Technology Archives - gettectonic.com - Page 9
Gen AI to Predict and Automate Discharge

Gen AI to Predict and Automate Discharge

While electronic health records (EHRs) have improved data exchange for care coordination, they have also increased the clinical documentation burden on healthcare providers. Research from 2023 suggests that clinicians may now spend more time on EHRs than on direct patient care. On average, providers spend over 36 minutes on EHR tasks for every 30-minute patient visit. Generative AI, however, holds the potential to transform this. As defined by the Government Accountability Office, generative AI (GenAI) is a technology that can create content—such as text, images, audio, or video—based on user prompts. With the rise of chatbot interfaces like Chat-GPT, health IT vendors and healthcare systems are piloting GenAI tools to streamline clinical documentation. While the technology shows promise in reducing the documentation burden and mitigating clinician burnout, several challenges still hinder widespread adoption. Ambient Clinical Intelligence Ambient clinical intelligence leverages smartphone microphones and GenAI to transcribe patient encounters in real time, producing draft clinical documentation for providers to review within seconds. A 2024 study examined the use of ambient AI scribes by 10,000 physicians and staff at The Permanente Medical Group. The results were promising—providers reported better patient conversations and less after-hours EHR documentation. However, accuracy is critical for patient safety. A 2023 study found that ambient AI tools struggle with non-lexical conversational sounds (NLCSes)—like “mm-hm” and “uh-uh”—which patients and providers use to convey information. For instance, a patient might say “Mm-hm” to confirm they have no allergies to antibiotics. The study found that while the AI tools had a word error rate of 12% for all words, the error rate for NLCSes conveying clinically relevant information was as high as 98.7%. These inaccuracies could lead to patient safety risks, highlighting the importance of provider review. Patient Communication Patient portal messaging has surged since the COVID-19 pandemic, with a 2023 report showing a 157% increase in messages compared to pre-pandemic levels. To manage inbox overload, healthcare systems are exploring generative AI for drafting responses to patient messages. Clinicians review and edit these drafts before sending them to patients. A 2024 study found that primary care physicians rated AI-generated responses higher in communication style and empathy than those written by providers. However, the AI-generated responses were often longer and more complex, posing challenges for patients with lower health or English literacy. There are also potential risks to clinical decision-making. A 2024 simulation study revealed that the content of replies to patient messages changed when physicians used AI assistance, introducing an automation bias that could impact patient outcomes. Although most AI-generated drafts posed minimal safety risks, a small portion, if left unedited, could result in severe harm or death. Although GenAI may reduce the cognitive load of writing replies, it might not significantly decrease the overall time spent on patient communications. A recent study showed that while providers felt less emotional exhaustion when using AI to draft messages, the time spent on replying, reading, and writing messages remained unchanged from pre-pilot levels. Discharge Summaries Generative AI has also been shown to improve the readability of patient discharge summaries. A study published in JAMA Network Open demonstrated that GenAI could lower the reading level of discharge notes from an eleventh-grade to a sixth-grade level, which is more appropriate for diverse health literacy levels. However, accuracy is still a concern. Physician reviews of these AI-generated summaries found that while some were complete, others contained omissions and inaccuracies that raised safety concerns. Balancing AI’s Benefits with Oversight While generative AI shows promise in alleviating the documentation burden and improving patient communication, challenges remain. Issues such as accurately capturing non-verbal cues and ensuring document accuracy underscore the need for careful provider oversight. As AI technologies continue to evolve, ensuring that the benefits are balanced with provider review will be crucial for safe and effective healthcare implementation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Smartsheet and AWS Collaborate

