- gettectonic.com - Page 73
Build a Culture of Data

Build a Culture of Data

What is a Data Culture? A Data Culture is the collective behaviors and beliefs of people who value, practice, and encourage the use of data to improve decision-making. As a result, data is woven into the operations, mindset, and identity of an organization. Why is a data culture important?  It enables more informed decision-making. With a data culture in place, decisions at all levels of the organization are based on data-driven insights rather than intuition or guesswork. This leads to more effective strategies and better outcomes. What is the difference in data culture and data strategy? Gartner defines data strategy as “a highly dynamic process employed to support the acquisition, organization, analysis, and delivery of data in support of business objectives.” In contrast, the culture around data comes together with data talent, data literacy, and data tools. Build a Culture of Data Building a data culture is crucial for companies to unlock valuable insights and make smarter, more strategic decisions. Here’s what leaders need to know to foster a data-driven environment: By following these steps and prioritizing the development of a data culture, leaders can empower their organizations to make informed decisions, drive growth, and stay ahead of the competition in today’s data-driven world. Data Maturity Understanding data maturity is crucial for organizations as it provides a framework for assessing their current state of data management and analytics capabilities. It serves as a tool to guide decision-making and prioritize initiatives aimed at advancing the organization’s data capabilities. By evaluating data maturity, organizations can identify gaps, set goals, and determine the necessary steps to progress along their data journey. Data maturity assessment typically involves evaluating various aspects of data management, including data governance, data quality, data infrastructure, analytics capabilities, and organizational culture around data. Based on the assessment, organizations can identify areas of strength and weakness and develop a roadmap for improvement. Furthermore, understanding data maturity enables organizations to track their progress over time. By periodically reassessing data maturity, organizations can measure how much they have advanced and identify areas that still require attention. This iterative process allows organizations to continuously improve their data capabilities and adapt to evolving business needs and technological advancements. In summary, understanding data maturity allows organizations to: Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Generative AI

Is Slack Secure?

Slack and AI are here. Seems Promising, but Is Slack Secure? At Slack and Salesforce, trust is paramount. When it comes to AI, security is the top concern voiced by their customers. They are dedicated to developing AI products that are safe, responsible, and ethical. Their decision-making is guided by a set of product values aimed at upholding your trust. Is slack secure? You Maintain Control Over Your Data In a landscape where some companies view customer data as a commodity, Salesforce and Slack prioritize user safety and data privacy. Their new AI features are integrated within Slack’s secure infrastructure, ensuring that your data remains under your control. They neither sell, rent, nor utilize your information for commercial purposes because they firmly believe that your trust cannot be bought. Slack does not share customer data with large language model (LLM) providers nor utilize customer data to train LLMs. Slack AI operates on Slack’s infrastructure, adhering to the same stringent security practices and compliance standards expected from Slack itself. The entire ecosystem upholds a high level of security and compliance, including features like Enterprise Key Management, which empowers customers to manage their encryption keys independently. You Can Verify Results Tectonic recognizes that trust in technology hinges on its integrity. Slack AI features are designed to be transparent, allowing you to delve into the results and independently verify them. AI should complement, not replace, human judgment, and our aim is to provide tools that empower users to make informed decisions. Explore More AI Tools in Slack Today Slack’s AI capabilities are both subtle and powerful, complemented by a growing array of third-party AI apps vetted for reliability. One such app is Claude, a conversational chatbot from Anthropic available to Slack Enterprise Grid users. Claude functions as a knowledgeable personal assistant, adept at tasks like account planning, contract reviews, and strategy generation, all while maintaining privacy. Using Claude is straightforward; simply tag @Claude in channels or group messages to initiate tasks visible to your team. Additionally, Slack offers integration with other AI-powered apps such as Box, PagerDuty, Perplexity, and Notion, enhancing collaboration and efficiency. This Is Just the Beginning As Salesforce and Slack introduce user-friendly AI tools in Slack, they’re opening doors to limitless possibilities. Starting with robust features designed to simplify and streamline work processes, they plan to unveil more intelligent features aimed at helping teams maximize their organizational impact. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce donations platform

