OCR Archives - gettectonic.com
AI is revolutionizing BI by transforming it from a retrospective tool into a proactive, real-time decision-making engine.

AI in Business Intelligence

AI in Business Intelligence: Applications, Benefits, and Challenges AI is rapidly transforming business intelligence (BI) by enhancing analytics capabilities and streamlining processes. This shift is reshaping how organizations leverage data for decision-making. Here’s an in-depth look at how AI complements BI, its advantages, and the challenges it introduces. The Evolution of Business Intelligence with AI BI has traditionally focused on aggregating historical and current data to provide insights into business operations—a process known as descriptive analytics. However, many decision-makers seek more: insights into future trends (predictive analytics) and actionable recommendations (prescriptive analytics). AI bridges this gap. With advanced tools like natural language processing (NLP) and machine learning (ML), AI enables businesses to move beyond static dashboards to dynamic, real-time insights. It also simplifies complex analytics, making data more accessible to business users and fostering more informed, proactive decision-making. Key Benefits of AI in Business Intelligence AI brings significant benefits to BI, including: Real-World Applications of AI in BI AI’s integration into BI goes beyond internal efficiency, delivering external value by enhancing customer experiences and driving business growth. Notable applications include: Challenges of AI in Business Intelligence Despite its potential, integrating AI into BI comes with challenges: Best Practices for AI-Driven BI To successfully integrate AI with BI, organizations should: Future Trends in AI and BI AI is expected to augment rather than replace BI, enhancing its capabilities while keeping human expertise central. Emerging trends include: Conclusion AI is revolutionizing BI by transforming it from a retrospective tool into a proactive, real-time decision-making engine. While challenges remain, thoughtful implementation and adherence to best practices can help organizations unlock AI’s full potential in BI. By integrating AI into existing BI workflows, businesses can drive innovation, improve decision-making, and create more agile and data-driven operations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
being ai-driven

The Impact of AI on Jobs

The Impact of AI on Jobs: A Historical and Transformative Perspective For centuries, people have feared losing jobs to technological advancements. From the introduction of the printing press in 1440 to the widespread adoption of assembly lines in manufacturing, history has followed a familiar pattern: a wave of panic followed by a surge of innovation. Today, with AI in the spotlight, headlines warn of job-stealing robots. Yet, AI is not here to take jobs; it’s revealing new ones—and at an unprecedented pace. A Paradigm Shift: AI as a Job Creator Contrary to popular belief, AI is reshaping the job market for the better. Rather than replacing workers, it amplifies human potential, pushing society toward work that is creative, strategic, and uniquely human. Instead of asking, “Will AI take my job?” the better question is, “What new opportunities can AI unlock?” The answers are exciting and transformative. Lessons from the Past Technological disruption is far from new. The printing press, the weaving loom, and even the internet all provoked fears of mass unemployment. Yet, each time, these innovations sparked transformation rather than devastation. Consider the ATM, introduced in the 1960s. Initially, bank tellers feared redundancy. However, rather than replacing tellers, ATMs automated routine tasks, freeing human workers to focus on customer service and financial advising. In fact, the number of bank tellers increased in the decades following ATM adoption. AI follows the same trajectory. By handling repetitive tasks like sorting emails or managing schedules, AI frees workers to focus on areas requiring emotional intelligence, creativity, and problem-solving. AI: A Partner, Not a Competitor AI excels in areas that humans struggle with, such as processing vast datasets, recognizing patterns, and executing repetitive tasks with precision. However, it lacks empathy, context, and abstract thinking—traits that remain uniquely human. For example, IBM Watson can analyze millions of medical journals to suggest treatment options. Yet, a doctor’s role remains indispensable, as patients need empathy, understanding, and a human touch. Similarly, legal AI tools like CaseText can streamline research, but building persuasive arguments and negotiating terms require skills no algorithm can match. Rather than replacing professionals, AI enhances their productivity, enabling them to focus on higher-value tasks. The Birth of Entirely New Industries AI is not only reshaping existing jobs but also creating new roles and industries. The rise of generative AI has introduced positions like prompt engineers, who design effective queries to maximize AI’s output. Similarly, the need for unbiased algorithms has created the field of data ethics, where specialists ensure AI systems prioritize equity and fairness. These roles underscore an important reality: AI doesn’t eliminate opportunities—it redefines them. Addressing Ethical Challenges AI’s reliance on data is both its strength and its vulnerability. Algorithms trained on biased data can perpetuate harmful stereotypes, as seen in Amazon’s failed hiring algorithm, which penalized women. This challenge has given rise to data ethicists tasked with auditing algorithms and designing fair systems, further showcasing how AI disruption creates new fields and opportunities. Augmentation Over Replacement Fear of AI stems from misunderstanding its role. Machines are adept at repetitive and analytical tasks, but they lack the nuanced understanding required for roles in fields like art, music, and medicine. AI tools such as Adobe Sensei or AIVA enhance creativity, allowing artists and musicians to experiment, iterate, and push boundaries. Just as the printing press democratized writing rather than ending it, AI empowers workers to focus on what makes us uniquely human. A Future Worth Working Toward AI represents a profound shift in how society views work. It is not a destroyer of jobs but a catalyst for transformation. By automating inefficiencies and reinforcing human strengths, AI unlocks opportunities yet to be imagined. Rather than fearing the rise of AI, embracing its potential can lead to a future where work is more meaningful, creative, and impactful—an evolution worth striving for. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agents, Tech's Next Big Bet

