ERP - gettectonic.com - Page 4
Where LLMs Fall Short

Where LLMs Fall Short

Large Language Models (LLMs) have transformed natural language processing, showcasing exceptional abilities in text generation, translation, and various language tasks. Models like GPT-4, BERT, and T5 are based on transformer architectures, which enable them to predict the next word in a sequence by training on vast text datasets. How LLMs Function LLMs process input text through multiple layers of attention mechanisms, capturing complex relationships between words and phrases. Here’s an overview of the process: Tokenization and Embedding Initially, the input text is broken down into smaller units, typically words or subwords, through tokenization. Each token is then converted into a numerical representation known as an embedding. For instance, the sentence “The cat sat on the mat” could be tokenized into [“The”, “cat”, “sat”, “on”, “the”, “mat”], each assigned a unique vector. Multi-Layer Processing The embedded tokens are passed through multiple transformer layers, each containing self-attention mechanisms and feed-forward neural networks. Contextual Understanding As the input progresses through layers, the model develops a deeper understanding of the text, capturing both local and global context. This enables the model to comprehend relationships such as: Training and Pattern Recognition During training, LLMs are exposed to vast datasets, learning patterns related to grammar, syntax, and semantics: Generating Responses When generating text, the LLM predicts the next word or token based on its learned patterns. This process is iterative, where each generated token influences the next. For example, if prompted with “The Eiffel Tower is located in,” the model would likely generate “Paris,” given its learned associations between these terms. Limitations in Reasoning and Planning Despite their capabilities, LLMs face challenges in areas like reasoning and planning. Research by Subbarao Kambhampati highlights several limitations: Lack of Causal Understanding LLMs struggle with causal reasoning, which is crucial for understanding how events and actions relate in the real world. Difficulty with Multi-Step Planning LLMs often struggle to break down tasks into a logical sequence of actions. Blocksworld Problem Kambhampati’s research on the Blocksworld problem, which involves stacking and unstacking blocks, shows that LLMs like GPT-3 struggle with even simple planning tasks. When tested on 600 Blocksworld instances, GPT-3 solved only 12.5% of them using natural language prompts. Even after fine-tuning, the model solved only 20% of the instances, highlighting the model’s reliance on pattern recognition rather than true understanding of the planning task. Performance on GPT-4 Temporal and Counterfactual Reasoning LLMs also struggle with temporal reasoning (e.g., understanding the sequence of events) and counterfactual reasoning (e.g., constructing hypothetical scenarios). Token and Numerical Errors LLMs also exhibit errors in numerical reasoning due to inconsistencies in tokenization and their lack of true numerical understanding. Tokenization and Numerical Representation Numbers are often tokenized inconsistently. For example, “380” might be one token, while “381” might split into two tokens (“38” and “1”), leading to confusion in numerical interpretation. Decimal Comparison Errors LLMs can struggle with decimal comparisons. For example, comparing 9.9 and 9.11 may result in incorrect conclusions due to how the model processes these numbers as strings rather than numerically. Examples of Numerical Errors Hallucinations and Biases Hallucinations LLMs are prone to generating false or nonsensical content, known as hallucinations. This can happen when the model produces irrelevant or fabricated information. Biases LLMs can perpetuate biases present in their training data, which can lead to the generation of biased or stereotypical content. Inconsistencies and Context Drift LLMs often struggle to maintain consistency over long sequences of text or tasks. As the input grows, the model may prioritize more recent information, leading to contradictions or neglect of earlier context. This is particularly problematic in multi-turn conversations or tasks requiring persistence. Conclusion While LLMs have advanced the field of natural language processing, they still face significant challenges in reasoning, planning, and maintaining contextual accuracy. These limitations highlight the need for further research and development of hybrid AI systems that integrate LLMs with other techniques to improve reasoning, consistency, and overall performance. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Tectonic Salesforce Customization

