- gettectonic.com
The Hidden Risks of Over-Reliance on AI

The Hidden Risks of Over-Reliance on AI

Are Marketers Trusting AI Too Much? How to Avoid Losing Your Strategic Edge AI tools have revolutionized how marketers approach research, content creation, and decision-making. However, an overreliance on these tools could undermine critical thinking and strategic planning, leaving marketers vulnerable in a fast-evolving landscape. Here’s how to balance the power of automation with human insight. The Rise of AI in Search and Marketing In late December, SEO consultancy Previsible shared a striking report: Google’s search dominance has plateaued and is now being challenged by AI-assisted search tools. These tools, such as ChatGPT, Claude, and Google’s own AI-enhanced search, are growing in popularity due to their ability to deliver contextually relevant and personalized results. Unlike traditional search, which relies on keyword matching, AI-driven search processes intent and context. This shift is reshaping how users find information and make decisions. How AI Is Changing User Behavior The increasing sophistication of AI tools brings both opportunities and risks. Users often trust AI-generated outputs without question, assuming they’re accurate and complete. Traditional search, by contrast, forces users to critically analyze and filter multiple sources. This blind trust in AI mirrors the concept of “System 1 thinking,” as described by Nobel Prize-winning psychologist Daniel Kahneman in Thinking, Fast and Slow. As AI models like ChatGPT operate primarily as “System 1 thinkers,” users risk adopting a similar approach, bypassing critical analysis in favor of convenience. The Hidden Risks of Over-Reliance on AI Younger marketers may be especially at risk of falling into this trap. Many are using AI tools like ChatGPT to summarize information or generate ideas, often without questioning the accuracy of the outputs. For B2B marketers, the allure of AI lies in its speed and perceived accuracy. However, this reliance on automation could lead to a generation of marketers who lack the ability—or inclination—to think strategically. The danger is clear: unchecked dependence on AI tools could foster a “groupthink” mentality, where creativity and critical thinking are sidelined. Without intervention, marketing departments risk becoming overly reliant on tools that were designed to enhance human efforts, not replace them. How Marketing Leaders Can Address This Threat To counter this trend, marketing leaders must actively promote the development of strategic skills. Here’s how: In a world increasingly driven by AI, marketers who can blend automation with strategic thinking will be best positioned for success. Using AI to Enhance, Not Replace, Strategic Thinking AI should empower marketers to make better decisions—not serve as the sole decision-maker. As one professor aptly put it, “Use AI to become a better student, not to be the student.” The key is balance. By combining the intuitive capabilities of AI with the deliberate, analytical approach of System 2 thinking, marketers can leverage technology without sacrificing creativity or strategy. In short, AI is a tool—not a replacement for human ingenuity. Those who recognize this distinction will thrive in an increasingly automated world. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Alphabet Soup of Cloud Terminology As with any technology, the cloud brings its own alphabet soup of terms. This insight will hopefully help you navigate Read more

Read More
agentforce digital workforce

How Agentforce Works

Salesforce Agentforce: Everything You Need to Know Salesforce Agentforce represents a paradigm shift from generative AI to agentic AI—a new class of AI capable of autonomous action. Since its launch at Dreamforce in September 2024, Agentforce has redefined the conversation around AI, customer service, and experience management. To meet skyrocketing demand, Salesforce announced plans to hire more than 1,000 employees shortly after the launch. What is Salesforce Agentforce? Agentforce is a next-generation platform layer within the Salesforce ecosystem. While its bots leverage generative AI capabilities, they differ significantly from platforms like ChatGPT or Google Gemini. Agentforce bots are designed not just to generate responses but to act autonomously within predefined organizational guardrails. Unlike traditional chatbots, which follow scripted patterns, Agentforce AI agents are trained on proprietary data, enabling flexible and contextually accurate responses. They also integrate with Salesforce’s Data Cloud, enhancing their capacity to access and utilize customer data effectively. Agentforce combines three core tools—Agent Builder, Model Builder, and Prompt Builder—allowing businesses to create customized bots using low-code tools. Key Features of Agentforce The platform offers ready-to-deploy AI agents tailored for various industries, including: Agentforce officially became available on October 25, 2024, with pricing starting at $2 per conversation, and volume discounts offered for enterprise customers. Salesforce also launched the Agentforce Partner Network, enabling third-party integrations and custom agent designs for expanded functionality. How Agentforce Works Salesforce designed Agentforce for users without deep technical expertise in AI. As CEO Marc Benioff said, “This is AI for the rest of us.” The platform is powered by the upgraded Atlas Reasoning Engine, a component of Salesforce Einstein AI, which mimics human reasoning and planning. Like self-driving cars, Agentforce interprets real-time data to adapt its actions and operates autonomously within its established parameters. Enhanced Atlas Reasoning Engine In December 2024, Salesforce enhanced the Atlas Reasoning Engine with retrieval-augmented generation (RAG) and advanced reasoning capabilities. These upgrades allow agents to: Seamless Integrations with Salesforce Tools Agentforce is deeply integrated with Salesforce’s ecosystem: Key Developments Agentforce Testing Center Launched in December 2024, the Testing Center allows businesses to test agents before deployment, ensuring they are accurate, fast, and aligned with organizational goals. Skill and Integration Library Salesforce introduced a pre-built library for CRM, Slack, Tableau, and MuleSoft integrations, simplifying agent customization. Examples include: Industry-Specific Expansion Agentforce for Retail Announced at the NRF conference in January 2025, this solution offers pre-built skills tailored to retail, such as: Additionally, Salesforce unveiled Retail Cloud with Modern POS, unifying online and offline inventory data. Notable Agentforce Customers Looking Ahead Marc Benioff calls Agentforce “the third wave of AI”, advancing beyond copilots into a new era of autonomous, low-hallucination intelligent agents. With its robust capabilities, Agentforce is positioned to transform how businesses interact with customers, automate workflows, and drive success. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
B2B Customer Service with Agentforce