Business Intelligence and AI

AI in Business Intelligence: Uses, Benefits, and Challenges AI tools are increasingly becoming integral to Business Intelligence (BI) systems, enhancing analytics capabilities and streamlining tasks. In this article, we explore how AI can bring new value to BI processes and what to consider as this integration continues to evolve. AI’s Role in Business Intelligence Business Intelligence tools, such as dashboards and interactive reports, have traditionally focused on analyzing historical and current data to describe business performance—known as descriptive analytics. While valuable, many business users seek more than just a snapshot of past performance. They also want predictive insights (forecasting future trends) and prescriptive guidance (recommendations for action). Historically, implementing these advanced capabilities was challenging due to their complexity, but AI simplifies this process. By leveraging AI’s analytical power and natural language processing (NLP), businesses can move from descriptive to predictive and prescriptive analytics, enabling proactive decision-making. AI-powered BI systems also offer the advantage of real-time data analysis, providing up-to-date insights that help businesses respond quickly to changing conditions. Additionally, AI can automate routine tasks, boosting efficiency across business operations. Benefits of Using AI in BI Initiatives The integration of AI into BI systems brings several key benefits, including: Examples of AI Applications in BI AI’s role in BI is not limited to internal process improvements. It can significantly enhance customer experience (CX) and support business growth. Here are a few examples: Challenges of Implementing AI in BI While the potential for AI in BI is vast, there are several challenges companies must address: Best Practices for Deploying AI in BI To maximize the benefits of AI in BI, companies should follow these best practices: Future Trends to Watch AI is not poised to replace traditional BI tools but to augment them with new capabilities. In the future, we can expect: In conclusion, AI is transforming business intelligence by turning data analysis from a retrospective activity into a forward-looking, real-time process. While challenges remain, such as data governance, ethical concerns, and skill shortages, AI’s potential to enhance BI systems and drive business success is undeniable. By following best practices and staying abreast of industry developments, businesses can harness AI to unlock new opportunities and deliver better insights. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Collaborative Business Intelligence

Collaborative Business Intelligence

Collaborative BI combines BI tools with collaboration platforms, enabling users to connect data insights directly within their existing workflows. This integration enhances decision-making by reducing misunderstandings and fostering teamwork through real-time or asynchronous discussions about data. In traditional BI, data analysis was handled by data scientists and statisticians who translated insights for business users. However, the rise of self-service BI tools has democratized data access, allowing users of varying technical skills to create and share visualizations. Collaborative BI takes this a step further by embedding BI functions into collaboration platforms like Slack and Microsoft Teams. This setup allows users to ask questions, clarify context, and share reports within the same applications they already use, enhancing data-driven decisions across the organization. One real-life time saver in my experience is being able as a marketer to dig in to our BI and generate lists myself, without depending upon a team of data scientists. Benefits of Collaborative BI Leading Collaborative BI Platforms Several vendors offer collaborative BI solutions, each with unique integrations for communication and data sharing: Collaborative BI bridges data analysis with organizational collaboration, creating an agile environment for informed decision-making and effective knowledge sharing across all levels. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Generative AI Energy Consumption Rises