Salesforce Donations Platform

Achieve Success Now with Salesforce for Nonprofits and the Salesforce donations platform: “The ability to use Salesforce to gain a full view and understanding of the multiple ways that people come to us – that is what ultimately spoke to how we wanted to achieve our mission” Jeffrey Klein, COO How Nonprofits Harness Salesforce for Fundraising: Success Story: Atlanta Mission’s Digital Fundraising Transformation: Atlanta Mission, with over 80 years of experience in homelessness eradication, transformed its fundraising strategy: Embracing Salesforce for Nonprofits empowers organizations to navigate challenges, engage donors effectively, and drive impactful fundraising initiatives. The result has been savings of nearly $10,000 annually. “The tech stack that we’ve implemented through Salesforce has enabled us to know our donors better and to respond relationally to their concerns, needs, and interests. As a result, since the implementation of our new systems, we’ve seen revenue growth in our digital channels of 26% year over year.” James Barrell and Bonnie Beauchamp, Atlanta Mission team members Like2 Related Posts 50 Advantages of Salesforce Sales Cloud According to the Salesforce 2017 State of Service report, 85% of executives with service oversight identify customer service as a Read more How Travel Companies Are Using Big Data and Analytics In today’s hyper-competitive business world, travel and hospitality consumers have more choices than ever before. With hundreds of hotel chains Read more Integration of Salesforce Sales Cloud to Google Analytics 360 Announced In November 2017, Google unveiled a groundbreaking partnership with Salesforce, outlining their commitment to develop innovative integrations between Google Analytics Read more Best CPQ for Salesforce Many businesses, once they select the best Salesforce CPQ tool for their business, turn to an implementation partner like Tectonic Read more

Read More
Ethical and Responsible AI

Ethical and Responsible AI

Responsible AI and ethical AI are closely connected, with each offering complementary yet distinct principles for the development and use of AI systems. Organizations that aim for success must integrate both frameworks, as they are mutually reinforcing. Responsible AI emphasizes accountability, transparency, and adherence to regulations. Ethical AI—sometimes called AI ethics—focuses on broader moral values like fairness, privacy, and societal impact. In recent discussions, the significance of both has come to the forefront, encouraging organizations to explore the unique advantages of integrating these frameworks. While Responsible AI provides the practical tools for implementation, ethical AI offers the guiding principles. Without clear ethical grounding, responsible AI initiatives can lack purpose, while ethical aspirations cannot be realized without concrete actions. Moreover, ethical AI concerns often shape the regulatory frameworks responsible AI must comply with, showing how deeply interwoven they are. By combining ethical and responsible AI, organizations can build systems that are not only compliant with legal requirements but also aligned with human values, minimizing potential harm. The Need for Ethical AI Ethical AI is about ensuring that AI systems adhere to values and moral expectations. These principles evolve over time and can vary by culture or region. Nonetheless, core principles—like fairness, transparency, and harm reduction—remain consistent across geographies. Many organizations have recognized the importance of ethical AI and have taken initial steps to create ethical frameworks. This is essential, as AI technologies have the potential to disrupt societal norms, potentially necessitating an updated social contract—the implicit understanding of how society functions. Ethical AI helps drive discussions about this evolving social contract, establishing boundaries for acceptable AI use. In fact, many ethical AI frameworks have influenced regulatory efforts, though some regulations are being developed alongside or ahead of these ethical standards. Shaping this landscape requires collaboration among diverse stakeholders: consumers, activists, researchers, lawmakers, and technologists. Power dynamics also play a role, with certain groups exerting more influence over how ethical AI takes shape. Ethical AI vs. Responsible AI Ethical AI is aspirational, considering AI’s long-term impact on society. Many ethical issues have emerged, especially with the rise of generative AI. For instance, machine learning bias—when AI outputs are skewed due to flawed or biased training data—can perpetuate inequalities in high-stakes areas like loan approvals or law enforcement. Other concerns, like AI hallucinations and deepfakes, further underscore the potential risks to human values like safety and equality. Responsible AI, on the other hand, bridges ethical concerns with business realities. It addresses issues like data security, transparency, and regulatory compliance. Responsible AI offers practical methods to embed ethical aspirations into each phase of the AI lifecycle—from development to deployment and beyond. The relationship between the two is akin to a company’s vision versus its operational strategy. Ethical AI defines the high-level values, while responsible AI offers the actionable steps needed to implement those values. Challenges in Practice For modern organizations, efficiency and consistency are key, and standardized processes are the norm. This applies to AI development as well. Ethical AI, while often discussed in the context of broader societal impacts, must be integrated into existing business processes through responsible AI frameworks. These frameworks often include user-friendly checklists, evaluation guides, and templates to help operationalize ethical principles across the organization. Implementing Responsible AI To fully embed ethical AI within responsible AI frameworks, organizations should focus on the following areas: By effectively combining ethical and responsible AI, organizations can create AI systems that are not only technically and legally sound but also morally aligned and socially responsible. Content edited October 2024. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Success Story