Salesforce Customization Requests

The Most Commonly Requested Salesforce Customizations Salesforce’s flexibility is one of its biggest strengths, allowing businesses to tailor the platform to meet their unique needs. Here are the most frequently requested types of customizations: 1. Declarative Customization Make adjustments using Salesforce’s built-in tools—no coding required. Examples: Ideal For:Businesses looking for straightforward changes to enhance usability without requiring programming expertise. 2. Integration Customization Connect Salesforce with third-party systems to streamline workflows and centralize data. Examples: Benefits:Boost operational efficiency by enabling seamless communication between systems. 3. Custom Code Development Go beyond standard functionality with tailored solutions using Apex, Visualforce, or Lightning Web Components. Examples: Best For:Organizations with advanced or highly specific requirements that declarative tools can’t fulfill. 4. User Interface (UI) Customization Adapt the look and feel of Salesforce to improve user experience and align with your brand. Examples: Goal:Create an intuitive, visually appealing interface that boosts productivity and user adoption. 5. Workflow Automation Save time by automating repetitive tasks and processes. Examples: Impact:Streamline operations, reduce manual workloads, and improve efficiency. 6. Reporting and Analytics Customization Provide actionable insights with tailored reports and dashboards. Examples: Advantage:Empower teams to make data-driven decisions with clear, relevant insights. 7. Mobile Optimization Ensure a seamless Salesforce experience for users on mobile devices. Examples: Purpose:Keep teams connected and productive, regardless of location. Conclusion Salesforce customization goes beyond CRM—it transforms the platform into a tailored solution that aligns with your unique business processes. Whether you’re looking for simple adjustments or advanced integrations, these customizations unlock Salesforce’s full potential to drive operational success. Ready to Get Started?Discover how our Salesforce customization services can help tailor the platform to your specific needs. Let’s work together to maximize your investment and achieve your business goals! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Will AI Hinder Digital Transformation in Healthcare?

Poisoning Your Data

Protecting Your IP from AI Training: Poisoning Your Data As more valuable intellectual property (IP) becomes accessible online, concerns over AI vendors scraping content for training models without permission are rising. If you’re worried about AI theft and want to safeguard your assets, it’s time to consider “poisoning” your content—making it difficult or even impossible for AI systems to use it effectively. Key Principle: AI “Sees” Differently Than Humans AI processes data in ways humans don’t. While people view content based on context, AI “sees” data in raw, specific formats that can be manipulated. By subtly altering your content, you can protect it without affecting human users. Image Poisoning: Misleading AI Models For images, you can “poison” them to confuse AI models without impacting human perception. A great example of this is Nightshade, a tool designed to distort images so that they remain recognizable to humans but useless to AI models. This technique ensures your artwork or images can’t be replicated, and applying it across your visual content protects your unique style. For example, if you’re concerned about your images being stolen or reused by generative AI systems, you can embed misleading text into the image itself, which is invisible to human users but interpreted by AI as nonsensical data. This ensures that an AI model trained on your images will be unable to replicate them correctly. Text Poisoning: Adding Complexity for Crawlers Text poisoning requires more finesse, depending on the sophistication of the AI’s web crawler. Simple methods include: Invisible Text One easy method is to hide text within your page using CSS. This invisible content can be placed in sidebars, between paragraphs, or anywhere within your text: cssCopy code.content { color: black; /* Same as the background */ opacity: 0.0; /* Invisible */ display: none; /* Hidden in the DOM */ } By embedding this “poisonous” content directly in the text, AI crawlers might have difficulty distinguishing it from real content. If done correctly, AI models will ingest the irrelevant data as part of your content. JavaScript-Generated Content Another technique is to use JavaScript to dynamically alter the content, making it visible only after the page loads or based on specific conditions. This can frustrate AI crawlers that only read content after the DOM is fully loaded, as they may miss the hidden data. htmlCopy code<script> // Dynamically load content based on URL parameters or other factors </script> This method ensures that AI gets a different version of the page than human users. Honeypots for AI Crawlers Honeypots are pages designed specifically for AI crawlers, containing irrelevant or distorted data. These pages don’t affect human users but can confuse AI models by feeding them inaccurate information. For example, if your website sells cheese, you can create pages that only AI crawlers can access, full of bogus details about your cheese, thus poisoning the AI model with incorrect information. By adding these “honeypot” pages, you can mislead AI models that scrape your data, preventing them from using your IP effectively. Competitive Advantage Through Data Poisoning Data poisoning can also work to your benefit. By feeding AI models biased information about your products or services, you can shape how these models interpret your brand. For example, you could subtly insert favorable competitive comparisons into your content that only AI models can read, helping to position your products in a way that biases future AI-driven decisions. For instance, you might embed positive descriptions of your brand or products in invisible text. AI models would ingest these biases, making it more likely that they favor your brand when generating results. Using Proxies for Data Poisoning Instead of modifying your CMS, consider using a proxy server to inject poisoned data into your content dynamically. This approach allows you to identify and respond to crawlers more easily, adding a layer of protection without needing to overhaul your existing systems. A proxy can insert “poisoned” content based on the type of AI crawler requesting it, ensuring that the AI gets the distorted data without modifying your main website’s user experience. Preparing for AI in a Competitive World With the increasing use of AI for training and decision-making, businesses must think proactively about protecting their IP. In an era where AI vendors may consider all publicly available data fair game, implementing data poisoning should become a standard practice for companies concerned about protecting their content and ensuring it’s represented correctly in AI models. Businesses that take these steps will be better positioned to negotiate with AI vendors if they request data for training and will have a competitive edge if AI systems are used by consumers or businesses to make decisions about their products or services. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
salesforce and mahindra finance