AI for the Ho-Ho-Holidays

The Holiday Rush and AI’s Growing Role in Retail The holiday season is approaching quickly, with fewer days between Thanksgiving and Christmas this year than at any time since 2019. This condensed timeline makes Salesforce’s latest State of the Connected Customer report—this year titled State of the AI Connected Customer—particularly timely. The report, based on insights from over 15,000 consumers worldwide, focuses on the growing role of artificial intelligence (AI), specifically AI agents, in transforming customer experiences. With Salesforce’s recent launch of Agentforce, AI agents have taken center stage. According to Michael Affronti, SVP and General Manager of Commerce Cloud at Salesforce, the retail sector is already exploring this technology: “Retailers that we talk to are starting to implement AI agents. Unlike chatbots, AI agents can analyze customer data to make proactive recommendations and even take action. For consumers, AI agents create smoother checkout experiences, streamline returns, and deliver personalized shopping that feels like working with an incredible in-store associate. For retailers, AI agents drive higher margins and customer retention by delivering exceptional service. As we like to say, ‘There’s an agent for that.’” Rebuilding Trust with AI One of the most compelling use cases for AI agents, according to Affronti, lies in addressing declining consumer trust. Salesforce’s research highlights alarming trends: AI agents present an opportunity to rebuild trust by delivering reliable and transparent experiences. While consumer expectations for personalized service remain high, Salesforce data suggests that 30% of consumers would work with AI agents if it meant faster service. However, skepticism persists—curiosity is the top emotion associated with AI, followed closely by suspicion and anxiety. Transparency is crucial, as 40% of consumers are more likely to trust AI agents when their logic is explained, and there’s an option to escalate to a human. “Most people just want to know it’s AI, and then they’ll be comfortable,” Affronti notes. “Clarity about what the agent is doing, combined with the ability to talk to a real person, builds trust.” Three Opportunities for Retailers Affronti outlines three key strategies for retailers to embrace AI agents effectively this holiday season: Experimentation and Preparing for the Future For retailers not yet leveraging AI, Affronti advises starting small but experimenting now. For example, large brands like Saks are already piloting AI agents such as “Sophie,” which handles tasks like order management and learns new capabilities based on customer feedback. However, smaller businesses can also benefit from AI tools, such as generative AI for writing product descriptions or automating promotions, regardless of scale. “One of the great things about AI today is how democratized it has become,” Affronti explains. “Small businesses using Salesforce’s Commerce Cloud can leverage AI for tasks like creating product descriptions or automating translations, even if their catalog is limited.” Looking Ahead While this holiday season may not see a widespread rollout of AI-driven retail solutions, early adopters are already showcasing what’s possible. Retailers that embrace experimentation and lay the groundwork for AI-powered experiences today will likely see significant results by the 2025 holiday season. The key takeaway: now is the time to build the foundation for the future of AI in retail. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Enterprises are Adopting AI-powered Automation Platforms