B2B Customer Service with Agentforce

Simplify and Transform B2B Customer Service with Agentforce B2B customer service is inherently complex. It involves managing layered relationships, high-value transactions, and specialized support needs—all of which require heightened attention to detail. With fewer but larger customers, the stakes are high. In fact, our research shows that 88% of customers are more likely to remain loyal with exceptional service, underscoring the importance of consistently delivering excellence. Enter Agentforce, an AI-powered solution designed to tackle these challenges. By complementing your service reps, Agentforce handles intricate B2B cases autonomously and within your predefined parameters. This ensures reliable 24/7 support for even the toughest queries, reducing rep burnout and enhancing customer satisfaction. Here’s how Agentforce can redefine B2B customer service and take it to the next level: What You’ll Learn What Is B2B Customer Service? B2B customer service focuses on providing personalized support and expertise to other businesses, addressing their unique needs and challenges. This service model aims to build lasting relationships by boosting loyalty, driving repeat business, and encouraging referrals. What Are AI Agents? AI agents like Agentforce are advanced systems capable of understanding and responding to customer inquiries without human involvement. Unlike basic chatbots, Agentforce uses natural language processing (NLP), machine learning, and contextual understanding to provide intelligent, conversational, and personalized support. At the heart of Agentforce is the Atlas Reasoning Engine, which simplifies complex queries, retrieves precise information from your Data Cloud, and creates accurate, reliable action plans—all within your company’s guardrails. Agentforce’s multi-modal understanding allows it to interpret inputs like text, images, and audio, making it a versatile tool for engaging customers. Crucially, Agentforce continuously learns and adapts, ensuring it evolves with your customers’ needs for more accurate, efficient support. Why AI Agents Are Ideal for B2B Customer Service B2B support often involves managing: Agentforce rises to these challenges by providing scalable, round-the-clock support that accommodates time zone differences, personalizes interactions, and resolves intricate inquiries with ease. Top Benefits of AI Agents in B2B Customer Service Use Cases for Agentforce in B2B Customer Service Challenges of Implementing AI Agents—and How to Solve Them 5 Best Practices for Success Ready to Elevate Your B2B Customer Service? Agentforce empowers your business to deliver consistent, reliable, and scalable support—around the clock. By handling complex interactions and reducing workload on service reps, it builds stronger customer relationships and positions your company for long-term success. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
No-Code Generative AI

Generative-Driven Development

Nowhere has the rise of generative AI tools been more transformative than in software development. It began with GitHub Copilot’s enhanced autocomplete, which then evolved into interactive, real-time coding assistants like Aider and Cursor that allow engineers to dictate changes and see them applied live in their editor. Today, platforms like Devin.ai aim even higher, aspiring to create autonomous software systems capable of interpreting feature requests or bug reports and delivering ready-to-review code. At its core, the ambition of these AI tools mirrors the essence of software itself: to automate human work. Whether you were writing a script to automate CSV parsing in 2005 or leveraging AI today, the goal remains the same—offloading repetitive tasks to machines. What makes generative AI tools distinct, however, is their focus on automating the work of automation itself. Framing this as a guiding principle enables us to consider the broader challenges and opportunities generative AI brings to software development. Automate the Process of Automation The Doctor-Patient Strategy Most contemporary generative AI tools operate under what can be called the Doctor-Patient strategy. In this model, the GenAI tool acts on a codebase as a distinct, external entity—much like a doctor treats a patient. The relationship is one-directional: the tool modifies the codebase based on given instructions but remains isolated from the architecture and decision-making processes within it. Why This Strategy Dominates: However, the limitations of this strategy are becoming increasingly apparent. Over time, the unidirectional relationship leads to bot rot—the gradual degradation of code quality due to poorly contextualized, repetitive, or inconsistent changes made by generative AI. Understanding Bot Rot Bot rot occurs when AI tools repeatedly make changes without accounting for the macro-level architecture of a codebase. These tools rely on localized context, often drawing from semantically similar code snippets, but lack the insight needed to preserve or enhance the overarching structure. Symptoms of Bot Rot: Example:Consider a Python application that parses TPS report IDs. Without architectural insight, a code bot may generate redundant parsing methods across multiple modules rather than abstracting the logic into a centralized model. Over time, this duplication compounds, creating a chaotic and inefficient codebase. A New Approach: Generative-Driven Development (GDD) To address the flaws of the Doctor-Patient strategy, we propose Generative-Driven Development (GDD), a paradigm where the codebase itself is designed to enable generative AI to enhance automation iteratively and sustainably. Pillars of GDD: How GDD Improves the Development Lifecycle Under GDD, the traditional Test-Driven Development (TDD) cycle (red, green, refactor) evolves to integrate AI processes: This complete cycle eliminates the gaps present in current generative workflows, reducing bot rot and enabling sustainable automation. Over time, GDD-based codebases become easier to maintain and automate, reducing error rates and cycle times. A Day in the Life of a GDD Engineer Imagine a GDD-enabled workflow for a developer tasked with updating TPS report parsing: By embedding AI into the development process, GDD empowers engineers to focus on high-level decision-making while ensuring the automation process remains sustainable and aligned with architectural goals. Conclusion Generative-Driven Development represents a significant shift in how we approach software development. By prioritizing architecture, embedding automation into the software itself, and writing GenAI-optimized code, GDD offers a sustainable path to achieving the ultimate goal: automating the process of automation. As AI continues to reshape the industry, adopting GDD will be critical to harnessing its full potential while avoiding the pitfalls of bot rot. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI and Related Tools Boost Holiday Sales