Smartsheet and AWS Collaborate

Smartsheet and AWS Collaborate to Enhance AI-Driven Decision-Making with New Amazon Q Business Connector October 8, 2024 — During its annual ENGAGE customer conference, Smartsheet (NYSE: SMAR), the enterprise work management platform, announced a partnership with AWS to introduce a new connector that integrates Smartsheet data with Amazon Q Business. This generative AI-powered assistant can answer questions, provide summaries, generate content, and securely complete tasks using data from customers’ enterprise systems. This integration will allow Amazon Q Business users to access insights about their projects and processes managed in Smartsheet, facilitating a cohesive search experience that empowers employees to make informed, data-driven decisions. Smartsheet and AWS Collaborate. As organizations increasingly recognize the importance of data-driven decisions, data silos remain a major hurdle. Research from Salesforce in 2024 indicates that only about 28% of business applications are interconnected. The new connector aims to address this issue by securely merging Smartsheet data with other sources integrated into Amazon Q Business, such as Salesforce, Slack, Microsoft Teams, and AWS. This will benefit over 13 million Smartsheet users globally, including around 85% of the 2024 Fortune 500 companies, allowing them to access their work management data, including sheets, conversations, and files, through AWS’s generative AI-powered assistant. This integration enhances decision-making, productivity, and efficiency. Smartsheet and AWS Collaborate “The Smartsheet connector furthers our strategy to securely integrate Smartsheet with leading enterprise AI tools, allowing customers to work seamlessly across their business applications,” said Ben Canning, SVP of Product Experiences at Smartsheet. “By combining our flexible data model with Amazon Q Business, we’re unlocking access to work management data for our mutual customers, enabling them to focus on achieving business outcomes without worrying about data storage.” For instance, service operations managers can utilize the new connector to manage complex projects more effectively. By posing specific questions to the Amazon Q Business assistant, teams can gain insights from various data sources, including sheets, conversations, and attachments in Smartsheet. The AI assistant conducts thorough searches while respecting access permissions, saving time and enhancing project oversight. This streamlined approach improves client retention, accuracy, and overall service quality. “Generative AI presents a unique opportunity for organizations to transform their internal workflows. The key is securely accessing their own data, regardless of its location or format,” stated Dilip Kumar, Vice President of Amazon Q Business at AWS. “Many enterprises use Smartsheet as their primary collaboration hub, storing billions of rows of data. Allowing Amazon Q Business users to interact with their Smartsheet data in a simple, secure manner boosts productivity, analysis, and decision-making.” “Generative AI is driving a significant shift in how enterprise knowledge is stored, accessed, and utilized,” noted Dion Hinchcliffe, VP of the CIO Practice at The Futurum Group. “This transition offers a chance to redefine what’s possible in data management. A strategic, informed approach to adopting this technology is crucial. By integrating work management data into Amazon Q Business, Smartsheet and AWS are creating a unified AI search experience across their knowledge base, unlocking the true potential of their data.” Empowering Teams to Achieve More with Generative AI Smartsheet is collaborating with industry leaders like AWS to develop AI capabilities that help enterprises manage their critical tasks more strategically and efficiently. Earlier this year, Smartsheet implemented Amazon Q Business internally to enhance knowledge management and boost employee productivity in the cloud. The Smartsheet connector exemplifies how both organizations are delivering powerful AI tools that revolutionize team workflows. Smartsheet continues to integrate generative AI throughout its platform, designed with practicality, transparency, and customer needs in mind. Smartsheet’s AI tools enable organizations to swiftly extract insights from data, create automated processes, generate text and summaries, and accomplish more with the AI assistant. Through the end of December, Smartsheet is offering its entire suite of AI tools to all customers, allowing everyone to leverage AI’s capabilities within the platform. The Smartsheet connector is currently available to Amazon Q Business customers in public preview. About Smartsheet Smartsheet is a modern enterprise work management platform trusted by millions globally, including approximately 85% of the 2024 Fortune 500 companies. As a pioneering leader in its category, Smartsheet delivers powerful solutions that drive performance and foster innovation. Visit www.smartsheet.com for more information. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Marketing Cloud and Commerce Cloud Innovations

Marketing Cloud and Commerce Cloud Innovations

What Our Dreamforce Marketing Cloud and Commerce Cloud Innovations Mean for You This year’s Dreamforce was nothing short of amazing. It was exciting to reconnect with fellow Trailblazers, exchange brilliant ideas, and showcase the innovations we’ve been crafting at Salesforce. A recurring theme throughout the event was how businesses can leverage data and AI to forge deeper customer-driven relationships by bringing internal teams closer together. These innovations are designed to transform not only how companies engage with customers but also how their teams work together. Marketing Cloud and Commerce Cloud Innovations. Seamless integration between Marketing, Commerce, Sales, and Service teams is crucial for creating unified customer experiences. Often, customers feel as though they are interacting with separate departments rather than one cohesive company—this is largely due to disconnected technology and processes. But thanks to Salesforce’s advancements in unified data, AI, and automation, those days are numbered. Now, departments can collaborate more effectively, delivering hyper-personalized, frictionless experiences across the entire customer lifecycle. Let’s explore the latest Marketing Cloud and Commerce Cloud innovations announced at Dreamforce 2024 and how they can benefit your business. What You’ll Learn Salesforce Marketing Cloud Innovations These four innovations in Marketing Cloud are built on the Salesforce Platform and powered by Data Cloud, offering marketers a seamless view of customer data across the business. This foundation makes it easier to deliver unified customer experiences, improve handoffs between teams, and measure success more effectively. 1. Agentforce Embedded in Marketing Workflows Agentforce for Marketing combines generative and predictive AI to create an end-to-end campaign experience that marketers can launch and optimize with ease. Here’s how it helps: Example: A marketer looking to prevent customer churn can launch a re-engagement campaign. Agentforce will identify the right audience, craft personalized messages, and optimize delivery based on customer behavior. 2. Empowering Small and Medium Businesses The new Marketing Cloud Advanced Edition brings enhanced AI and automation capabilities to SMBs, enabling them to scale personalization and improve productivity: 3. Automating Data Preparation and Analytics with Einstein Marketing Intelligence (EMI) EMI uses AI and Data Cloud to automate the ingestion, transformation, and analysis of marketing data: 4. Einstein Personalization for 1:1 Experiences Einstein Personalization uses AI to recommend products, content, or services based on individual customer preferences: Example: A service agent could offer a discount on a product a customer was recently viewing, creating a seamless, personalized experience. Salesforce Commerce Cloud Innovations As businesses scale and handle increasing amounts of data, managing complex commerce systems can be a challenge. The new Commerce Cloud updates simplify these complexities by extending unified commerce capabilities across the organization. 1. Simplifying Cross-Functional Commerce Tasks By unifying data from across the business, Commerce Cloud enables better cross-functional collaboration: 2. AI-Powered Commerce Agents with Agentforce Commerce Cloud introduces three AI-powered agents to streamline business processes: 3. Streamlining Checkout for a Faster, Easier Experience With new express payment options like Link by Stripe and Amazon Pay, Commerce Cloud Checkout speeds up transactions and improves conversion rates by 14%. Plus, Buy with Prime integration allows shoppers to use their Amazon Prime accounts for a faster checkout experience, complete with trusted delivery and hassle-free returns. The Future of Unified Commerce Salesforce Commerce Cloud offers a unified platform that brings together sales, service, and marketing, providing a 360-degree view of the entire customer journey. This unified commerce approach enables businesses to deliver seamless B2B and B2C experiences, all powered by a single platform. By integrating enterprise-wide data, trusted AI, and automated workflows, Salesforce helps businesses scale personalized, intelligent experiences across every touchpoint. Every interaction becomes an opportunity for growth, setting the standard for success in today’s customer-driven world. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce LlamaRank