Enterprises are Adopting AI-powered Automation Platforms

The rapid pace of AI technological advancement is placing immense pressure on teams, often leading to disagreements due to the unrealistic expectations businesses have for the speed and agility of new technology implementation. A staggering 88% of IT professionals report that they are unable to keep up with the flood of AI-related requests within their organizations. Executives from UiPath, Salesforce, ServiceNow, and ManageEngine offer insights into how enterprises can navigate these challenges. Leading enterprises are adopting AI-powered automation platforms that understand, automate, and manage end-to-end processes. These platforms integrate seamlessly with existing enterprise technologies, using AI to reduce friction, eliminate inefficiencies, and enable teams to achieve business goals faster, with greater accuracy and efficiency. This year’s innovation drivers include tools such as Intelligent Document Processing, Communications Mining, Process and Task Mining, and Automated Testing. “Automation is the best path to deliver on AI’s potential, seamlessly integrating intelligence into daily operations, automating backend processes, upskilling employees, and revolutionizing industries,” says Mark Gibbs, EMEA President, UiPath. Jessica Constantinidis, Innovation Officer EMEA at ServiceNow, explains, “Intelligent Automation blends Robotic Process Automation (RPA), Artificial Intelligence (AI), and Machine Learning (ML) with well-defined processes to automate decision-making outcomes.” “Hyperautomation provides a business-driven, disciplined approach that enterprises can use to make informed decisions quickly by analyzing process and data feedback within the organization,” adds Constantinidis. Thierry Nicault, AVP and General Manager at Salesforce Middle East, emphasizes that while companies are eager to embrace AI, the pace of change often leads to confusion and stifles innovation. He notes, “By deploying AI and Hyperintelligent Automation tools, organizations can enhance productivity, visibility, and operational transformation.” Automation is driving growth and innovation across industries. AI-powered tools are simplifying processes, improving business revenues, and contributing to economic diversification. Ramprakash Ramamoorthy, Director of AI Research at ManageEngine, highlights how Hyperintelligent Automation, powered by AI, uses tools like Natural Language Processing (NLP) and Intelligent Document Processing to detect anomalies, forecast business trends, and empower decision-making. The IT Pushback Despite enthusiasm for AI, IT professionals are raising concerns. A Salesforce survey revealed that 88% of IT professionals feel overwhelmed by the influx of AI-related requests, with many citing resource constraints, data security concerns, and data quality issues. Business stakeholders often have unrealistic expectations about how quickly new technologies can be implemented, creating friction. According to Constantinidis of ServiceNow, many organizations lack transparency across their business units, making it difficult to fully understand their processes. As a result, automating processes becomes challenging. She adds, “Before full hyperautomation is possible, issues like data validation, classification, and privacy must be prioritized.” Automation platforms need accurate data, and governance is crucial in managing what data is used for AI models. “You need AI skills to teach and feed the data, and you also need a data specialist to clean up your data lake,” Constantinidis explains. Gibbs from UiPath stresses that automation must be designed in collaboration with the business users who understand the processes and systems. Once deployed, a feedback loop ensures continuous improvement and refinement of automated workflows. Ramamoorthy from ManageEngine notes that adopting Hyperintelligent Automation alongside existing workflows poses challenges. Enterprises must evaluate their technology stack, considering the costs, skills required, and the potential benefits. Strategic Integration of AI and Automation To successfully implement Hyperintelligent Automation tools, enterprises need a blend of IT and business skills. Mark Gibbs of UiPath points out, “These skills ensure organizations can effectively implement, manage, and optimize hyperintelligent technologies, aligning them with organizational goals.” Salesforce’s Nicault adds, “Enterprises must empower both IT and business teams to embrace AI, fostering innovation while ensuring the technology delivers real value.” Business skills are equally crucial, including strategic planning, process analysis, and change management. Ramamoorthy emphasizes that these competencies help identify automation opportunities and align them with business goals. According to Bassel Khachfeh, Digital Solutions Manager at Omnix, automation must be implemented with a focus on regulatory and compliance needs specific to the industry. This approach ensures the technology supports future growth and innovation. Transforming Customer Experiences and Business Operations As automation evolves, it’s transforming not only back-end processes but also customer experiences and decision-making at every level. Constantinidis from ServiceNow explains that hyperintelligence enables enterprises to predict outcomes and avert crises by trusting AI’s data accuracy. Gibbs from UiPath adds that automation allows enterprises to unlock untapped opportunities, speeding up the transformation of manual processes and enhancing business efficiency. AI is already making an impact in areas like supply chain management, regulatory compliance, and customer-facing processes. Ramamoorthy of ManageEngine notes that AI-powered NLP is revolutionizing enterprise chatbots and document processing, enabling businesses to automate complex workflows like invoice handling and sentiment analysis. Khachfeh from Omnix highlights how Cognitive Automation platforms elevate RPA by integrating AI-driven capabilities, such as NLP and Optical Character Recognition (OCR), to further streamline operations. Looking Ahead Hyperintelligent Automation, driven by AI, is set to revolutionize industries by enhancing efficiency, driving innovation, and enabling smarter decision-making. Enterprises that strategically adopt these tools—by integrating IT and business expertise, prioritizing data governance, and continuously refining their automated workflows—will be best positioned to navigate the complexities of AI and achieve sustainable growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Research Agents