Case Study: Manufacturing – Sales/ Service/Revenue/Commerce/Experience Clouds

After doing their initial Sales Cloud implementation and SAP integration over 12 years ago, this company was only leveraging Salesforce in a basic capacity, being a predominantly SAP and Microsoft shop. Fast forward to about a year ago, with a change in leadership, Salesforce became the desired platform to build and expand on. With the need to support multiple lines of business, provide more accurate forecasting and quoting and close the gap between sales and supply chain there was a lot to tackle both immediately and long term.

Read More
Salesforce Success Story

Case Study: Grants Management-Public Sector Utility-Salesforce Public Sector Solutions and Experience Cloud

Leading provider of branded, designed solutions (laminate) for commercial and residential customers worldwide.  The company has been surfacing spaces for 110 years. Client struggled with no real ability to see a 360 degree view of the business.

Read More
Salesforce's Get Ready for AI Report

Salesforce’s Get Ready for AI Report

Welcome to the future of business – Get Ready for AI is for analytics and data leaders. The tools for those who are interested in positioning themselves for AI success. From strategy to governance, you’ll learn what’s top-of-mind with other thought leaders, and see what actions you can take to be a more effective leader in a rapidly changing technology and business environment.  Salesforce’s Get Ready for AI Report This insight introduces four topics that are essential for data leaders beginning their AI journey: Access the full report here. Salesforce’s Get Ready for AI Report Data is at the center of any AI initiative, and organizations that are leading the way are focused on ensuring their data sources are current, authoritative, and complete. From talent, to strategy, to infrastructure, organizations that are prioritizing data across every business unit are ready to ride the AI wave. Positioning themselves for a significant competitive advantage over their peers. Salesforce’s Get Ready for AI Report As with any digital transformation, success depends on an enterprise-wide commitment. Data leaders are in a unique position to help guide their organizations through this transition, and achieve the benefits that AI can deliver. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Data Cloud and Snowflake Bidrectional Data Sharing

Data Cloud and Snowflake Bidrectional Data Sharing

Salesforce Data Cloud and Snowflake are excited to announce that bidirectional data sharing between Snowflake, the Data Cloud company, and Salesforce Data Cloud is now generally available. In September, we introduced the ability for organizations to leverage Salesforce data directly in Snowflake via zero-ETL data sharing, enabling unified customer and business data, accelerating decision-making, and streamlining business processes. Today, we’re thrilled to share that customers can now also share Snowflake data into the Salesforce Data Cloud, using the same zero-ETL innovation to reduce friction and quickly surface powerful insights across sales, service, marketing, and commerce applications. Data Cloud and Snowflake Bidrectional Data Sharing. Data Cloud and Snowflake Bidrectional Data Sharing Enterprises generate valuable customer data within Salesforce applications, while increasingly relying on Snowflake as their preferred data platform for storing, modeling, and analyzing their full data estate. This integration between Salesforce and Snowflake minimizes friction, data latency, scale limitations, and data engineering costs associated with using these two leading platforms. The Snowflake Marketplace also offers customers the opportunity to acquire new data sets to enhance or fill gaps in their existing business data, driving innovation. By combining enterprise data and third-party data from Snowflake Marketplace with valuable customer data from Salesforce applications, organizations can unify their data and build powerful AI solutions to surface rich insights, driving superior and differentiated customer experiences. “Zero-ETL data sharing between Salesforce Data Cloud and Snowflake is game-changing. It has opened up new frontiers of data collaboration. We’re excited to see how customers are powering their customer data analytics and developing innovative AI solutions with near real-time data from Salesforce and Snowflake, generating incredible business value. Now that this integration is generally available, this kind of innovation will be broadly accessible,” says Christian Kleinerman, SVP of Product, Snowflake. Power Personalized Experiences with Salesforce and Snowflake Data sharing between Salesforce Data Cloud and Snowflake brings together holistic insights, empowering multiple customer-facing departments within any organization to create a truly robust customer 360. As Snowflake’s Chief Marketing Officer, Denise Persson, often states, a true, enterprise-wide customer 360 is the beating heart of a modern, customer-facing organization. The applicability of this integration spans various industries and unlocks new growth opportunities. For example: The bidirectional integration enables data sharing across business systems, Salesforce clouds, and operational systems, facilitating data set analysis and future action planning. This brings actionable insights and drives actions, unleashing a new level of customer experience and business productivity. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
WhatsApp Integration Brings Service and Marketing Together