Salesforce LlamaRank

Document ranking remains a critical challenge in information retrieval and natural language processing. Effective document retrieval and ranking are crucial for enhancing the performance of search engines, question-answering systems, and Retrieval-Augmented Generation (RAG) systems. Traditional ranking models often struggle to balance result precision with computational efficiency, especially when dealing with large datasets and diverse query types. This challenge underscores the growing need for advanced models that can provide accurate, contextually relevant results in real-time from continuous data streams and increasingly complex queries. Salesforce AI Research has introduced a cutting-edge reranker named LlamaRank, designed to significantly enhance document ranking and code search tasks across various datasets. Built on the Llama3-8B-Instruct architecture, LlamaRank integrates advanced linear and calibrated scoring mechanisms, achieving both speed and interpretability. The Salesforce AI Research team developed LlamaRank as a specialized tool for document relevancy ranking. Enhanced by iterative feedback from their dedicated RLHF data annotation team, LlamaRank outperforms many leading APIs in general document ranking and sets a new standard for code search performance. The model’s training data includes high-quality synthesized data from Llama3-70B and Llama3-405B, along with human-labeled annotations, covering a broad range of domains from topic-based search and document QA to code QA. In RAG systems, LlamaRank plays a crucial role. Initially, a query is processed using a less precise but cost-effective method, such as semantic search with embeddings, to generate a list of potential documents. The reranker then refines this list to identify the most relevant documents, ensuring that the language model is fine-tuned with only the most pertinent information, thereby improving accuracy and coherence in the output responses. LlamaRank’s architecture, based on Llama3-8B-Instruct, leverages a diverse training corpus of synthetic and human-labeled data. This extensive dataset enables LlamaRank to excel in various tasks, from general document retrieval to specialized code searches. The model underwent multiple feedback cycles from Salesforce’s data annotation team to achieve optimal accuracy and relevance in its scoring predictions. During inference, LlamaRank predicts token probabilities and calculates a numeric relevance score, facilitating efficient reranking. Demonstrated on several public datasets, LlamaRank has shown impressive performance. For instance, on the SQuAD dataset for question answering, LlamaRank achieved a hit rate of 99.3%. It posted a hit rate of 92.0% on the TriviaQA dataset. In code search benchmarks, LlamaRank recorded a hit rate of 81.8% on the Neural Code Search dataset and 98.6% on the TrailheadQA dataset. These results highlight LlamaRank’s versatility and efficiency across various document types and query scenarios. LlamaRank’s technical specifications further emphasize its advantages. Supporting up to 8,000 tokens per document, it significantly outperforms competitors like Cohere’s reranker. It delivers low-latency performance, ranking 64 documents in under 200 ms with a single H100 GPU, compared to approximately 3.13 seconds on Cohere’s serverless API. Additionally, LlamaRank features linear scoring calibration, offering clear and interpretable relevance scores. While LlamaRank’s size of 8 billion parameters contributes to its high performance, it is approaching the upper limits of reranking model size. Future research may focus on optimizing model size to balance quality and efficiency. Overall, LlamaRank from Salesforce AI Research marks a significant advancement in reranking technology, promising to greatly enhance RAG systems’ effectiveness across a wide range of applications. With its powerful performance, efficiency, and clear scoring, LlamaRank represents a major step forward in document retrieval and search accuracy. The community eagerly anticipates its broader adoption and further development. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI All Grown Up