AI and Related Tools Boost Holiday Sales

AI Drives Holiday Sales in 2024: A Record-Breaking Shopping Season with Rising Returns Artificial intelligence (AI) played a transformative role in shaping the 2024 holiday shopping season, with Salesforce reporting that AI-powered tools influenced $229 billion, or 19%, of global online sales. Based on data from 1.5 billion global shoppers and 1.6 trillion page views, AI tools such as product recommendations, targeted promotions, and customer service significantly boosted sales, marking a 6% year-over-year increase in engagement. Generative AI features, including conversational agents, saw a 25% surge in usage during the holiday period compared to earlier months, further highlighting their role in shaping consumer behavior. Mobile commerce amplified AI’s influence, with nearly 70% of global online sales being placed via smartphones. On Christmas Day alone, mobile orders accounted for 79% of transactions, showcasing the shift toward mobile-first shopping. “Retailers who have embraced AI and conversational agents are already reaping the benefits, but these tools will become even more critical in the new year as retailers aim to minimize revenue losses from returns and reengage with shoppers,” said Caila Schwartz, Salesforce’s Director of Consumer Insights. Record-Breaking Sales and Rising Returns Online sales hit .2 trillion globally and 2 billion in the U.S. during the holiday season, but returns surged to $122 billion globally—a 28% increase compared to 2023. Salesforce attributed this spike to evolving shopping habits like bracketing (buying multiple sizes to ensure fit) and try-on hauls (bulk purchasing for social media content), which have become increasingly common. The surge in returns presents a challenge to retailers, potentially eroding profit margins. To address this, many are turning to AI-powered solutions for streamlining returns processes. According to Salesforce, 75% of U.S. shoppers expressed interest in using AI agents for returns, with one-third showing strong enthusiasm for such tools. The Role of AI in Enhancing the Holiday Shopping Experience AI-powered chatbots saw a 42% year-over-year increase in usage during the holiday season, supporting customers with purchases, returns, and product inquiries. These conversational agents, combined with AI-driven loyalty programs and targeted promotions, were instrumental in engaging customers and increasing conversion rates. AI’s influence extended to social commerce, with platforms like TikTok Shop and Instagram driving 20% of global holiday sales. Personalized recommendations and advertisements, powered by AI algorithms, significantly boosted social media referral traffic, which grew by 8% year-over-year. Mobile Commerce and AI Synergy Mobile devices were the dominant force in holiday shopping, generating 2 billion in global online sales and 5 billion in the U.S. Orders placed via smartphones peaked on Christmas Day, with mobile accounting for 79% of all transactions. This mobile-first trend highlights the growing importance of integrating AI into mobile commerce to enhance the shopping experience. AI Integration Expands Across Retail Operations In the UK, retailers are increasingly leveraging AI to optimize operations and improve personalization. A study by IMRG and Scurri revealed that 57% of UK online retailers used generative AI for content creation in 2024, while 31% implemented AI-informed product search tools. By 2025, 75% of UK retailers plan to adopt AI for marketing efforts, and 42% aim to use AI-powered product information management systems to streamline processes. Tesco, for example, uses AI to analyze Clubcard data, enabling tailored product recommendations, healthier purchasing choices, and waste reduction. Meanwhile, Must Have Ideas, a homeware retailer, has launched an AI-driven TV shopping channel powered by proprietary software, Spark, which automates programming schedules based on real-time stock levels and market trends. Looking Ahead The 2024 holiday season underscored the transformative potential of AI in retail. While AI-powered tools drove record sales and engagement, the rise in returns presents a challenge that retailers must address to protect their bottom line. As AI continues to evolve, its role in shaping consumer behavior, streamlining operations, and enhancing customer experiences will become even more integral in the retail landscape. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Rethinking Technology in Local Government

Rethinking Technology in Local Government

Rethinking Technology in Local Government: A Call to Action By Richard Young, Head of Local Government, Salesforce The latest survey from Salesforce and LGC underscores an urgent need for a technology transformation in local government. Legacy systems and fragmented infrastructure remain significant roadblocks to digital progress, with nearly half of respondents identifying them as barriers to adoption. Outdated, disconnected systems limit efficiency, frustrate staff and residents, and prevent seamless data sharing—ultimately hindering councils from delivering modern, responsive services. Breaking Down Silos: A Unified Approach To move beyond fragmented solutions, councils must embrace a connected digital ecosystem that integrates systems, data, and stakeholders. Salesforce enables this shift through: ✅ MuleSoft – Seamlessly integrates legacy and modern systems, allowing for real-time data sharing and eliminating silos.✅ Salesforce Customer 360 – Provides a single, unified view of residents, enabling personalized, consistent service delivery across all touchpoints. By adopting a resident-first approach, councils can streamline operations, enhance engagement, and deliver services more effectively. Overcoming Barriers to Digital Transformation While the benefits of modern technology are clear, our survey reveals significant challenges to implementation, including: Salesforce supports councils through these challenges by providing: 🎓 Comprehensive training programs – Equipping staff with the skills to confidently adopt new technology.🤝 Shared service models – Encouraging collaboration across councils to pool resources and scale best practices.🚀 The Government Innovators Network – A knowledge-sharing platform connecting public sector leaders and private technology partners to drive innovation. By focusing on incremental modernization and ROI-driven deployments, councils can maximize value while staying within budget constraints. Empowering Councils for the Future To truly future-proof local government, technology must be: ✔ User-friendly – Intuitive systems reduce friction, enabling both staff and residents to self-service with ease.✔ Scalable and secure – Protecting against cyber threats and evolving challenges.✔ Designed for impact – Fostering collaboration between public and private sectors to drive long-term innovation. Salesforce has already made a measurable impact: 🏛 A UK council integrated over 30 legacy systems, reducing administrative overhead by 40% and increasing resident satisfaction by 25%.🇦🇺 An Australian local authority centralized resident engagement, cutting service request response times by 50%. Across the globe, we are transforming council operations, governance, and resident experiences. A Connected Future Starts Now Now is the time for councils to rethink their approach to technology. By embracing scalable, integrated solutions, they can deliver better services, empower staff, and put residents at the heart of every decision. Together, we can reimagine local government—creating a more connected, efficient, and empowered future. Richard Young, Head of Local Government, Salesforce Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Sales Cloud Einstein