AI Research Agents

AI Research Agents: Transforming Knowledge Discovery by 2025 (Plus the Top 3 Free Tools) The research world is on the verge of a groundbreaking shift, driven by the evolution of AI research agents. By 2025, these agents are expected to move beyond being mere tools to becoming transformative assets for knowledge discovery, revolutionizing industries such as marketing, science, and beyond. Human researchers are inherently limited—they cannot scan 10,000 websites in an hour or analyze data at lightning speed. AI agents, however, are purpose-built for these tasks, providing efficiency and insights far beyond human capabilities. Here, we explore the anticipated impact of AI research agents and highlight three free tools redefining this space (spoiler alert: it’s not ChatGPT or Perplexity!). AI Research Agents: The New Era of Knowledge Exploration By 2030, the AI research market is projected to skyrocket from .1 billion in 2024 to .1 billion. This explosive growth represents not just advancements in AI but a fundamental transformation in how knowledge is gathered, analyzed, and applied. Unlike traditional AI systems, which require constant input and supervision, AI research agents function more like dynamic research assistants. They adapt their approach based on outcomes, handle vast quantities of data, and generate actionable insights with remarkable precision. Key Differentiator: These agents leverage advanced Retrieval Augmented Generation (RAG) technology, ensuring accuracy by pulling verified data from trusted sources. Equipped with anti-hallucination algorithms, they maintain factual integrity while citing their sources—making them indispensable for high-stakes research. The Technology Behind AI Research Agents AI research agents stand out due to their ability to: For example, an AI agent can deliver a detailed research report in 30 minutes, a task that might take a human team days. Why AI Research Agents Matter Now The timing couldn’t be more critical. The volume of data generated daily is overwhelming, and human researchers often struggle to keep up. Meanwhile, Google’s focus on Experience, Expertise, Authoritativeness, and Trustworthiness (EEAT) has heightened the demand for accurate, well-researched content. Some research teams have already reported time savings of up to 70% by integrating AI agents into their workflows. Beyond speed, these agents uncover perspectives and connections often overlooked by human researchers, adding significant value to the final output. Top 3 Free AI Research Tools 1. Stanford STORM Overview: STORM (Synthesis of Topic Outlines through Retrieval and Multi-perspective Question Asking) is an open-source system designed to generate comprehensive, Wikipedia-style articles. Learn more: Visit the STORM GitHub repository. 2. CustomGPT.ai Researcher Overview: CustomGPT.ai creates highly accurate, SEO-optimized long-form articles using deep Google research or proprietary databases. Learn more: Access the free Streamlit app for CustomGPT.ai. 3. GPT Researcher Overview: This open-source agent conducts thorough research tasks, pulling data from both web and local sources to produce customized reports. Learn more: Visit the GPT Researcher GitHub repository. The Human-AI Partnership Despite their capabilities, AI research agents are not replacements for human researchers. Instead, they act as powerful assistants, enabling researchers to focus on creative problem-solving and strategic thinking. Think of them as tireless collaborators, processing vast amounts of data while humans interpret and apply the findings to solve complex challenges. Preparing for the AI Research Revolution To harness the potential of AI research agents, researchers must adapt. Universities and organizations are already incorporating AI training into their programs to prepare the next generation of professionals. For smaller labs and institutions, these tools present a unique opportunity to level the playing field, democratizing access to high-quality research capabilities. Looking Ahead By 2025, AI research agents will likely reshape the research landscape, enabling cross-disciplinary breakthroughs and empowering researchers worldwide. From small teams to global enterprises, the benefits are immense—faster insights, deeper analysis, and unprecedented innovation. As with any transformative technology, challenges remain. But the potential to address some of humanity’s biggest problems makes this an AI revolution worth embracing. Now is the time to prepare and make the most of these groundbreaking tools. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Fivetrans Hybrid Deployment

Fivetrans Hybrid Deployment

Fivetran’s Hybrid Deployment: A Breakthrough in Data Engineering In the data engineering world, balancing efficiency with security has long been a challenge. Fivetran aims to shift this dynamic with its Hybrid Deployment solution, designed to seamlessly move data across any environment while maintaining control and flexibility. Fivetrans Hybrid Deployment. The Hybrid Advantage: Flexibility Meets Control Fivetran’s Hybrid Deployment offers a new approach for enterprises, particularly those handling sensitive data or operating in regulated sectors. Often, these businesses struggle to adopt data-driven practices due to security concerns. Hybrid Deployment changes this by enabling the secure movement of data across cloud and on-premises environments, giving businesses full control over their data while maintaining the agility of the cloud. As George Fraser, Fivetran’s CEO, notes, “Businesses no longer have to choose between managed automation and data control. They can now securely move data from all their critical sources—like Salesforce, Workday, Oracle, SAP—into a data warehouse or data lake, while keeping that data under their own control.” How it Works: A Secure, Streamlined Approach Fivetran’s Hybrid Deployment relies on a lightweight local agent to move data securely within a customer’s environment, while the Fivetran platform handles the management and monitoring. This separation of control and data planes ensures that sensitive information stays within the customer’s secure perimeter. Vinay Kumar Katta, a managing delivery architect at Capgemini, highlights the flexibility this provides, enabling businesses to design pipelines without sacrificing security. Beyond Security: Additional Benefits Hybrid Deployment’s benefits go beyond just security. It also offers: Early adopters are already seeing its value. Troy Fokken, chief architect at phData, praises how it “streamlines data pipeline processes,” especially for customers in regulated industries. AI Agent Architectures: Defining the Future of Autonomous Systems In the rapidly evolving world of AI, a new framework is emerging—AI agents designed to act autonomously, adapt dynamically, and explore digital environments. These AI agents are built on core architectural principles, bringing the next generation of autonomy to AI-driven tasks. What Are AI Agents? AI agents are systems designed to autonomously or semi-autonomously perform tasks, leveraging tools to achieve objectives. For instance, these agents may use APIs, perform web searches, or interact with digital environments. At their core, AI agents use Large Language Models (LLMs) and Foundation Models (FMs) to break down complex tasks, similar to human reasoning. Large Action Models (LAMs) Just as LLMs transformed natural language processing, Large Action Models (LAMs) are revolutionizing how AI agents interact with environments. These models excel at function calling—turning natural language into structured, executable actions, enabling AI agents to perform real-world tasks like scheduling or triggering API calls. Salesforce AI Research, for instance, has open-sourced several LAMs designed to facilitate meaningful actions. LAMs bridge the gap between unstructured inputs and structured outputs, making AI agents more effective in complex environments. Model Orchestration and Small Language Models (SLMs) Model orchestration complements LAMs by utilizing smaller, specialized models (SLMs) for niche tasks. Instead of relying on resource-heavy models, AI agents can call upon these smaller models for specific functions—such as summarizing data or executing commands—creating a more efficient system. SLMs, combined with techniques like Retrieval-Augmented Generation (RAG), allow smaller models to perform comparably to their larger counterparts, enhancing their ability to handle knowledge-intensive tasks. Vision-Enabled Language Models for Digital Exploration AI agents are becoming even more capable with vision-enabled language models, allowing them to interact with digital environments. Projects like Apple’s Ferret-UI and WebVoyager exemplify this, where agents can navigate user interfaces, recognize elements via OCR, and explore websites autonomously. Function Calling: Structured, Actionable Outputs A fundamental shift is happening with function calling in AI agents, moving from unstructured text to structured, actionable outputs. This allows AI agents to interact with systems more efficiently, triggering specific actions like booking meetings or executing API calls. The Role of Tools and Human-in-the-Loop AI agents rely on tools—algorithms, scripts, or even humans-in-the-loop—to perform tasks and guide actions. This approach is particularly valuable in high-stakes industries like healthcare and finance, where precision is crucial. The Future of AI Agents With the advent of Large Action Models, model orchestration, and function calling, AI agents are becoming powerful problem solvers. These agents are evolving to explore, learn, and act within digital ecosystems, bringing us closer to a future where AI mimics human problem-solving processes. As AI agents become more sophisticated, they will redefine how we approach digital tasks and interactions. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
What Makes a True AI Agent