AI All Grown Up

If you thought Salesforce had fully embraced AI, think again. The company has much more in store. AI All Grown Up and Salesforce is the educator! Alongside the announcement of the new Agentforce platform, Salesforce has teased plans to offer free premium instructor-led courses and AI certifications throughout 2025, reflecting a bold commitment to fostering AI skills and expertise. We’ve talked quite a bit over the last year about the need for AI education, and lo and behold here comes Salesforce to the rescue! AI All Grown Up Ah, they grow up so fast. Once just a baby cradeled in our arms with endless possibilities and potential. It was just like a year or so ago we heard of ChatGPT. Prior to that most people’s main exposure to artificial intelligence was their smart phones, which today we realize weren’t reall that smart. Generative, predictive and agentic AI have barreled down the pipeline increasing our vocabulary, and understanding, of what artificial intelligence can do. From generative content to sounds and images, AI continued to amaze us. Then predictive AI did our calculations faster than we could have imagined. Then agentic AI did nearly everything imaginable. AI All Grown Up. Like a very proud mentor of the process, I want to talk about Salesforce’s major contribution. Addressing the AI Skills Gap: Salesforce’s $50 Million Investment As the veritable plethora of AI tools rapidly expands, Salesforce is taking proactive steps to address the growing AI skills gap by investing $50 million into workforce upskilling initiatives. The company aims to ensure that businesses and individuals are prepared to utilize their new wave of AI tools effectively. While the full details have yet to be released, Salesforce has revealed that its premium AI courses and certifications will be made available for free via Trailhead by the end of 2025. This could mean certifications such as AI Associate and AI Specialist, which currently cost $75 and $200 respectively, may soon be offered at no cost. Gratis. Free, Salesforce has also mentioned “premium instructor-led training,” sparking speculation that AI-focused, instructor-led Trailhead Academy courses could become accessible to everyone in the Salesforce ecosystem. Expanding AI Education with Global AI Centers Salesforce’s AI upskilling push is part of a broader initiative to establish “AI Centers” across the globe. Following the opening of its first center in London in June, Salesforce is planning to launch additional AI hubs in cities like Chicago, Tokyo, Sydney, and even a pop-up center in San Francisco. These centers will host in-person premium courses and serve as gathering spaces for industry experts, partners, and customers. This initiative benefits not only the Salesforce ecosystem by increasing AI knowledge where expertise is scarce, but also aligns with Salesforce’s strategy of bringing AI-driven solutions to market through new products like Copilot Studio, Data Cloud, and the newly launched Agentforce platform. Agentforce: Salesforce’s Third Wave of AI On August 28, 2024, Salesforce introduced Agentforce, a suite of autonomous AI agents that marks a significant leap in how businesses engage with customers. Described as the “Third Wave of AI,” Agentforce goes beyond traditional chatbots, providing intelligent agents capable of driving customer success with minimal human intervention. What is Agentforce? Agentforce is a comprehensive platform designed for organizations to build, customize, and deploy autonomous AI agents across various business functions, such as customer service, sales, marketing, and commerce. These agents operate independently, accessing data, crafting action plans, and executing tasks without needing constant human oversight. It is like Artificial Intelligence just graduated highschool and is off to a world of new adventures and growth opportunities at college or university! Key Features of Agentforce: The Technology Behind Agentforce At the core of Agentforce is the Atlas Reasoning Engine, a system designed to mimic human reasoning. Here’s how it works: Customization Tools: Agent Builder Agentforce provides tools like Agent Builder, a low-code platform for customizing out-of-the-box agents or creating new ones for specific business needs. With this tool, users can: The Agentforce Partner Network Salesforce’s partner ecosystem plays a key role in Agentforce’s versatility, with contributions from companies like AWS, Google, IBM, and Workday. Together, they’ve developed over 20 agent actions available through the Salesforce AppExchange. As proud parents we watch our Artificial Intelligence child venture into the world making friends along the way. Learning social skills. Benefits and Impact of Agentforce Early Adopters and Success Stories Several companies are already benefiting from Agentforce: Availability and Pricing of Salesforce’s AI All Grown Up Agentforce for Service and Sales will be generally available on October 25, 2024, with some components of the Atlas Reasoning Engine launching in February 2025. Pricing starts at $2 per conversation, with volume discounts available. The Future of AI and Work Salesforce’s ambitious vision is to empower one billion AI agents with Agentforce by the end of 2025. This reflects their belief that the future of work will involve a hybrid workforce, where humans and AI agents collaborate to drive customer success. AI All Grown Up and We Couldn’t Be Prouder Our amazing AI child has graduated college and ventured out into the workforce. Agentforce vs. Einstein Bots: What’s the Difference? Conclusion Agentforce represents a major leap forward in AI-powered customer engagement. By providing autonomous, intelligent agents capable of managing complex tasks, Salesforce is positioning itself at the forefront of AI innovation. As businesses continue to explore ways to improve efficiency and customer satisfaction, Agentforce could redefine how organizations interact with customers and streamline their operations. If this is the Third Wave of AI, what will the fourth wave bring? Written by Tectonic’s Solutions Architect, Shannan Hearne Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business