Salesforce Sales Cloud Einstein

Transforming Sales with Salesforce Sales Cloud Einstein In today’s data-driven business world, artificial intelligence (AI) is revolutionizing sales and customer relationship strategies. As the leading customer relationship management (CRM) platform, Salesforce introduces Sales Cloud Einstein, an AI-powered solution embedded within its Sales Cloud platform. This tool empowers businesses to streamline workflows, predict sales outcomes, and optimize customer engagement. This comprehensive insight explores the features, benefits, and costs of Sales Cloud Einstein, helping you determine how it can elevate your company’s sales performance. Key Features of Salesforce Sales Cloud Einstein Sales Cloud Einstein is packed with powerful AI-driven features, enabling sales teams to work smarter and close deals faster. Here are the key features: 1. Einstein Lead Scoring Automatically scores leads based on their likelihood to convert, using historical CRM data and patterns detected by AI. Key Metrics Impact Engagement history Prioritizes leads with recent activity Lead source Scores leads based on successful origins Demographics Highlights high-performing attributes like industry 2. Einstein Opportunity Scoring Assigns scores to opportunities in the pipeline, predicting their likelihood to close. Factor Impact on Scoring Stage progression Higher scores for quickly advancing deals Deal size Larger deals with strong progression rank higher Customer engagement Consistent interactions improve scores 3. Einstein Forecasting Delivers accurate sales forecasts by analyzing historical data, pipeline trends, and anomalies. Metric Value Added Pipeline health Predicts future revenue Win rate analysis Estimates likelihood of success Historical trends Enhances accuracy over time 4. Einstein Activity Capture Automatically logs customer interactions—emails, meetings, and calls—into Salesforce, reducing manual data entry. 5. Einstein Insights Provides actionable recommendations for the next best actions to close deals, using engagement history and deal data. 6. Einstein Email Insights Highlights key action items from emails using natural language processing (NLP). 7. Einstein Automated Contacts Detects and adds new contacts to Salesforce from emails and interactions, keeping records up to date. Benefits of Salesforce Sales Cloud Einstein Sales Cloud Einstein delivers a wide range of benefits: Costs of Salesforce Sales Cloud Einstein Sales Cloud Einstein is available as an add-on for Sales Cloud Enterprise or included in the Unlimited edition. Edition Cost (per user/month) Einstein Features Sales Cloud Enterprise $150 – $175 Lead Scoring, Opportunity Scoring, Activity Capture Sales Cloud Unlimited $300+ Full Einstein capabilities Add-On Pricing for Enterprise Edition: Feature Estimated Cost (per user/month) Einstein Forecasting $50 – $100 Einstein Activity Capture Available as an add-on Custom solutions (e.g., Einstein Discovery) may involve additional costs depending on the project scope and licensing requirements. Is Sales Cloud Einstein Right for Your Business? Sales Cloud Einstein is ideal if you: Final Thoughts Salesforce Sales Cloud Einstein is a game-changing tool that leverages AI to transform sales processes. With its powerful features and benefits, Einstein empowers businesses to boost productivity, enhance customer engagement, and drive revenue growth. Ready to integrate Einstein into your operations? Contact us for a personalized consultation and see how AI can elevate your sales performance. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Rule-Based vs. Machine Learning Deduplication Approaches

Rule-Based vs. Machine Learning Deduplication Approaches

Choosing the Right Tool for Salesforce Deduplication: Rule-Based vs. Machine Learning Approaches When you browse Salesforce AppExchange for a deduplication solution, you’re presented with two primary options: rule-based deduplication tools or machine learning-powered applications. Both have their strengths, but understanding their methods will help you make an informed decision. Below, we’ll explore these approaches and their pros and cons to guide your choice. Why Salesforce’s Built-in Deduplication Falls Short Salesforce, while a powerful CRM, doesn’t excel at large-scale deduplication. Its native tools are limited to basic, rule-based matching, which may struggle with complexities like typos, inconsistent formatting, or unstructured data. Additionally, Salesforce’s deduplication features lack the scalability required for organizations dealing with large datasets or multiple data sources (e.g., third-party integrations, legacy systems). Businesses often need supplemental tools to address overlapping records or inconsistencies effectively. How Rule-Based Deduplication Works Popular rule-based tools on AppExchange, such as Cloudingo, DemandTools, DataGroomr, and Duplicate Check, require users to create filters that define what constitutes a duplicate. For example: Ultimately, the user manually defines the rules, deciding how duplicates are identified and handled. Benefits of Rule-Based Deduplication Drawbacks of Rule-Based Deduplication How Machine Learning-Based Deduplication Works Machine learning (ML)-powered tools rely on algorithms to identify patterns and relationships in data, detecting duplicates that may not be apparent through rigid rules. Key Features of ML Deduplication Techniques Used Benefits of ML-Based Deduplication Drawbacks of ML-Based Deduplication When to Choose Rule-Based vs. Machine Learning Deduplication Choose Rule-Based Deduplication If: Choose Machine Learning-Based Deduplication If: Selecting the Right Deduplication Tool When evaluating tools on AppExchange, consider these factors: Tectonic’s Closing Thoughts Rule-based and machine learning-based deduplication each serve distinct purposes. The right choice depends on your data’s complexity, the resources available, and your organization’s goals. Whether you’re seeking a quick, transparent solution or a powerful, scalable tool, AppExchange offers options to meet your needs and help maintain a clean Salesforce data environment. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Decision Domain Management

