emerging industry players. The study provides insights into market developments, technological advancements, drivers, opportunities, and overall market status. Understanding market segments is essential to identify key factors driving growth. Comprehensive Market Insights The report provides an extensive analysis of the global market landscape, including business expansion strategies designed to increase revenue. It compiles critical data about target customers, evaluating the potential success of products and services prior to launch. The research offers valuable insights for stakeholders, including detailed updates on the impact of COVID-19 on business operations and the broader market. The report assesses whether a target market aligns with an enterprise’s goals, emphasizing that market success hinges on understanding the target audience. Key Players Featured: Market Segmentation By Types: By Applications: Geographical Overview The Quote Generation Software for Salesforce Market varies significantly across regions, driven by factors such as economic development, technical advancements, and cultural differences. Businesses looking to expand globally must account for these variations to leverage local opportunities effectively. Key regions include: Competitive Landscape The report offers a detailed competitive analysis, highlighting: Highlights from the Report Key Market Questions Addressed: Reasons to Purchase this Report: This report provides a valuable roadmap for businesses aiming to navigate the evolving Quote Generation Software for Salesforce Market, helping them make informed decisions and strategically position themselves for growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Flow Tests

Salesforce Flow is Here

Hello, Salesforce Flow. Goodbye, Workflow Rules and Process Builder. As Bob Dylan famously sang, “The times they are a-changin’.” If your nonprofit is still relying on Workflow Rules and Process Builder to automate tasks in Salesforce, it’s time to prepare for change. These tools are being retired, but there’s no need to panic—Salesforce Flow, a more powerful, versatile automation tool, is ready to take the lead. Why Move to Salesforce Flow? Salesforce is consolidating its automation features into one unified platform: Flow. This shift comes with significant benefits for nonprofits: What This Means for Nonprofits While existing Workflow Rules and Process Builders will still function for now, Salesforce plans to end support by December 31, 2025. This means no more updates or bug fixes, and unsupported automations could break unexpectedly soon after the deadline. To avoid disruptions, nonprofits should start migrating their automations to Flow sooner rather than later. How to Transition to Salesforce Flow Resources to Simplify Migration: Planning Your Migration: Start by auditing your existing automations to determine which Workflow Rules and Process Builders need to be transitioned. Think strategically about how to improve processes and leverage Flow’s expanded capabilities. What Can Flow Do for Your Nonprofit? Salesforce Flow empowers nonprofits to automate processes in innovative ways: Don’t Go It Alone Transitioning to Salesforce Flow may seem overwhelming, but it’s a chance to elevate your nonprofit’s automation capabilities. Whether you need help with migration tools, strategic planning, or Flow development, you don’t have to do it alone. Reach out to our support team or contact us to get started. Together, we can make this transition seamless and set your nonprofit up for long-term success with Salesforce Flow. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents and Digital Transformation

Ready for AI Agents

Brands that can effectively integrate agentic AI into their operations stand to gain a significant competitive edge. But as with any innovation, success will depend on balancing the promise of automation with the complexities of trust, privacy, and user experience.

Read More

GENAI Shows No Racial or Sexual Bias

Researchers from Mass General Brigham recently published findings in PAIN indicating that large language models (LLMs) do not exhibit race- or sex-based biases when recommending opioid treatments. The team highlighted that, while biases are prevalent in many areas of healthcare, they are particularly concerning in pain management. Studies have shown that Black patients’ pain is often underestimated and undertreated by clinicians, while white patients are more likely to be prescribed opioids than other racial and ethnic groups. These disparities raise concerns that AI tools, including LLMs, could perpetuate or exacerbate such biases in healthcare. To investigate how AI tools might either mitigate or reinforce biases, the researchers explored how LLM recommendations varied based on patients’ race, ethnicity, and sex. Using 40 real-world patient cases from the MIMIC-IV Note data set—each involving complaints of headache, abdominal, back, or musculoskeletal pain—the cases were stripped of references to sex and race. Random race categories (American Indian or Alaska Native, Asian, Black, Hispanic or Latino, Native Hawaiian or Other Pacific Islander, and white) and sex (male or female) were then assigned to each case. This process was repeated until all combinations of race and sex were generated, resulting in 480 unique cases. These cases were analyzed using GPT-4 and Gemini, both of which assigned subjective pain ratings and made treatment recommendations. The analysis found that neither model made opioid treatment recommendations that differed by race or sex. However, the tools did show some differences—GPT-4 tended to rate pain as “severe” more frequently than Gemini, which was more likely to recommend opioids. While further validation is necessary, the researchers believe the results indicate that LLMs could help address biases in healthcare. “These results are reassuring in that patient race, ethnicity, and sex do not affect recommendations, indicating that these LLMs have the potential to help address existing bias in healthcare,” said co-first authors Cameron Young and Ellie Einchen, students at Harvard Medical School, in a press release. However, the study has limitations. It categorized sex as a binary variable, omitting a broader gender spectrum, and it did not fully represent mixed-race individuals, leaving certain marginalized groups underrepresented. The team suggested future research should incorporate these factors and explore how race influences LLM recommendations in other medical specialties. Marc Succi, MD, strategic innovation leader at Mass General Brigham and corresponding author of the study, emphasized the need for caution in integrating AI into healthcare. “There are many elements to consider, such as the risks of over-prescribing or under-prescribing medications and whether patients will accept AI-influenced treatment plans,” Succi said. “Our study adds key data showing how AI has the potential to reduce bias and improve health equity.” Succi also noted the broader implications of AI in clinical decision support, suggesting that AI tools will serve as complementary aids to healthcare professionals. “In the short term, AI algorithms can act as a second set of eyes, running in parallel with medical professionals,” he said. “However, the final decision will always remain with the doctor.” These findings offer important insights into the role AI could play in reducing bias and enhancing equity in pain management and healthcare overall. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Government Cloud Premium

Salesforce Government Cloud Premium

Software company Salesforce announced on Monday that it has rolled out a new version of its government cloud that has Top Secret authorization and is geared toward U.S. national security agencies and intelligence organizations.