Read More
Generative AI and Patient Engagement

Generative AI and Patient Engagement

The healthcare industry is undergoing a significant digital transformation, with generative AI and chatbots playing a prominent role in various patient engagement applications. Technologies such as online symptom checkers, appointment scheduling, patient navigation tools, medical search engines, and patient portal messaging are prime examples of how AI is enhancing patient-facing interactions. These advancements aim to alleviate staff workload while improving the overall patient experience, according to industry experts. However, even these patient-centric applications face challenges, such as the risk of generating medical misinformation or biased outcomes. As healthcare professionals explore the potential of generative AI and chatbots, they must also implement safeguards to prevent the spread of false information and mitigate disparities in care. Online Symptom Checkers Online symptom checkers allow patients to input their symptoms and receive a list of potential diagnoses, helping them decide the appropriate level of care, whether it’s urgent care or self-care at home. These tools hold promise for improving patient experiences and operational efficiency, reducing unnecessary healthcare visits. For healthcare providers, they help triage patients, ensuring those who need critical care receive it. However, the effectiveness of online symptom checkers is mixed. A 2022 literature review revealed that diagnostic accuracy ranged between 19% and 37.9%, while triage accuracy was higher, between 48.9% and 90%. Patient reception to these tools has been lukewarm as well, with some expressing dissatisfaction with the COVID-19 symptom checkers during the pandemic, mainly when the tools did not emulate human interaction. Moreover, studies have indicated that these tools might exacerbate health inequities, as users tend to be younger, female, and more digitally literate. To mitigate this, developers must ensure that chatbots can communicate in multiple languages, replicate human interactions, and escalate to human providers when needed. Self-Scheduling and Patient Navigation Generative AI and conversational AI have shown promise in addressing lower-level patient inquiries, such as appointment scheduling and navigation, reducing the strain on healthcare staff. AI-driven scheduling systems help fill gaps in navigation by assisting patients with appointment bookings and answering logistical questions, like parking or directions. A December 2023 review noted that AI-optimized patient scheduling reduces provider time burdens and improves patient satisfaction. However, barriers such as health equity, access to broadband, and patient trust must be addressed to ensure effective implementation. While organizations need to ensure these systems are accessible to all, AI is a valuable tool for managing routine patient requests, freeing staff to focus on more complex issues. Online Medical Research AI tools like ChatGPT are expanding on the “Dr. Google” phenomenon, offering patients a way to search for medical information. Despite initial concerns from clinicians about online medical searches, recent studies show that generative AI tools can provide accurate and understandable information. For instance, ChatGPT accurately answered breast cancer screening questions 88% of the time in one 2023 study and offered adequate colonoscopy preparation information in another. However, patients remain cautious about AI-generated medical advice. A 2023 survey revealed that nearly half of respondents were concerned about potential misinformation, and many were unsure about the sources AI tools use. Addressing these concerns by validating source material and providing supplementary educational resources will be crucial for building patient trust. Patient Portal Messaging and Provider Communication Generative AI is also finding its place in patient portal messaging, where it can generate responses to patient inquiries, helping to alleviate clinician burnout. In a 2024 study, AI-generated responses within a patient portal were often indistinguishable from those written by clinicians, requiring human editing in only 58% of cases. While chatbot-generated messages have been found to be more empathetic than those written by overworked providers, it’s important to ensure AI-generated responses are always reviewed by healthcare professionals to catch any potential errors. In addition to patient engagement, generative AI is being used in clinical decision support and ambient documentation, showcasing its potential to improve healthcare efficiency. However, developers and healthcare organizations must remain vigilant about preventing algorithmic bias and other AI-related risks. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Natural Language Processing Explained

Natural Language Processing Explained

What is Natural Language Processing (NLP)? Natural Language Processing (NLP) is a branch of artificial intelligence (AI) that enables computers to interpret, analyze, and generate human language. By leveraging machine learning, computational linguistics, and deep learning, NLP helps machines understand written and spoken words, making communication between humans and computers more seamless. I apologize folks. I am feeling like the unicorn who missed the Ark. Tectonic has been providing you with tons of great material on artificial intelligence, but we left out a basic building block. Without further ado, Natural Language Processing Explained. Like a lot of components of AI, we often are using it without knowing we are using it. NLP is widely used in everyday applications such as: How Does NLP Work? Natural Language Processing combines several techniques, including computational linguistics, machine learning, and deep learning. It works by breaking down language into smaller components, analyzing these components, and then drawing conclusions based on patterns. If you have ever read a first grader’s reading primer it is the same thing. Learn a little three letter word. Recognize the meaning of the word. Understand it in the greater context of the sentence. Key NLP preprocessing steps include: Why Is NLP Important? NLP plays a vital role in automating and improving human-computer interactions by enabling systems to interpret, process, and respond to vast amounts of textual and spoken data. By automating tasks like sentiment analysis, content classification, and question answering, NLP boosts efficiency and accuracy across industries. For example: Key Use Cases of NLP in Business NLP Tasks NLP enables machines to handle various language tasks, including: Approaches to NLP Future of NLP NLP is becoming more integral in daily life as technology improves. From customer service chatbots to medical record summarization, NLP continues to evolve, but challenges remain, including improving coherence and reducing biases in machine-generated text. Essentially, NLP transforms the way machines and humans interact, making technology more intuitive and accessible across a range of industries. By Tectonic Solutions Architect – Shannan Hearne Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Real-World AI

