- gettectonic.com - Page 13
Financial Services Sector

Fundingo Outshines Mortgage Automator

Why Fundingo Outshines Mortgage Automator: A Salesforce-Based Perspective Introduction In the dynamic world of loan servicing and mortgage management, businesses face increasing demands for flexibility, efficiency, and scalability. While Mortgage Automator is a well-known provider, many users encounter significant challenges, including inflexible loan structures and cumbersome reporting processes. Fundingo, a Salesforce-native solution, addresses these issues head-on with a modern, adaptable, and user-friendly approach to loan management. Pain Points of Mortgage Automator Despite its established presence, Mortgage Automator comes with notable limitations: Fundingo’s Competitive Edge Fundingo offers a suite of advantages designed for modern lending institutions, making it the superior choice: Head-to-Head Comparison Feature Fundingo Mortgage Automator Flexibility High – Supports diverse loan products Limited – Rigid loan structures Reporting Automated and user-friendly Complex and manual processes Integrations Seamless with Salesforce ecosystem Poor integration capabilities Scalability Cost-effective, built-in scalability Expensive add-ons hinder growth Security & Compliance SOC 1 certified Basic security measures Summary Fundingo emerges as the ideal solution for modern loan servicing and mortgage management. By addressing the common challenges associated with Mortgage Automator—rigid loan structures, manual processes, and costly add-ons—Fundingo provides a flexible, scalable, and secure alternative. Its Salesforce-native design, built-in CRM, mobile accessibility, exceptional uptime, and robust security measures make it the best competitor in the market, empowering financial institutions to deliver exceptional service while optimizing operational efficiency. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Content Marketing Lessons

Marketing Cloud Editions & Agentforce

In Salesforce, Marketing Cloud editions refer to the different tiers of the platform, such as Growth Edition and Advanced Edition, each offering varying levels of marketing automation capabilities. Agentforce, an AI-powered feature within Marketing Cloud, enhances these editions by using generative AI to assist with tasks like creating email content, landing pages, and campaign briefs—essentially serving as a virtual marketing assistant. Both features work together to improve personalization and streamline marketing workflows across different editions. Marketing Cloud Editions Salesforce offers multiple Marketing Cloud editions, each designed to meet different business needs: Agentforce: AI-Powered Marketing Assistance Agentforce is available in both Growth and Advanced editions, enabling users to leverage generative AI to enhance marketing efficiency and effectiveness. Key Benefits of Agentforce ✅ Content Creation – Generate landing pages, email copy, and campaign briefs instantly.✅ Personalization – Tailor content dynamically based on customer data for highly relevant messaging.✅ Efficiency – Automate content generation tasks to reduce manual effort and improve productivity. By integrating Agentforce with Marketing Cloud, businesses can accelerate content creation, enhance personalization, and optimize marketing workflows for better results. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

How Advanced Analytics is Reducing Clinical Waste in Healthcare

As U.S. healthcare spending surges—reaching $4.9 trillion in 2023, a 7.5% increase from the previous year—health systems are seeking innovative ways to curb unnecessary costs. One key area of focus? Clinical waste—avoidable medical services that drive up expenses without improving patient outcomes. MultiCare Health System, a 13-hospital network based in Washington, has successfully tackled this challenge using AI-powered clinical decision support (CDS) tools. Partnering with health tech company IllumiCare, MultiCare has reduced unnecessary lab tests and medication orders, saving $2.5 million while maintaining care quality. What is Clinical Waste? Clinical waste refers to unnecessary medical services—such as redundant lab tests, excessive imaging, or inappropriate prescriptions—that inflate costs without benefiting patients. Studies show: Dr. Arun T. Mathews, MultiCare’s Regional Chief Medical Officer, explains: “A patient doesn’t always need a daily blood draw. The extra data may not help—and could even harm them.” How MultiCare is Cutting Waste with AI MultiCare deployed IllumiCare’s Smart Ribbon, an EHR-integrated CDS tool that: Key Features: ✔ Passive vs. Active Alerts – Clinicians receive contextual nudges (e.g., switching from IV to oral meds when appropriate).✔ Automated Order Adjustments – If a doctor accepts a recommendation, the system updates the order automatically, reducing cognitive load.✔ Shared Savings Incentives – Physicians earn performance bonuses for adopting cost-effective practices. Overcoming Adoption Challenges Initially, clinicians ignored alerts, seeing them as extra work. MultiCare’s solution? Result: The Bigger Picture While cost savings matter, patient care remains the priority. As Dr. Mathews notes: “The real win? Fewer unnecessary needle sticks, faster IV-to-oral transitions, and a better patient experience.” What’s Next? MultiCare plans to expand the tool systemwide, proving that smart analytics + clinician engagement can reduce waste without sacrificing care quality. Advanced analytics in healthcare leverages data to identify and address inefficiencies, ultimately reducing clinical waste by optimizing resource allocation, streamlining operations, and improving patient care, leading to cost savings and better outcomes.  Key Takeaway:By combining AI-driven insights with physician incentives, health systems can cut waste, lower costs, and keep patient care at the forefront. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
pydanticai