Roger’s first week in the office felt like a wilder than 8 second ride on a raging rodeo bull. Armed with top-notch academic achievements, he hoped to breeze through operational routines and impress his new managers. What he didn’t expect was to land in a whirlwind of half-documented processes, half-baked ideas, and near-constant firefighting. While the organization had detailed SOPs for simple, routine tasks—approving invoices, updating customer records, and shipping standard orders—Roger quickly realized that behind the structured facade, there was a deeper level of uncertainty. Every day, he heard colleagues discuss “strategic pivots” or “risky product bets.” There were whispers about AI-based initiatives that promised to automate entire workflows. Yet, when the conversation shifted to major decisions—like selecting the right AI use cases—leaders often seemed to rely more on intuition than any structured methodology. One afternoon, Roger was invited to a cross-functional meeting about the company’s AI roadmap. Expecting an opportunity to showcase his knowledge, he instead found himself in a room filled with brilliant minds pulling in different directions. Some argued that AI should focus on automating repetitive tasks aligned with existing SOPs. Others insisted that AI’s real value lay in predictive modeling—helping forecast new market opportunities. The debate went in circles, with no consensus on where or how to allocate AI resources. After an hour of heated discussion, the group dispersed, each manager still convinced of the merit of their own perspective but no closer to a resolution. That evening, as Roger stood near the coffee machine, he muttered to himself, “We have SOPs for simple tasks, but nothing for big decisions. How do we even begin selecting which AI models or agents to develop first?” His frustration led him to a conversation with a coworker who had been with the company for years. “We’re missing something fundamental here,” Roger said. “We’re rushing to onboard AI agents that can mimic our SOPs—like some large language model trained to follow rote instructions—but that’s not where the real value lies. We don’t even have a framework for weighing one AI initiative against another. Everything feels like guesswork.” His coworker shrugged. “That’s just how it’s always been. The big decisions happen behind closed doors, mostly based on experience and intuition. If you’re waiting for a blueprint, you might be waiting a long time.” That was Roger’s ;ight bulb moment. Despite all his academic training, he realized the organization lacked a structured approach to high-level decision-making. Sure, they had polished SOPs for operational tasks, but when it came to determining which AI initiatives to prioritize, there were no formal criteria, classifications, or scoring mechanisms in place. Frustrated but determined, Roger decided he needed answers. Two days later, he approached a coworker known for their deep understanding of business strategy and technology. After a quick greeting, he outlined his concerns—the disorganized AI roadmap meeting, the disconnect between SOP-driven automation and strategic AI modeling, and his growing suspicion that even senior leaders were making decisions without a clear framework. His coworker listened, then gestured for him to take a seat. “Take a breath,” they said. “You’re not the first to notice this gap. Let me explain what’s really missing.” Why SOPs Aren’t Enough The coworker acknowledged that the organization was strong in SOPs. “We’re great at detailing exactly how to handle repetitive, rules-based tasks—like verifying invoices or updating inventory. In those areas, we can plug in AI agents pretty easily. They follow a well-defined script and execute tasks efficiently. But that’s just the tip of the iceberg.” They leaned forward and continued, “Where we struggle, as you’ve discovered, is in decision-making at deeper levels—strategic decisions like which new product lines to pursue, or tactical decisions like selecting the right vendor partnerships. There’s no documented methodology for these. It’s all in people’s heads.” Roger tilted his head, intrigued. “So how do we fix something as basic but great impact as that?” “That’s where Decision Domain Management comes in,” he explained. In the context of data governance and management, data domains are the high-level blocks that data professionals use to define master data. Simply put, data domains help data teams logically group data that is of interest to their business or stakeholders. “Think of it as the equivalent of SOPs—but for decision-making. Instead of prescribing exact steps for routine tasks, it helps classify decisions, assess their importance, and determine whether AI can support them—and if so, in what capacity.” They broke it down further. The Decision Types “First, we categorize decisions into three broad types: Once we correctly classify a decision, we get a clearer picture of how critical it is and whether it requires an AI agent (good at routine tasks) or an AI model (good at predictive and analytical tasks).” The Cynefin Framework The coworker then introduced the Cynefin Framework, explaining how it helps categorize decision contexts: By combining Decision Types with the Cynefin Framework, organizations can determine exactly where AI projects will be most beneficial. Putting It into Practice Seeing the spark of understanding in Roger’s eyes, the coworker provided some real-world examples: ✅ AI agents are ideal for simple SOP-based tasks like invoice validation or shipping notifications. ✅ AI models can support complicated decisions, like vendor negotiations, by analyzing performance metrics. ✅ Strategic AI modeling can help navigate complex decisions, such as predicting new market trends, but human judgment is still required. “Once we classify decisions,” the coworker continued, “we can score and prioritize AI investments based on impact and feasibility. Instead of throwing AI at random problems, we make informed choices.” The Lightbulb Moment Roger exhaled, visibly relieved. “So the problem isn’t just that we lack a single best AI approach—it’s that we don’t have a shared structure for decision-making in the first place,” he said. “If we build that structure, we’ll know which AI investments matter most, and we won’t keep debating in circles.” The coworker nodded. “Exactly. Decision Domain Management is the missing blueprint. We can’t expect AI to handle what even humans haven’t clearly defined. By categorizing