Real-World AI

Nearly two years after the widespread adoption of generative AI with the launch of ChatGPT, the technology is shifting from experimental phases to real-world implementation. A recent survey by TechTarget’s Enterprise Strategy Group highlights this growing trend, revealing that generative AI adoption has significantly increased over the past year. The firm surveyed 832 professionals globally and found that the use of generative AI is expanding across sectors like software development, research, IT operations, and customer service. “We’re in the acceleration phase,” noted Mark Beccue, an analyst at Enterprise Strategy Group and author of the survey, during an appearance on the Targeting AI podcast. According to the survey, there is no singular use case driving the adoption of generative AI. Instead, organizations are exploring multiple applications while facing challenges, such as the need for enhanced infrastructure. “Organizations feel infrastructure changes are necessary before fully proceeding with generative AI,” Beccue said. This may involve investing in enterprise-level platforms or new development tools, all aimed at facilitating AI application development. Additionally, there’s no clear consensus on which AI models—open or closed source—best suit organizational needs. “It’s likely a combination of both,” Beccue explained. “Companies are realizing no one model meets all their needs, so they’re evaluating what works best in specific scenarios.” Companies that have seen early success with generative AI are those that invested in AI technologies well before ChatGPT made waves. Beccue pointed to companies like Adobe, ServiceNow, and Zoom, which had already been leveraging machine learning, natural language understanding, and process automation for years. “They recognized the potential for AI to enhance their operations and were well-prepared when generative AI gained mainstream attention,” Beccue added. How can Tectonic help you AI? Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Ethical AI Implementation

Ethical AI Implementation

AI technologies are rapidly evolving, becoming a practical solution to support essential business operations. However, creating true business value from AI requires a well-balanced approach that considers people, processes, and technology. Ethical AI Implementation. AI encompasses various forms, including machine learning, deep learning, predictive analytics, natural language processing, computer vision, and automation. To leverage AI’s competitive advantages, companies need a strong foundation and a realistic strategy aligned with their business goals. “Artificial intelligence is multifaceted,” said John Carey, managing director at AArete, a business management consultancy. “There’s often hype and, at times, exaggeration about how ‘intelligent’ AI truly is.” Business Advantages of AI Adoption Recent advancements in generative AI, such as ChatGPT and Dall-E, have showcased AI’s significant impact on businesses. According to a McKinsey Global Survey, global AI adoption surged from around 50% over the past six years to 72% in 2024. Some key benefits of adopting AI include: Prerequisites for AI Implementation Successfully implementing AI can be complex. A detailed understanding of the following prerequisites is crucial for achieving positive results: 13 Steps for Successful AI Implementation Common AI Implementation Mistakes Organizations often stumble by: Key Challenges in Ethical AI Implementation Human-related challenges often present the biggest hurdles. To overcome them, organizations must foster data literacy and build trust among stakeholders. Additionally, challenges around data management, model governance, system integration, and intellectual property need to be addressed. Ensuring Ethical AI Implementation To ensure responsible AI use, companies should: Ethical AI implementation requires a continuous commitment to transparency, fairness, and inclusivity across all levels of the organization. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Agentforce Autonomous Agents

Agentforce: Transforming Business Operations with Autonomous Agents Agentforce empowers organizations to create and manage autonomous agents that streamline tasks across various business departments. These include Sales Agents, Service Agents, Marketing Agents, Commerce Agents, and Platform Agents—truly delivering on the vision of “an Agentforce in every app.” But how does Agentforce work, and what are the building blocks for configuring these agents? Salesforce emphasizes that Agentforce is built with clicks, not code, making it highly accessible to users. This claim was validated by many attendees at the ‘Agentforce Launchpad’ during Dreamforce, who noted that the tool is as declarative and user-friendly as Salesforce promised. The Building Blocks of Agentforce 1. Agent Builder The journey begins with the Agent Builder within Agentforce Studio. This configuration tool allows users to define their agent’s attributes, such as the avatar, name, and description, using natural language inputs—essentially describing the agent in conversational terms. Salesforce describes it as: “If you can dream it, Agentforce can do it.” The Agent Builder interface comprises: Salesforce also provides out-of-the-box agents, such as Sales Agents, which can be enabled via guided setup. 2. Agent Topics Topics are the foundational building blocks that determine an agent’s scope of work. For example, a topic like “Order Management” grants the agent access to data such as order histories and product specifications. In the Dreamforce keynote, Saks’ service agent demonstrated the importance of topics by resolving customer queries tied to its assigned topics. However, queries outside the defined topics were flagged as “guardrails,” ensuring the agent stayed within its designated scope. 3. Topic Actions Actions, tied to topics, define what an agent can do. These actions are often flows, such as querying a CRM database or triggering automated processes. Users can assign existing actions or create new ones by referencing Apex, Flow, prompts, or MuleSoft APIs. For example, integrating external data sources requires defining a new Agentforce action tied to a MuleSoft API. This allows the agent to query data just as human users would. Testing Agents with the Atlas Reasoning Engine Agentforce’s Atlas Reasoning Engine powers agents with advanced capabilities. Users can test agents within the Agent Builder interface, following the reasoning process step-by-step: Once configured, agents are ready to operate across their assigned communication channels (e.g., email, WhatsApp, voice). Omni Supervisor: Real-Time Agent Monitoring Omni Supervisor, originally a Service Cloud feature, now extends to monitoring agents. It provides insights into overall trends, allows real-time oversight of interactions, and even enables listening to recent conversations. The Role of Data Cloud in Agentforce Data powers Agentforce, enabling agents to provide highly contextual responses. The Data Cloud processes both structured data (e.g., Salesforce records) and unstructured data (e.g., emails, voice memos) using its Vector Database for advanced processing. 1. Retrieval Augmented Generation (RAG) Salesforce employs RAG to enhance the accuracy of agent responses. RAG integrates the Atlas Reasoning Engine with Data Cloud, creating a feedback loop. Data Cloud enriches user prompts by retrieving relevant data, making agent responses more contextual and informed. 2. New Data Streams To enhance Agentforce capabilities, data can be ingested into the platform in three ways: For instance, connecting an order management system like Snowflake is streamlined via Salesforce’s prebuilt connectors. 3. Data Graphs Data Graphs visualize relationships between Data Model Objects (DMOs), enabling users to ensure all necessary data is available for optimal agent performance. Real-time Data Graphs enhance identity resolution, segmentation, and action execution for seamless data flow. Inside Prompt Builder Prompt Builder allows users to create or refine prompts that power Agentforce actions. Low-code tools guide users through the process, offering features such as previewing results and assessing feedback toxicity ratings. Search Index in RAG The Search Index is a critical component of RAG. It retrieves relevant data from Data Cloud to enhance agent reasoning. Search parameters can be configured in three ways: Tectonic’s Thoughts Agentforce, powered by Data Cloud and advanced AI tools like the Atlas Reasoning Engine, represents a new era of automation and efficiency for businesses. Whether through Sales, Service, or Marketing Agents, organizations can leverage this technology to streamline operations, personalize customer experiences, and achieve better outcomes. With over 5,200 customers implementing Agentforce in their sandboxes within the first two days of Dreamforce, the platform is already proving its transformative potential. By 2025 over a billion agents had been created! Agentforce isn’t just about improving efficiency; it’s about redefining what’s possible for business operations. Content updated January 2025. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Generative AI for Match Commentary