Salesforce and Mahindra

The new LOS will incorporate machine learning and automation to deliver real-time credit assessments, enabling faster loan processing and competitive interest rates, alongside improved credit risk insights. This strategic partnership underscores Mahindra Finance’s dedication to providing responsible financing solutions to India’s emerging MSME sector.

Read More
OpenAI Introduces Canvas

OpenAI Introduces Canvas

Don’t get spooked – OpenAI introduces Canvas—a fresh interface for collaborative writing and coding with ChatGPT, designed to go beyond simple conversation. Canvas opens in a separate window, enabling you and ChatGPT to work on projects side by side, creating and refining ideas in real time. This early beta provides an entirely new way of collaborating with AI—combining conversation with the ability to edit and enhance content together. Built on GPT-4o, Canvas can be selected in the model picker during the beta phase. Starting today, we’re rolling it out to ChatGPT Plus and Team users globally, with Enterprise and Education users gaining access next week. Once out of beta, Canvas will be available to all ChatGPT Free users. Enhancing Collaboration with ChatGPT While ChatGPT’s chat interface works well for many tasks, projects requiring editing and iteration benefit from more. Canvas provides a workspace designed for such needs. Here, ChatGPT can better interpret your objectives, offering inline feedback and suggestions across entire projects—similar to a copy editor or code reviewer. You control every aspect in Canvas, from direct editing to leveraging shortcuts like adjusting text length, debugging code, or quickly refining writing. You can also revert to previous versions with Canvas’s back button. OpenAI Introduces Canvas Canvas opens automatically when ChatGPT detects an ideal scenario, or you can prompt it by typing “use Canvas” in your request to begin working collaboratively on an existing project. Writing Shortcuts Include: Coding in Canvas Canvas makes coding revisions more transparent, streamlining the iterative coding process. Track ChatGPT’s edits more clearly and take advantage of features that make debugging and revising code simpler. OpenAI Introduces Canvas to a world of new possibilities for truly developing and working with artificial intelligence. Coding Shortcuts Include: Training the Model to Collaborate GPT-4o has been optimized to act as a collaborative partner, understanding when to open a Canvas, make targeted edits, or fully rewrite content. Our team implemented core behaviors to support a seamless experience, including: These improvements are backed by over 20 internal automated evaluations and refined with synthetic data generation techniques, allowing us to enhance response quality and interaction without relying on human-generated data. Key Challenges as OpenAI Introduces Canvas A core challenge was determining when to trigger Canvas. We trained GPT-4o to recognize prompts like “Write a blog post about the history of coffee beans” while avoiding over-triggering for simple Q&A requests. For writing tasks, we reached an 83% accuracy in correct Canvas triggers, and a 94% accuracy in coding tasks compared to baseline models. Fine-tuning continues to ensure targeted edits are favored over full rewrites when needed. Finally, improving comment generation required iterative adjustments and human evaluations, with the integrated Canvas model now outperforming baseline GPT-4o in accuracy by 30% and quality by 16%. What’s Next Canvas is the first major update to ChatGPT’s visual interface since launch, with more enhancements planned to make AI more versatile and accessible. Canvas is also integrated with Salesforce. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Intelligent Adoption Framework