Read More
deepseek deep dive

Deep Dive into DeepSeek

DeepSeek: The AI Lab Turned Controversial Global Player You know we have to write about anything AI related that is making waves. And DeepSeek is definitely doing that. On April 14, 2023, High-Flyer announced the launch of a dedicated artificial general intelligence (AGI) lab, focused on AI research independent of its financial business. This initiative led to the incorporation of DeepSeek on July 17, 2023, with High-Flyer as its primary investor and backer. DeepSeek’s Breakthrough and the Debate on AI Development DeepSeek quickly gained attention in the AI world, with former India IT Minister Rajeev Chandrasekhar highlighting its impact. He stated that DeepSeek’s success reinforced the idea that better datasets and algorithms—rather than increased compute capacity—are the key to advancing AI capabilities. National Security Concerns: Hidden Risks in DeepSeek’s Code Despite its technological achievements, DeepSeek is now at the center of global controversy. Cybersecurity experts have raised serious concerns about the tool’s potential data-sharing links to the Chinese government. According to a report by ABC News, DeepSeek contains hidden code capable of transmitting user data directly to China. Ivan Tsarynny, CEO of the Ontario-based cybersecurity firm Feroot Security, conducted an analysis of DeepSeek’s code and discovered an embedded function that connects user data to CMPassport.com—the online registry for China Mobile, a state-owned telecommunications company. Key Concerns Raised by Cybersecurity Experts: Global Backlash and Regulatory Actions DeepSeek’s security concerns have sparked international scrutiny. Several governments and organizations have moved swiftly to restrict or ban its use: John Cohen, a former acting Undersecretary for Intelligence and Analysis at the U.S. Department of Homeland Security, described DeepSeek as one of the most blatant cases of suspected Chinese surveillance. He emphasized that it joins a growing list of Chinese tech firms identified as potential national security threats. The Future of DeepSeek DeepSeek’s rapid rise and subsequent scrutiny reflect the broader tensions between AI innovation and national security. As regulators worldwide assess its risks, the company’s future remains uncertain—caught between technological breakthroughs and growing geopolitical concerns. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Alphabet Soup of Cloud Terminology As with any technology, the cloud brings its own alphabet soup of terms. This insight will hopefully help you navigate Read more

Read More
Unlocking the Future of AI with Phidata

Unlocking the Future of AI with Phidata

Unlocking the Future of AI with Phidata: Build Smarter, Faster, and Better In a world where artificial intelligence is at the core of innovation, developing intelligent systems that can understand, reason, and act is no longer a luxury—it’s a necessity. Yet, creating these systems from the ground up can feel daunting, even for experienced developers. Enter Phidata, a revolutionary platform that simplifies the process of building intelligent multi-modal agents and workflows. Phidata isn’t just a framework—it’s a transformative toolkit for crafting AI systems that think critically, collaborate effectively, and solve complex problems. Whether you’re a developer, data scientist, or AI enthusiast, Phidata empowers you to create agents with memory, knowledge, and advanced reasoning capabilities, all while seamlessly integrating cutting-edge tools. Here’s your guide to this groundbreaking platform. Why Phidata Stands Out Phidata reimagines how developers design and deploy AI agents by blending simplicity with robust functionality. Here’s what makes it a game-changer: Elegantly Simple Development Phidata’s intuitive design enables you to create powerful agents with minimal code. Clean, concise, and efficient, it’s as simple as writing a “Hello World!” script to set up an agent capable of performing tasks like web searches or data analysis. Unmatched Flexibility From integrating diverse tools to customizing agent instructions, Phidata equips your AI to tackle complex, real-world challenges effortlessly. Whether you’re building agents for financial forecasting, content creation, or automated research, Phidata has you covered. Multi-Modal Intelligence Phidata agents can seamlessly interact with multiple data types, including text, images, audio, and video. This multi-modal capability ensures adaptability across industries and use cases, from visual data analysis to language translation. Collaborative Multi-Agent Workflows Why settle for a single-agent approach when you can create teams of intelligent agents? Phidata enables collaborative multi-agent workflows, where agents work together to achieve shared objectives—like a team of digital coworkers, each bringing their unique expertise to the table. Intuitive User Interface Phidata’s sleek, user-friendly interface makes interacting with your agents effortless. Say goodbye to frustrating debugging and focus on what matters: building innovative solutions. Built-In Reasoning and Knowledge (RAG) Phidata integrates structured reasoning and knowledge retrieval directly into its framework. This ensures your agents deliver organized, insightful responses tailored to your needs—whether for decision-making or customer engagement. Real-Time Monitoring and Debugging Track your agents’ performance with Phidata’s built-in monitoring and debugging tools. Fine-tune their behavior, optimize workflows, and ensure peak performance at all times. Transform Possibilities Into Reality Phidata opens the door to limitless possibilities, empowering you to: Whether you’re automating workflows, analyzing data, or designing innovative applications, Phidata redefines what’s possible with AI. Take the leap into the future of intelligent systems and start building smarter today with Phidata. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Financial Services Sector