The new offering, called Government Cloud Premium, is hosted on Amazon Web Services’ Top Secret cloud.

Read More

Cohesity Data Explore

Cohesity has introduced Data Explore, a new feature in its Gaia generative AI platform, aimed at simplifying data search within backups for any employee. The update, launched this week, adds keyword search capabilities and data visualization through topic word clouds, enhancing user access to valuable information. Previously, users could interact with Gaia’s conversational AI interface to ask questions about stored data. Data Explore now extends this by enabling users to browse frequent keywords within data sets and receive search suggestions to help refine their queries. This addition is particularly valuable for users who may not know exactly what to ask when exploring backup data. As part of the update, Gaia’s support for file storage systems has also expanded. Gaia now integrates with both on-premises and cloud-based file servers, such as Dell Technologies’ PowerScale and NetApp systems, in addition to existing support for Microsoft 365 services like Outlook, SharePoint, and OneDrive. This enhanced search functionality reflects a broader trend among backup vendors to deliver greater utility from stored data, according to Simon Robinson of TechTarget’s Enterprise Strategy Group. He noted that tools making data accessible to non-experts bring businesses closer to the goal of actionable insights. “You don’t need to be a corporate librarian to use this stuff,” Robinson said. Data Explore’s semantic indexing, similar to internet search engines, aids users by automatically surfacing keywords, questions, and suggestions, making backup data more searchable and actionable. According to Krista Case, an analyst at Futurum Group, this helps reduce AI hype by grounding Gaia in practical use cases, facilitating faster insights for end users. Since Gaia’s launch as a SaaS add-on for Cohesity Data Cloud, its features have evolved to offer deeper insights beyond simple chatbot interactions. Greg Statton, Cohesity’s VP of AI solutions, shared that the platform aims to be more than a support agent for backup queries. The vision is to provide advanced AI tools that enhance data discovery, flag abnormal events, and reduce alert fatigue, giving IT administrators actionable intelligence that is more contextually aware of their tasks. Ultimately, Cohesity’s Data Explore feature exemplifies generative AI’s potential in unlocking business value from backup data. By making this data accessible and understandable, Cohesity is helping organizations achieve the long-awaited promise of deriving value from stored data – a milestone Robinson believes backup vendors are now on the verge of realizing. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
LLMs and AI

LLMs and AI

Large Language Models (LLMs): Revolutionizing AI and Custom Solutions Large Language Models (LLMs) are transforming artificial intelligence by enabling machines to generate and comprehend human-like text, making them indispensable across numerous industries. The global LLM market is experiencing explosive growth, projected to rise from $1.59 billion in 2023 to $259.8 billion by 2030. This surge is driven by the increasing demand for automated content creation, advances in AI technology, and the need for improved human-machine communication. Several factors are propelling this growth, including advancements in AI and Natural Language Processing (NLP), large datasets, and the rising importance of seamless human-machine interaction. Additionally, private LLMs are gaining traction as businesses seek more control over their data and customization. These private models provide tailored solutions, reduce dependency on third-party providers, and enhance data privacy. This guide will walk you through building your own private LLM, offering valuable insights for both newcomers and seasoned professionals. What are Large Language Models? Large Language Models (LLMs) are advanced AI systems that generate human-like text by processing vast amounts of data using sophisticated neural networks, such as transformers. These models excel in tasks such as content creation, language translation, question answering, and conversation, making them valuable across industries, from customer service to data analysis. LLMs are generally classified into three types: LLMs learn language rules by analyzing vast text datasets, similar to how reading numerous books helps someone understand a language. Once trained, these models can generate content, answer questions, and engage in meaningful conversations. For example, an LLM can write a story about a space mission based on knowledge gained from reading space adventure stories, or it can explain photosynthesis using information drawn from biology texts. Building a Private LLM Data Curation for LLMs Recent LLMs, such as Llama 3 and GPT-4, are trained on massive datasets—Llama 3 on 15 trillion tokens and GPT-4 on 6.5 trillion tokens. These datasets are drawn from diverse sources, including social media (140 trillion tokens), academic texts, and private data, with sizes ranging from hundreds of terabytes to multiple petabytes. This breadth of training enables LLMs to develop a deep understanding of language, covering diverse patterns, vocabularies, and contexts. Common data sources for LLMs include: Data Preprocessing After data collection, the data must be cleaned and structured. Key steps include: LLM Training Loop Key training stages include: Evaluating Your LLM After training, it is crucial to assess the LLM’s performance using industry-standard benchmarks: When fine-tuning LLMs for specific applications, tailor your evaluation metrics to the task. For instance, in healthcare, matching disease descriptions with appropriate codes may be a top priority. Conclusion Building a private LLM provides unmatched customization, enhanced data privacy, and optimized performance. From data curation to model evaluation, this guide has outlined the essential steps to create an LLM tailored to your specific needs. Whether you’re just starting or seeking to refine your skills, building a private LLM can empower your organization with state-of-the-art AI capabilities. For expert guidance or to kickstart your LLM journey, feel free to contact us for a free consultation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com