What Makes a True AI Agent

What Makes a True AI Agent? Rethinking the Pursuit of Autonomy Unpacking the Core Traits of AI Agents — And Why Foundations Matter More Than Buzzwords The tech industry is enamored with AI agents. From sales bots to autonomous systems, companies like Salesforce and HubSpot claim to offer groundbreaking AI agents. Yet, I’ve yet to encounter a truly autonomous, agentic experience built from LLMs. The market is awash with what I call “botshit,” and if the best Salesforce can do is improve slightly over a mediocre chatbot, that’s underwhelming. What Makes a True AI Agent? But here’s the critical question everyone is missing: even if we could build fully autonomous AI agents, how often would they be the best solution for users? To explore this, let’s consider travel planning through the lens of agents and assistants. This use case helps clarify what each trait of agentic behavior brings to the table and offers a framework for evaluating AI products beyond the hype. By the end of this piece, you’ll be able to decide whether AI autonomy is a worthwhile investment or a costly distraction. The Spectrum of Agentic Behavior: A Practical Framework There’s no consensus on what truly defines an AI “agent.” Instead of relying on a binary classification, I suggest adopting a spectrum framework with six key attributes from AI research. This approach is more useful in today’s landscape because: Using the example of a travel “agent,” we’ll explore how different implementations fall on this spectrum. Most real-world applications land somewhere between “basic” and “advanced” tiers across the six traits. This framework will help you make informed decisions about AI integration and communicate more effectively with both technical teams and end users. By the end, you’ll be equipped to: What Makes a True AI Agent The Building Blocks of Agentic Behavior 1. Perception The ability to sense and interpret its environment or relevant data streams. An agent with advanced perception could, for instance, notice your preference for destinations with excellent public transit and factor that into future recommendations. 2. Interactivity The ability to engage with its environment, users, and external systems. LLMs like ChatGPT have set a high bar for interactivity. However, most customer support bots struggle because they need to integrate company-specific data and backend systems, prioritizing accuracy over creativity. 3. Persistence The ability to store, maintain, and update long-term memories about users and interactions. True persistence requires systems that not only store data but also evolve with each interaction, much like how a human travel agent remembers your favorite seat on a plane. 4. Reactivity The ability to respond to changes in its environment in real time. For example, a reactive system could suggest alternative travel dates if hotel prices surge due to a local event. 5. Proactivity The ability to anticipate needs and offer relevant suggestions unprompted. True proactivity requires robust perception, persistence, and reactivity to offer timely, context-aware suggestions. 6. Autonomy The ability to operate independently and make decisions within defined parameters. Autonomy varies by the level of resource control, impact scope, and operational boundaries. For example: The more complex the task and the greater the impact of a mistake, the more safeguards and precision the system needs. Proactive Autonomy: A Future Frontier The next step is proactive autonomy — the ability to modify goals or parameters to achieve overarching objectives. While theoretically possible, this introduces new risks and complexities, bringing us closer to the scenarios seen in sci-fi, where AI systems operate beyond human control. Most companies are nowhere near this level, and prioritizing foundation work like perception and persistence is far more practical for today’s needs. Agents vs. Assistants: A Useful Distinction An AI agent demonstrates at least five of the six attributes and exhibits autonomy within its domain. An AI assistant excels in perception, interactivity, and persistence but lacks autonomy or proactivity. It primarily responds to human requests and relies on human oversight for decisions. While many AI systems today are labeled “agents,” most function more like assistants. A Roomba, for example, is closer to an agent, autonomously navigating and adapting within a predefined space. On the other hand, tools like GitHub Copilot serve as powerful assistants, enhancing user capabilities without making independent decisions. Foundations Before Flash: The Role of Data Despite all the AI buzz, few companies today have the data foundations to support meaningful agentic behavior. For instance, most customer interactions rely on nuanced, unwritten information that is hard to automate. Missing perception foundations and inadequate testing lead to the “botshit” plaguing the industry. The key is to focus on building strong foundations in perception, interactivity, and persistence before tackling full autonomy. Start with the Problem: Why User-Centric AI Wins Before chasing the dream of autonomous agents, companies should start by asking what users actually need. Many organizations would benefit more from developing reliable assistants rather than fully autonomous systems. Real user problems, like those solved by Waymo and Roomba, offer clear paths to valuable AI solutions. The Path Forward: Align Data, Systems, and User Needs When deciding where to invest in AI: By focusing on foundational pillars, companies can build AI systems that solve immediate problems, laying the groundwork for more advanced capabilities in the future. Whether you’re developing agents, assistants, or indispensable tools, aligning solutions with real user needs is the key to meaningful progress. Contact Tectonic for assistance answering the question What Makes a True AI Agent work for my business? Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has