Fundingo Outshines Mortgage Automator

Why Fundingo Outshines Mortgage Automator: A Salesforce-Based Perspective Introduction In the dynamic world of loan servicing and mortgage management, businesses face increasing demands for flexibility, efficiency, and scalability. While Mortgage Automator is a well-known provider, many users encounter significant challenges, including inflexible loan structures and cumbersome reporting processes. Fundingo, a Salesforce-native solution, addresses these issues head-on with a modern, adaptable, and user-friendly approach to loan management. Pain Points of Mortgage Automator Despite its established presence, Mortgage Automator comes with notable limitations: Fundingo’s Competitive Edge Fundingo offers a suite of advantages designed for modern lending institutions, making it the superior choice: Head-to-Head Comparison Feature Fundingo Mortgage Automator Flexibility High – Supports diverse loan products Limited – Rigid loan structures Reporting Automated and user-friendly Complex and manual processes Integrations Seamless with Salesforce ecosystem Poor integration capabilities Scalability Cost-effective, built-in scalability Expensive add-ons hinder growth Security & Compliance SOC 1 certified Basic security measures Summary Fundingo emerges as the ideal solution for modern loan servicing and mortgage management. By addressing the common challenges associated with Mortgage Automator—rigid loan structures, manual processes, and costly add-ons—Fundingo provides a flexible, scalable, and secure alternative. Its Salesforce-native design, built-in CRM, mobile accessibility, exceptional uptime, and robust security measures make it the best competitor in the market, empowering financial institutions to deliver exceptional service while optimizing operational efficiency. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
pydanticai

Pydantic AI

The evaluation of agentic applications is most effective when integrated into the development process, rather than being an afterthought. For this to succeed, developers must be able to mock both internal and external dependencies of the agent being built. PydanticAI introduces a groundbreaking framework that supports dependency injection from the start, enabling developers to build agentic applications with an evaluation-driven approach. An architectural parallel can be drawn to the historic Krakow Cloth Hall, a structure refined over centuries through evaluation-driven enhancements. Similarly, PydanticAI allows developers to iteratively address challenges during development, ensuring optimal outcomes. Challenges in Developing GenAI Applications Developers of LLM-based applications face recurring challenges, which become significant during production deployment: To address non-determinism, developers must adopt evaluation-driven development, a method akin to test-driven development. This approach focuses on designing software with guardrails, real-time monitoring, and human oversight, accommodating systems that are only x% correct. The Promise of PydanticAI PydanticAI stands out as an agent framework that supports dependency injection, model-agnostic workflows, and evaluation-driven development. Its design is Pythonic and simplifies testing by allowing the injection of mock dependencies. For instance, in contrast to frameworks like Langchain, where dependency injection is cumbersome, PydanticAI streamlines this process, making the workflows more readable and efficient. Building an Evaluation-Driven Application with PydanticAI Example Use Case: Evaluating Mountain Data By employing tools like Wikipedia as a data source, the agent can fetch accurate mountain heights during production. For testing, developers can inject mocked responses, ensuring predictable outputs and faster development cycles. Advancing Agentic Applications with PydanticAI PydanticAI provides the building blocks for creating scalable, evaluation-driven GenAI applications. Its support for dependency injection, structured outputs, and model-agnostic workflows addresses core challenges, empowering developers to create robust and adaptive LLM-powered systems. This paradigm shift ensures that evaluation is seamlessly embedded into the development lifecycle, paving the way for more reliable and efficient agentic applications. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI evolves with tools like Agentforce and Atlas