Generative AI for Match Commentary

SAN FRANCISCO (KGO) — Companies are exploring the use of artificial intelligence for sports commentary, showcasing one of the many innovative applications of this technology in the sports arena. ABC7 reporter J.R. Stone recently got a firsthand look at IBM’s integration of Generative AI to analyze and enhance playing abilities during a demonstration at Dreamforce 2024 in San Francisco. This same technology has also been implemented at prestigious events like Wimbledon and the US Open. “This year marks the introduction of Generative AI for match commentary, which utilizes data collected during the games to create real-time analysis and match summaries,” explained Nick Otto from IBM. In a related segment, Salesforce CEO Marc Benioff revealed a new AI system called “Agent Force,” while Senator Scott Wiener introduced a bill focused on AI safety. The AI tracks various metrics, including average ball and swing speeds, as well as performance on forehand and backhand shots. To put the technology to the test, Stone faced off against Otto in a ping-pong match, where Otto emerged victorious with a score of 11-7. After the match, the AI generated an entertaining summary: “Nick’s arm must have felt like a whirlwind, spinning the ball at an average speed of 8.45 mph. J.R. tried to keep up, but his 30 forehand shots and 5.56 mph swing speed were no match.” While the advancements in AI are exciting, UCLA Professor Ramesh Srinivasan emphasizes the need for caution. “This technology is both incredible and concerning because it raises questions about the future of human journalists and commentators,” he noted. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce for K-12 and Higher Education

Technology to Showcase the Value of Education

How Can Technology Convince Students of the Value of Higher Education? With fewer high school graduates choosing college, technology has a unique role in reigniting students’ belief in higher education. Imagine a high school student eagerly checking the mail and finding an acceptance letter from their dream college, ready to start a journey filled with opportunities, lifelong friends, and a promising future. Just a couple of decades ago, that was a common story. Today, many high schoolers aren’t looking for acceptance letters at all, uncertain if college is the best or even most practical path to success. Higher education now faces a new challenge: proving its worth to students who are increasingly weighing their options. Universities no longer simply wait for students to apply—they need to actively demonstrate that the investment will pay off. Enrollment Data Signals a Shift Away from College Once seen as a distinctive achievement, college attendance has become less of a given. In 1980, only 49% of high school graduates went on to higher education. By 2009, that number had surged to over 70%, but has since declined; by 2022, just 62% of graduates were heading straight to college. Now, with the “enrollment cliff”—a projected decrease in college-aged students due to lower birth rates—looming, colleges face intense competition to attract students. Personalization Is Key to Connecting with Students The days of “Dear applicant” are over. Today’s digital-native students want a personalized approach that speaks directly to them. If they don’t feel personally addressed through email, text, video, or even traditional mail, they may tune out and explore other options. Universities must build meaningful connections to engage students and keep their attention through every stage of the student journey. Student lifecycle management platforms, like Salesforce’s Education Cloud, have become essential tools for higher education institutions. By tracking and analyzing a student’s data—academic performance, extracurricular interests, and social behaviors—these platforms create personalized experiences that engage students from admission to graduation. Salesforce Education Cloud, for example, uses AI and robust data analytics to create a comprehensive student profile, enabling colleges to send tailored communications, schedule regular check-ins, and even reach out to parents. This personalized approach fosters a sense of connection that encourages students to enroll and stay engaged throughout their academic journey. Comprehensive Lifecycle Management and Student Support Beyond admissions, student lifecycle platforms offer extensive features that address other critical areas, from helping students who are academically struggling to managing alumni relationships and fundraising. With years of experience in supporting institutions nationwide, CDW Education partners with colleges to implement these technologies, strengthening their ability to attract, engage, and retain students. In an era when students have more educational choices than ever, colleges must actively communicate the value of a college degree and make that message resonate with each individual. By investing in technology that personalizes the student experience, higher education institutions can create a compelling case for the unique value they offer. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Discharge Planning