Read More
Benefits of AI in Banking

Benefits of AI in Banking

Artificial intelligence (AI) is rapidly gaining traction in the banking and finance sector, with generative AI (GenAI) emerging as a transformative force. Financial institutions are increasingly adopting AI technologies to automate processes, cut operational costs, and boost overall productivity, according to Sameer Gupta, North America Financial Services Organization Advanced Analytics Leader at EY. While traditional machine learning (ML) techniques are commonly used for fraud detection, loan approvals, and personalized marketing, banks are now advancing to incorporate more sophisticated technologies, including ML, natural language processing (NLP), and GenAI. Gupta notes that EY is observing a growing trend of banks using ML to enhance credit approvals, improve fraud detection, and refine marketing strategies, leading to greater efficiency and better decision-making. A recent survey by Gartner’s Jasleen Kaur Sindhu reveals that 58% of banking CIOs have either deployed or plan to deploy AI initiatives in 2024, with this number expected to rise to 77% by 2025. “This indicates not only the growing importance of AI but also its fundamental role in shaping how banks operate and deliver value to their customers,” Sindhu said. “AI is becoming essential to the success of banking institutions.” Here are five key benefits of AI applications in banking: Despite the benefits, concerns about AI in banking persist, particularly regarding data privacy, bias, and ethics. AI can inadvertently extract personal information and raise privacy issues. Regulatory challenges and the potential for AI systems to perpetuate biases are also major concerns. As AI technology evolves, banks are investing in robust governance frameworks, continuous monitoring, and adherence to ethical standards to address these risks. Looking ahead, AI is expected to revolutionize banking by delivering personalized services, enhancing customer interactions, and driving productivity. Deloitte forecasts that GenAI could boost productivity by up to 35% in the top 14 global investment banks, generating significant additional revenue per employee by 2026. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Alphabet Soup of Cloud Terminology As with any technology, the cloud brings its own alphabet soup of terms. This insight will hopefully help you navigate Read more