WhatsApp Integration Brings Service and Marketing Together

Salesforce has announced the general availability of Unified Conversations for WhatsApp, transforming one-way marketing promotions and service requests into dynamic, two-way conversations from a single WhatsApp number. WhatsApp Integration Brings Service and Marketing Together. Now, instead of managing separate threads for promotions and support, customers can receive personalized opt-in marketing promotions and individual support all within a single WhatsApp chat. This unified approach allows companies like Agibank to leverage Salesforce data from over 900 hubs within WhatsApp to deliver personalized loan proposals, resolve issues faster, and better support customers in a single conversation. Why It Matters A significant 79% of customers expect consistent interactions across departments, and 75% prefer to communicate with brands through messaging. However, businesses often fail to meet these expectations, with disconnected experiences being a top customer frustration. Salesforce Perspective “With over two billion people using WhatsApp, Salesforce’s Unified Conversations for WhatsApp enables brands to connect with customers in a unified, trusted manner,” said Steve Hammond, EVP and GM of Salesforce Marketing Cloud. “This helps brands break down internal barriers and build stronger relationships throughout the customer journey, ensuring personalized engagement at the right time and context.” Go Deeper Unified Conversations for WhatsApp is powered by Salesforce Data Cloud, allowing companies to consolidate data into Salesforce and create a unified customer profile. This shared profile provides marketers and service agents with the relevant context to deliver trusted experiences in a single chat thread. Innovation in Action Unified Conversations for WhatsApp combines marketing and service conversations, enabling: Customer Perspective Matheus Girardi, Chief Marketing and Customer Officer at Agibank, shared, “Our customers rely on WhatsApp to engage with us. Unifying our data in Salesforce for WhatsApp has improved our user experience by personalizing loan proposals, resolving concerns, and supporting customers. Salesforce’s previous integration with WhatsApp tripled our digital sales, and we are excited to do more.” Roberto Maia, Chief Information Officer at YDUQS, added, “WhatsApp is the preferred messaging app for our students across Brazil. We look forward to utilizing Unified Conversations to better engage and serve them and convert leads faster.” Availability Unified Conversations for WhatsApp is now generally available. More Information Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Then and Now