Discharge Planning

Discharge planning is crucial for smoothly transitioning patients from hospital care to the next stage of their recovery. This process requires collaboration among patients, caregivers, and providers to create a personalized plan that ensures continuity of care after hospitalization. Effective discharge planning must consider the patient’s care needs, preferences, and concerns. When done well, it helps prevent readmissions and alleviates strain on both patients and hospitals. However, balancing clinical judgment with patient data can challenge care teams already burdened with heavy workloads. Jean Halpin, COO at Grant Medical Center, shared how the organization has integrated AI tools to predict discharge dates and automate parts of the discharge planning process, helping to streamline patient care. Challenges of Effective Discharge Planning Halpin emphasized that a streamlined discharge process is essential for reducing wait times and improving patient engagement. Yet, various factors influence how quickly patients are discharged, particularly in emergency rooms where delays can affect overall patient flow. “Most of the wait time we experience as patients boils down to a lengthy discharge process that isn’t effectively moving patients,” Halpin explained. “It’s a domino effect. Someone waiting in the ER for a bed is delayed because another patient hasn’t been discharged when they should have been.” To address these inefficiencies, Grant Medical Center implemented the Qventus Inpatient Solution. This tool integrates with electronic health records (EHRs) to analyze patient data—such as clinical notes, history, and labs—and provides recommendations on discharge timing. These insights have helped reduce ER wait times and improved patient flow. Integrating AI into Clinical Workflows Adopting AI in healthcare comes with integration challenges, particularly ensuring that tools enhance, rather than hinder, clinicians’ workflows. Halpin noted that the Qventus tool minimizes disruptions by seamlessly pulling EHR data to generate an estimated discharge date, allowing care teams to focus on patient care without extra administrative burdens. “As a patient’s health changes, the [discharge] date can fluctuate, but AI uses its data to predict the most accurate day based on similar cases,” Halpin explained. “The care teams can then review the date and determine whether they agree, without having to sift through records to develop their own recommendation.” Halpin also highlighted the value of AI in reducing the administrative load. Tasks like coordinating discharges to rehab facilities, ordering tests, and prescribing medication consume significant time, and automating these functions allows care teams to focus more on direct patient care. Embracing AI to Alleviate Healthcare Worker Burdens For healthcare systems adopting AI, accurately assessing its impact is critical. At Grant Medical Center, leadership is measuring success by evaluating employee satisfaction, patient outcomes, and administrative improvements—such as time and cost savings. “By improving our patient flow, we reduced unnecessary stays by nearly 1,400 days. Patients are happy to go home on time, and our care teams can focus on working at the top of their license,” said Halpin. Despite the benefits, Halpin stressed that implementing AI requires thoughtful onboarding to ensure staff are comfortable with the new tools. Training and support are key to making the transition seamless and enabling teams to see how AI can enhance their workflows. “Health system leaders should embrace advancements that help alleviate burdens for workers,” she said. “Once teams understand the tool, they can prioritize patient care while AI handles the time-consuming admin tasks.” Halpin concluded that embracing AI in discharge planning not only improves operational efficiency but also empowers healthcare teams to deliver better, more focused care. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Sales Incentives Can Boost Morale and Performance

Sales Incentives Can Boost Morale and Performance

Showing up to work is one thing, but bringing genuine enthusiasm to the job is another. How can you motivate your team to meet and exceed their goals? Sales incentives are a powerful tool to ignite motivation, but they aren’t one-size-fits-all. Figuring out the best structure for your team can lead to more energized, results-driven reps. In this Tectonic insight, we’ll explore different types of sales incentives, how they motivate teams, and best practices for implementing an effective incentive program that drives real results. What are Sales Incentives? Sales incentives are rewards given to sales reps, in addition to their base compensation, for exceptional performance. This often means hitting or exceeding sales targets. While financial bonuses are the most common, incentives can come in many forms, all designed to motivate specific behaviors or outcomes. Types of Sales Incentives Here are five common types of sales incentives to consider: How Sales Incentives Motivate Your Team Sales incentives help reinforce desired behaviors, offering a clear path to rewards. They provide a mutual win: your company increases sales, while reps enjoy additional rewards. Many sales professionals are naturally driven by competition, but incentives give everyone, competitive or not, something tangible to work toward. Incentives also boost employee satisfaction, reduce turnover, and show that you value hard work. This can save your organization the cost and hassle of recruiting and onboarding new talent. Sales Incentives That Actually Work While money is the most popular reward, mixing in creative incentives can add excitement to your program. Consider these options: Best Practices for Implementing Sales Incentives To create an effective sales incentive program, keep these points in mind: Measuring the Impact of Sales Incentives on Performance To assess the effectiveness of your incentive program, track key performance indicators (KPIs) such as: Sales Incentives Can Boost Morale and Performance The key to a successful sales incentive program is simplicity and transparency. By crafting a plan that’s easy to understand and aligned with your team’s motivations, you can drive better performance and improve job satisfaction at the same time. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com