Intelligent Adoption Framework

Intelligent Adoption Framework Marks a New Era for AI IntegrationAfter a surge of initial excitement, AI has now entered a phase of more thoughtful and strategic adoption, focusing on sustainable progress and measurable results. Following years of hype in which artificial intelligence was hailed as a revolutionary force poised to instantly transform industries, AI is now facing a more tempered reality. As it settles into Gartner’s “Trough of Disillusionment,” organizations are grappling with the reality of high costs and challenges scaling experimental projects. However, this phase of learning is typical for any emerging technology, and the journey to unlock AI’s full potential is far from over. Steve Daly, Senior Vice President of Solutions at New Era Technology, explains: “AI has been around for 70 years, but the recent hype inflated expectations. At $30 per user per month for tools like Microsoft 365 Copilot, they’re appealing for proof-of-concept projects. But once those initial tests are over, many companies struggle to find a clear ROI when scaling.” Cost is not the only barrier to broader AI adoption. Concerns over data security and sharing sensitive information are top priorities for many organizations. Daly adds, “New Era’s robust data and security practice has shifted to offer Copilot Studio, allowing companies to build GenAI solutions with tighter security controls. With Copilot Studio, you can limit access to specific files or libraries, ensuring greater control over sensitive data.” Moving Beyond OverpromisesBuilding confidence in AI requires addressing several factors. First, organizations must tackle security and data control issues, alongside developing a clear business model to justify AI investments. Equally important is maintaining momentum—patience and persistence are key to seeing projects through to success, or determining when to pivot. Daly observes, “We’re seeing many projects lose steam. Around half of AI initiatives stall due to poor security practices and suboptimal data management. Projects must demonstrate progress, and that’s difficult in the innovation phase when you don’t always know what you don’t know.” Introducing Intelligent AdoptionThis is where Copilot Studio and New Era’s Intelligent Adoption Framework come into play. The framework is designed to help organizations chart their AI development journey and ensure investments yield tangible results. Copilot Studio supports IT teams by focusing on the tasks that truly drive value, helping them stay on track toward their goals. The Intelligent Adoption Framework is built around three core pillars: technical redesign, organizational readiness, and user readiness. New Era’s framework leverages its expertise to guide businesses through the steps necessary to define their AI strategy, align their corporate vision, and identify the most valuable use cases for AI adoption. Daly concludes, “It’s not just about purchasing licenses—it’s about creating a roadmap for successful adoption. We’re developing packaged solutions, such as ‘train the trainer’ programs from day one, followed by proof-of-concept demonstrations using Copilot Studio. Our goal is to help customers answer key questions, like when to build a GenAI chatbot, while navigating the complexities of AI adoption and managing the pressures CIOs face from stakeholders.” In this new era of AI, success will be determined not by rushed deployment, but by strategic, intelligent adoption that ensures sustained value over time. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
How to Implement AI for Business Transformation