AI Then and Now

AI: Transforming User Interactions and Experiences Have you ever been greeted by a waitress who already knows your breakfast order? It’s a relief not to detail every aspect — temperature, how do you want your eggs, what kind of juice, bacon or sausage, etc. This example encapsulates the journey we’re navigating with AI today. AI Then and Now. This article isn’t about ordering breakfast; it’s about the evolution of user interactions, particularly how generative AI might evolve based on past trends in graphical user interfaces (GUIs) and emerging trends in AI interactions. We’ll explore the significance of context bundling, user curation, trust, and ecosystems as key trends in AI user experience in this Tectonic insight. From Commands to Conversations Let’s rewind to the early days of computing when users had to type precise commands in a Command-Line Interface (CLI). Imagine the challenge of remembering the exact command to open a file or copy data. This complexity meant that only a few people could use computers effectively. To reach a broader audience, a shift was necessary. You might think Apple’s creation of the mouse and drop down menues was the pinnacle of success, but truly the evolution predates Apple. Enter ELIZA in 1964, an early natural language processing program that engaged users in basic conversations through keyword recognition and scripted responses. Although groundbreaking, ELIZA’s interactions were far from flexible or scalable. Around the same time, Xerox PARC was developing the Graphical User Interface (GUI), later popularized by Apple in 1984 and Microsoft shortly thereafter. GUIs transformed computing by replacing complex commands with icons, menus, and windows navigable by a mouse. This innovation made computers accessible and intuitive for everyday tasks, laying the groundwork for technology’s universal role in our lives. Not only did it make computing accessible to the masses but it layed the foundation upon which every household would soon have one or more computers! The Evolution of AI Interfaces Just as early computing transitioned from the complexity of CLI to the simplicity of GUIs, we’re witnessing a parallel evolution in generative AI. User prompts are essentially mini-programs crafted in natural language, with the quality of outcomes depending on our prompt engineering skills. We are moving towards bundling complex inputs into simpler, more user-friendly interfaces with the complexity hidden in the background. Context Bundling Context bundling simplifies interactions by combining related information into a single command. This addresses the challenge of conveying complex instructions to achieve desired outcomes, enhancing efficiency and output quality by aligning user intent and machine understanding in one go. We’ve seen context bundling emerge across generative AI tools. For instance, sample prompts in Edge, Google Chrome’s tab manager, and trigger-words in Stable Diffusion fine-tune AI outputs. Context bundling isn’t always about conversation; it’s about achieving user goals efficiently without lengthy interactions. Context bundling is the difference in ordering the eggs versus telling the cook how to crack and prepare it. User Curation Despite advancements, there remains a spectrum of needs where users must refine outputs to achieve specific goals. This is especially true for tasks like researching, brainstorming, creating content, refining images, or editing. As context windows and multi-modal capabilities expand, guiding users through complexity becomes even more crucial. Humans constantly curate their experiences, whether by highlighting text in a book or picking out keywords in a conversation. Similarly, users interacting with ChatGPT often highlight relevant information to guide their next steps. By making it easier for users to curate and refine their outputs, AI tools can offer higher-quality results and enrich user experiences. User creation takes ordering breakfast from a manual conversational process to the click of a button on a vending-like system. Designing for Trust Trust is a significant barrier to the widespread adoption of generative AI. To build trust, we need to consider factors such as previous experiences, risk tolerance, interaction consistency, and social context. Without trust, in AI or your breakfast order, it becomes easier just to do it yourself. Trust is broken if the waitress brings you the wrong items, or if the artificial intelligence fails to meet your reasonable expectations. Context Ecosystems Generative AI has revolutionized productivity by lowering the barrier for users to start tasks, mirroring the benefits and journey of the GUI. However, modern UX has evolved beyond simple interfaces. The future of generative AI lies in creating ecosystems where AI tools collaborate with users in a seamless workflow. We see emergent examples like Edge, Chrome, and Pixel Assistant integrating AI functionality into their software. This integration goes beyond conversational windows, making AI aware of the software context and enhancing productivity. The Future of AI Interaction Generative AI will likely evolve to become a collaborator in our daily tasks. Tools like Grammarly and Github Copilot already show how AI can assist users in creating and refining content. As our comfort with AI grows, we may see generative AI managing both digital and physical aspects of our lives, augmenting reality and redefining productivity. The evolution of generative AI interactions is repeating the history of human-computer interaction. By creating better experiences that bundle context into simpler interactions, empower user curation, and augment known ecosystems, we can make generative AI more trustworthy, accessible, usable, and beneficial for everyone. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Technologies for Field Services

Technologies for Field Services

Technologies for Field Services are fast evolving. Here are the four technologies shaping the future of field service: In summary, these technologies are revolutionizing field service operations by enabling predictive maintenance, seamless communication, and smarter decision-making, ultimately improving customer satisfaction and driving business success. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Why Use Marketing Cloud Mobile Connect

Why Use Marketing Cloud Mobile Connect

Understanding Mobile Connect in Marketing Cloud: Why Use Marketing Cloud Mobile Connect Why Use Marketing Cloud Mobile Connect? Mobile Connect serves as Marketing Cloud’s SMS and MMS messaging tool. It enables the sending of mass text messages either to its standard Mobile Contact list or through established Data Extensions. For Data Extensions, ensure the presence of a Phone field and a Locale field. How does Mobile Connect Work? Mobile Connect simplifies the user experience by verifying the end user through their mobile phone number. This process allows users to confirm their identity online and authorize transactions, sharing only essential personal data required for completing the transaction securely. Getting Started with Mobile Connect: Guidelines and Resources for Mobile Connect: MobileConnect Features: Why Use Marketing Cloud Mobile Connect SMS is the most underrated channel. If we consider the success rates of SMS deliverability, open rate and click rate over the past years you would understand why. Countless companies are going back to SMS in order to maintain a high frequency of engagement with their customers and reach tough geographic markets. Even with the promising future of SMS, the questions are always the same: is it easy/budget-friendly to use this channel in my marketing campaigns? Which use cases are best suited for my business objectives? Is an SMS a medium that can deliver commercial benefits, or just a transactional one? MobileConnect doesn’t actually send messages directly to the subscriber’s mobile phone, however. In order to send messages, MobileConnect pushes a message to partners, known as Aggregators, who then push the message out to the local phone Carriers via their SMS gateways, for the final delivery to the subscriber’s mobile phone. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com