Read More
Salesforce AI Evolves with the Generative AI Landscape

Salesforce AI Evolves with the Generative AI Landscape

Salesforce AI: Powering Customer Relationship Management Salesforce is a leading CRM solution that has long delivered cutting-edge cloud technologies to manage customer relationships effectively. In recent months, the platform has further advanced with the integration of generative AI and AI-powered features, primarily through its AI engine, Einstein. Salesforce AI Evolves with the Generative AI Landscape. To explore how AI operates within the Salesforce ecosystem and how various business teams can leverage these innovations, this guide delves into Salesforce’s AI capabilities, products, and features. Salesforce AI: Transforming CRM Capabilities Salesforce remains a top choice in the CRM software market, offering one of the most comprehensive solutions for managing relationships across departments, industries, and initiatives. Through dedicated cloud platforms, Salesforce enables teams to oversee marketing, sales, customer service, e-commerce, and more, with tools focused on delivering enhanced customer experiences supported by powerful data analytics. With the introduction of generative AI, Salesforce has significantly elevated its native automation, workflow management, data analytics, and assistive capabilities for customer lifecycle management. Einstein Copilot exemplifies this innovation, aiding internal users with tasks such as outreach, analysis, and improving external user experiences. What is Salesforce Einstein? Salesforce Einstein is an AI-driven suite of tools integrated natively into various Salesforce Cloud applications, including Sales Cloud, Marketing Cloud, Service Cloud, and Commerce Cloud. It also operates through assistive technologies like Einstein Copilot. Einstein is built on a multitenant platform and incorporates numerous automated machine learning features to unify organizational data with CRM capabilities. Designed to make intelligent, data-driven decisions, Einstein requires no additional installation, offering a seamless user experience when paired with a compatible subscription plan. 7 Key Features of Salesforce Einstein 7 Applications of Salesforce Einstein Future Trends in Salesforce AI Bottom Line: Salesforce AI Evolves with the Generative AI Landscape Salesforce continues to enhance its AI-powered features, keeping pace with advancements in generative and predictive AI. Whether new to the platform or a seasoned user, Salesforce offers innovative, AI-centric solutions to streamline customer relationship management and business operations. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
How to Achieve AI Democratization

How to Achieve AI Democratization

AI democratization empowers non-experts by placing AI tools in the hands of everyday users, enabling them to harness the technology’s potential without requiring specialized technical skills. Today, IT leaders are increasingly focused on expanding AI’s benefits across the enterprise. The growing number of AI-based tools is making this more achievable. In some respects, democratization extends the concept of low- and no-code development—allowing non-developers to create software—into the realm of AI. However, it’s also about ensuring data is accessible and fostering data literacy throughout the organization. This doesn’t mean every employee needs to write machine learning scripts. Instead, it means business professionals should understand AI’s potential, identify relevant use cases, and apply insights to drive business outcomes. Achieving AI democratization is feasible, thanks to decentralized governance models and the emergence of AI-focused services. However, as with any new technology, democratization brings both benefits and challenges. How to Achieve AI Democratization AI is no longer reserved for experts. Tools like Google Colab and Microsoft’s Azure OpenAI Service have simplified AI development, enabling more employees to participate by writing and sharing code for various projects. To maximize the impact, enterprises must train business users on the basics of AI and how it can enhance their daily work. According to Arpit Mehra, Practice Director at Everest Group, decentralized governance models can help organizations build strategies for data and technology learning. Key strategies include: Arun Chandrasekaran, VP and Analyst at Gartner, also advises companies to focus on intelligent applications in areas such as customer engagement and talent acquisition, which can provide specialized training. Benefits and Challenges of AI Democratization AI democratization can significantly expand an organization’s capabilities. By placing AI in the hands of more employees, businesses reduce barriers to adoption, cut costs, and create highly accurate AI models. “Making AI more accessible broadens the scope of what businesses can achieve,” said Michael Shehab, PwC U.S. Technology and Innovation Leader. AI democratization also helps companies address IT talent shortages by upskilling employees and enabling them to integrate AI into their workflows. This approach improves productivity, allowing businesses to more easily spot trends and patterns within large data sets. However, challenges also arise. If AI is implemented without proper oversight, the technology is susceptible to bias. Poor training could lead to decision-making based on inaccurate or skewed data. Business leaders must ensure they understand who is using AI tools and establish standards for responsible use. Without careful testing, AI applications can automate mistakes that go unnoticed but may cause significant issues. Ed Murphy, SVP and Head of Data Science at 1010data, emphasizes the importance of testing to prevent these errors. To mitigate risks, organizations should invest in upskilling and reskilling employees. A well-defined training plan will enable nontechnical teams to participate in AI adoption and deployment effectively. Mehra from Everest Group also suggests exploring MLOps technologies to simplify AI development and streamline processes. Ultimately, AI democratization will benefit businesses that recognize AI’s potential beyond a small group of experts. While the benefits are clear, organizations must remain vigilant about the risks to ensure successful AI integration and reap the rewards of their efforts. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com