Trust Deepens as AI Revolutionizes Content Creation

Artificial intelligence (AI) is transforming the content creation industry, sparking conversations about trust, authenticity, and the future of human creativity. As developers increasingly adopt AI tools, their trust in these technologies grows. Over 75% of developers now express confidence in AI, a trend that highlights the far-reaching potential of these advancements across industries. A study shared by Parametric Architecture underscores the expanding reliance on AI, with sectors ranging from marketing to architecture integrating these tools for tasks like design and communication. Yet, the implications for trust and authenticity remain nuanced, as stakeholders grapple with ensuring AI-driven content meets ethical and quality standards. Major players like Microsoft are capitalizing on this AI surge, offering solutions that enhance business efficiency. From automating emails to managing records, Microsoft’s tools demonstrate how AI can bridge the gap between human interaction and machine-driven processes. These advancements also intensify competition with other industry leaders, including Salesforce, as businesses seek smarter ways to streamline operations. In marketing, AI’s influence is particularly transformative. As noted by Karla Jo Helms in MarketingProfs, platforms like Google are adapting to the proliferation of AI-generated content by implementing stricter guidelines to combat misinformation. With projections suggesting that 90% of online content could be AI-generated by 2026, marketers face the dual challenge of maintaining authenticity while leveraging automation. Trust remains central to these efforts. According to Helms, “82% of consumers say brands must advertise on safe, accurate, and trustworthy content.” To meet these expectations, marketers must prioritize quality and transparency, aligning with Google’s emphasis on value-driven content over mass-produced AI outputs. This focus on trustworthiness is critical to maintaining audience confidence in an increasingly automated landscape. Beyond marketing, AI is making waves in diverse fields. In agriculture, Southern land-grant scientists are leveraging AI for precision spraying and disease detection, helping farmers reduce costs while improving efficiency. These innovations highlight how AI can drive strategic advancements even in traditional sectors. Across industries, the interplay between AI adoption and ethical content creation poses critical questions. AI should serve as a collaborator, enhancing rather than replacing human creativity. Achieving this balance requires transparency about AI’s role, along with regulatory frameworks to ensure accountability and ethical use. As AI takes center stage in content creation, industries must address challenges around trust and authenticity. The focus must shift from merely implementing AI to integrating it responsibly, fostering user confidence while maintaining the integrity of human narratives. Looking ahead, the path to success lies in balancing automation’s efficiency with genuine storytelling. By emphasizing ethical practices, clear communication about AI’s contributions, and a commitment to quality, content creators can cultivate trust and establish themselves as dependable voices in an increasingly AI-driven world. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Connected Assets

Salesforce Connected Assets

Salesforce has unveiled Connected Assets, a robust suite of capabilities in Manufacturing Cloud, designed to offer manufacturers a comprehensive, real-time perspective on connected asset data. This includes data on service history, asset status, customer records, and telematics, allowing manufacturers to monitor asset health and performance while proactively addressing maintenance needs to reduce downtime and boost customer satisfaction. Enhanced AI Capabilities for Connected AssetsConnected Assets integrates Salesforce’s advanced AI to empower teams with actionable insights. Sales, customer service, and field teams can now receive real-time alerts and quickly access asset history and health, enabling faster, data-driven support and the delivery of more personalized offers. AI-driven insights and recommendations based on asset condition, service history, and performance data enhance the ability of manufacturers to predict maintenance needs and provide proactive support, including on-site recommendations to field technicians. Innovative Features for Optimized Asset Management Salesforce PerspectiveAchyut Jajoo, SVP and GM of Manufacturing and Automotive, states, “The manufacturing industry is embracing a historic transformation toward AI-enabled modernization. Connected Assets and our sector-specific AI tools in Manufacturing Cloud empower our customers to lead with improved customer experiences, optimized asset performance, and new revenue-generating services. With Agentforce, our customers will soon be able to leverage autonomous agents to monitor connected asset data at scale, enabling them to focus on strategic, high-value initiatives.” Real-World ApplicationKawasaki Engines exemplifies Connected Assets in action, using Manufacturing Cloud to enhance customer relationships by offering proactive support and minimizing equipment downtime. “Salesforce’s Connected Assets will enable us to deliver exceptional service, keeping our customers satisfied and our products operating efficiently,” says Tony Gondick, Senior Manager of IT Business Strategy at Kawasaki Engines. Extending Across IndustriesBeyond Manufacturing Cloud, Connected Assets is also being introduced to Salesforce’s other industry clouds, such as Energy & Utilities, Communications, and Media, allowing a wide range of sectors to tap into the benefits of connected asset management, minimize downtime, and generate new value. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Generative ai energy consumption