Salesforce Atlas

Salesforce Atlas: The Brainpower Behind AI-Driven Transformation A New Era of AI for Enterprise AI is reshaping industries at an unprecedented pace, and agentic AI—AI that can think, plan, and act autonomously—is at the forefront of this revolution. Salesforce is leading the charge with Agentforce, a low-code platform that allows businesses to build, refine, and deploy autonomous AI agents across multiple business functions. At the core of this innovation is Salesforce Atlas, the reasoning engine that empowers Agentforce to tackle complex decision-making tasks just like a human. But Atlas goes further—it continuously learns, adapts, and evolves, setting a new standard for AI-driven enterprises. Let’s explore how Atlas works, its capabilities, and why it’s a game-changer for businesses. Salesforce Atlas: The Reasoning Engine Powering Agentforce Atlas is the intelligent decision-making engine that powers Agentforce’s AI agents. Rather than simply following predefined rules, Atlas evaluates data, refines its approach, and continuously learns from outcomes. When an AI agent encounters a decision point, Atlas asks: ➡️ Do I have enough data to ensure accuracy?✔ If yes, it proceeds with a decision.❌ If no, it seeks additional data or escalates the issue. This iterative learning process ensures that AI agents become more reliable, context-aware, and autonomous over time. Salesforce CEO Marc Benioff teased the potential of Atlas, revealing that: 📊 “We are seeing 90-95% resolution on all service and sales issues with the new Atlas.” That’s a staggering success rate, demonstrating how AI-driven reasoning can transform enterprise efficiency and customer engagement. How Salesforce Atlas Works: The “Flywheel” Process Atlas operates using a structured flywheel process that enables self-improvement and adaptability. Here’s how it works: 1️⃣ Data Retrieval – Atlas pulls structured and unstructured data from the Salesforce Data Cloud.2️⃣ Evaluation – It analyzes the data, generates a plan of action, and assesses whether the plan will drive the desired outcome.3️⃣ Refinement – If the plan isn’t strong enough, Atlas loops back, refines its approach, and iterates until it’s confident in its decision. This cycle repeats continuously, ensuring AI agents deliver accurate, data-driven outcomes that align with business goals. Once a task is completed, Atlas learns from the results, refining its approach to become even smarter over time. The Core Capabilities of Salesforce Atlas Atlas stands out because of its advanced reasoning, adaptive learning, and built-in safeguards—all designed to deliver trustworthy, autonomous AI experiences. 1. Advanced Reasoning & Decision-Making Atlas doesn’t just execute tasks; it thinks critically, determining the best way to approach each challenge. Unlike traditional AI models that follow rigid scripts, Atlas: 🔍 Analyzes real-time data to determine the most effective course of action.📊 Refines its decisions dynamically based on live feedback.🌍 Adapts to changing circumstances to optimize outcomes. At Dreamforce 2024, Marc Benioff demonstrated Atlas’s power by showcasing how it could optimize theme park experiences in real time, analyzing: 🎢 Ride availability👥 Guest preferences🚶 Park flow patterns This real-time decision-making showcases the game-changing potential of agentic AI. 2. Advanced Data Retrieval Atlas leverages Retrieval-Augmented Generation (RAG) to pull highly relevant, verified data from multiple sources. This ensures: ✔ More accurate responses✔ Minimized AI hallucinations✔ Reliable, data-driven insights For example, Saks Fifth Avenue uses Atlas to personalize shopping recommendations for millions of customers—tailoring experiences with precision. 3. Built-in Guardrails for Security & Compliance Salesforce recognizes the importance of AI governance, and Atlas includes robust safeguards to ensure responsible AI usage. 🔐 Ethical AI protocols – Ensures compliance with evolving regulations.🚨 Escalation capabilities – AI knows when to seek human intervention for complex issues.🌍 Hyperforce security – Provides enterprise-grade privacy and security standards. These protections ensure Atlas operates securely, responsibly, and at scale across global enterprises. 4. Reinforcement Learning & Continuous Improvement Atlas doesn’t just process data—it learns from outcomes. 🔄 Refines decisions based on real-world results📈 Optimizes performance over time⚡ Becomes increasingly efficient and tailored to business needs Whether it’s increasing sales conversions, resolving service issues, or optimizing workflows, Atlas ensures AI agents grow smarter with every interaction. Why Salesforce Atlas is a Game-Changer Salesforce Atlas isn’t just another AI tool—it’s the brain behind Salesforce’s next-generation AI ecosystem. With Atlas, businesses can: ✅ Automate complex tasks with AI-driven decision-making.✅ Deliver hyper-personalized customer experiences with confidence.✅ Scale AI-powered workflows across sales, service, and operations.✅ Ensure compliance and trust with built-in governance measures.✅ Adapt AI capabilities to meet evolving business needs. Marc Benioff envisions Atlas as the core of a future where AI and humans collaborate to drive innovation and efficiency. By combining advanced reasoning, dynamic adaptability, and enterprise security, Atlas empowers organizations to work smarter, faster, and more effectively—unlocking the full potential of agentic AI. The future of AI-driven enterprise has arrived. With Salesforce Atlas, businesses can build AI agents that don’t just follow instructions—they think, learn, and evolve. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
copilots and agentic ai

Transforming Industries and Redefining Workflows

The Rise of Agentic AI: Transforming Industries and Redefining Workflows Artificial Intelligence (AI) is evolving faster than we anticipated. No longer limited to predicting outcomes or generating content, AI systems are now capable of handling complex tasks and making autonomous decisions. This new era—driven by Agentic AI—is set to redefine the workplace and transform industries. From Prediction to Autonomy: The Three Waves of AI To understand where we’re headed, it’s important to see how far AI has come. Arun Parameswaran, SVP & MD of Salesforce India, describes it as a fundamental shift: “What has changed with agents is their ability to handle complex reasoning… and, most importantly, to take action.” Unlike previous AI models that recommend or predict, Agentic AI executes tasks, reshaping customer experiences and operational workflows. Agentic AI in Action: Industry Applications At a recent Mint x Salesforce India deep-dive event on AI, industry leaders explored how Agentic AI is driving transformation across sectors. The panel featured: Here’s how Agentic AI is already making an impact: 1. Revolutionizing Customer Support Traditional chatbots have limited capabilities. Agentic AI, however, understands urgency and context. 2. Accelerating Business Decisions In finance and supply chain management, AI agents analyze vast amounts of data and execute decisions autonomously. 3. Transforming Travel & Aviation Airlines are leveraging AI to optimize booking systems, reduce costs, and enhance efficiency. 4. Automating Wealth Management AI agents in financial services monitor markets, adjust strategies, and offer personalized investment recommendations in real time. The Risks & Responsibilities of Agentic AI With great autonomy comes great responsibility. The potential of Agentic AI is vast—but so are the challenges: The Future of Work: AI as a Partner, Not a Replacement Despite concerns about job displacement, AI is more likely to reshape rather than replace roles. What Are AI Agents? AI agents go beyond traditional models like ChatGPT or Gemini. They are proactive, self-learning systems that: They fall into two categories: “AI agents don’t just wait for commands; they anticipate needs and act,” says Dr. Tomer Simon, Chief Scientist at Microsoft Research Israel. AI Agents in the Workplace: A Shift in Roles AI agents streamline processes, but they don’t eliminate the need for human oversight. Salesforce’s Agentforce is a prime example: “Companies need to integrate AI, not fear it. Those who fail to adopt AI tools risk drowning in tasks AI can handle,” warns Dr. Omri Allouche, Chief Scientist at Gong. The Road Ahead: AI-Driven Business Growth Agentic AI is not about replacing people—it’s about empowering them. As organizations re-evaluate workflows and embrace AI collaboration, the companies that act early will gain a competitive edge in efficiency and innovation. Final Thought The AI revolution is here, and Agentic AI is at its forefront. The key question isn’t whether AI will transform industries—it’s how organizations will adapt and thrive in this new era. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com