AI Energy Consumption

At the Gartner IT Symposium/Xpo 2024, industry leaders emphasized that rising energy consumption and costs are fast becoming constraints on IT capabilities. Solutions discussed include adopting acceleration technologies, exploring microgrids, and keeping an eye on emerging energy-efficient technologies. With enterprise AI applications expanding, computing demands – and the energy needed to support them – are rapidly increasing. Nvidia’s CEO, Jensen Huang, highlighted this challenge, noting that advancements in traditional computing are failing to keep pace with data processing needs. “If compute demand grows exponentially while general-purpose performance stagnates, you’ll face not just cost inflation but significant energy inflation,” he said. Huang suggested that leveraging accelerated computing can mitigate some of these impacts, improving energy efficiency. Another approach highlighted was the use of microgrids, with Gartner predicting that Fortune 500 companies will shift up to $500 billion toward such systems by 2027 to manage ongoing energy risks and AI demand. Gartner’s Daryl Plummer noted that these independent energy networks could help energy-intensive enterprises avoid dependence on strained public power grids. Hyperscalers, including major cloud providers, are already exploring alternative power sources, such as nuclear energy, to meet escalating demands. For instance, Microsoft has announced plans to source energy from the Three Mile Island nuclear plant. While emerging technologies like quantum, neuromorphic, and photonic computing offer the promise of significant energy efficiency, they’re still years away from maturity. Gartner analyst Frank Buytendijk predicted it will take five to ten years before these options become viable solutions. “Energy-efficient computing is on the horizon, but we have a ways to go,” he said. Until then, enterprises will need to consider proactive strategies to manage energy risks and costs as part of their AI and IT planning. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Market Insights and Forecast for Quote Generation Software

Market Insights and Forecast for Quote Generation Software

Market Insights and Forecast for Quote Generation Software for Salesforce (2024-2031): Key Players, Technology Advancements, and Growth Opportunities A recent research report by WMR delves into the Quote Generation Software for Salesforce Market, offering over 150 pages of in-depth analysis on business strategies employed by both leading and emerging industry players. The study provides insights into market developments, technological advancements, drivers, opportunities, and overall market status. Understanding market segments is essential to identify key factors driving growth. Comprehensive Market Insights The report provides an extensive analysis of the global market landscape, including business expansion strategies designed to increase revenue. It compiles critical data about target customers, evaluating the potential success of products and services prior to launch. The research offers valuable insights for stakeholders, including detailed updates on the impact of COVID-19 on business operations and the broader market. The report assesses whether a target market aligns with an enterprise’s goals, emphasizing that market success hinges on understanding the target audience. Key Players Featured: Market Segmentation By Types: By Applications: Geographical Overview The Quote Generation Software for Salesforce Market varies significantly across regions, driven by factors such as economic development, technical advancements, and cultural differences. Businesses looking to expand globally must account for these variations to leverage local opportunities effectively. Key regions include: Competitive Landscape The report offers a detailed competitive analysis, highlighting: Highlights from the Report Key Market Questions Addressed: Reasons to Purchase this Report: This report provides a valuable roadmap for businesses aiming to navigate the evolving Quote Generation Software for Salesforce Market, helping them make informed decisions and strategically position themselves for growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com