Pydantic AI

The evaluation of agentic applications is most effective when integrated into the development process, rather than being an afterthought. For this to succeed, developers must be able to mock both internal and external dependencies of the agent being built. PydanticAI introduces a groundbreaking framework that supports dependency injection from the start, enabling developers to build agentic applications with an evaluation-driven approach. An architectural parallel can be drawn to the historic Krakow Cloth Hall, a structure refined over centuries through evaluation-driven enhancements. Similarly, PydanticAI allows developers to iteratively address challenges during development, ensuring optimal outcomes. Challenges in Developing GenAI Applications Developers of LLM-based applications face recurring challenges, which become significant during production deployment: To address non-determinism, developers must adopt evaluation-driven development, a method akin to test-driven development. This approach focuses on designing software with guardrails, real-time monitoring, and human oversight, accommodating systems that are only x% correct. The Promise of PydanticAI PydanticAI stands out as an agent framework that supports dependency injection, model-agnostic workflows, and evaluation-driven development. Its design is Pythonic and simplifies testing by allowing the injection of mock dependencies. For instance, in contrast to frameworks like Langchain, where dependency injection is cumbersome, PydanticAI streamlines this process, making the workflows more readable and efficient. Building an Evaluation-Driven Application with PydanticAI Example Use Case: Evaluating Mountain Data By employing tools like Wikipedia as a data source, the agent can fetch accurate mountain heights during production. For testing, developers can inject mocked responses, ensuring predictable outputs and faster development cycles. Advancing Agentic Applications with PydanticAI PydanticAI provides the building blocks for creating scalable, evaluation-driven GenAI applications. Its support for dependency injection, structured outputs, and model-agnostic workflows addresses core challenges, empowering developers to create robust and adaptive LLM-powered systems. This paradigm shift ensures that evaluation is seamlessly embedded into the development lifecycle, paving the way for more reliable and efficient agentic applications. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Mastering Sales Forecasting

Mastering Sales Forecasting

Mastering Sales Forecasting: The Art and Science Behind Predicting Revenue Building a sales forecast is both a strategic art and a data-driven science. Accurate sales predictions ensure business stability, keep leadership informed, and enable better decision-making. This guide explores the essentials of sales forecasting, equipping you with the knowledge to create precise revenue projections and align expectations effectively. A Comprehensive Guide to Sales Forecasting Drawing from over 20 years of experience in sales solutions, we’ve structured this guide around the most pressing questions sales teams face in forecasting. If you’re a seasoned sales leader familiar with the basics, you can skip ahead to sections on designing a forecasting strategy and leveraging tools to enhance forecast accuracy. For insights on handling unpredictable market conditions, explore the section on adapting forecasts during uncertainty. Insights from 7,700 Sales Professionals Our latest report unveils how sales professionals drive productivity and efficiency through data-driven forecasting. Understanding Sales Forecasting What Is a Sales Forecast? A sales forecast estimates expected sales revenue over a specific period, such as a quarter or year. The most effective forecasts are highly accurate and rely on data-driven insights. Sales forecasts address two fundamental questions: Achieving these projections requires careful analysis of key factors: By balancing factual data with industry expertise, sales teams improve forecasting precision over time. The Importance of Sales Forecasting Sales forecasting plays a vital role in business operations, influencing everything from inventory management to hiring decisions. Consider these examples: Accurate forecasting enables businesses to plan effectively, ensuring smooth operations and sustained growth. When forecasts align with actual sales, companies can make strategic investments, such as expanding teams or launching new initiatives. Who Is Responsible for Sales Forecasting? Different teams contribute to sales forecasting, including: Ultimately, sales leadership is accountable for the final forecast, ensuring transparency and accuracy throughout the process. Who Uses Sales Forecasts? Sales forecasts impact multiple business functions: At every level, accurate forecasts enhance strategic decision-making and operational efficiency. Objectives of Sales Forecasting The primary goal of sales forecasting is to predict revenue with precision. When forecasts align with actual performance, companies can optimize internal operations and maintain strong external relationships. Key objectives include: A reliable forecast fosters a positive work environment, boosting morale and collaboration. How to Design a Sales Forecasting Plan Sales forecasting is an ongoing process that evolves with business needs. A strong forecasting plan includes: Adapting Sales Forecasts in Uncertain Times Market fluctuations, economic shifts, and global events can disrupt sales forecasts. When uncertainty arises, sales and finance leaders must quickly assess: Leveraging CRM solutions ensures real-time visibility into deal statuses, allowing businesses to pivot strategies as needed. Accurate data collection and analysis enable informed decision-making, mitigating risks in volatile conditions. Sales Forecast Accuracy Based on extensive industry research, most sales leaders achieve forecast accuracy within 10%. Achieving a 5% variance or lower is rare but signifies exceptional forecasting capabilities. Tools for Sales Forecasting The Role of CRM in Forecasting Customer Relationship Management (CRM) systems, such as Salesforce, enhance forecast accuracy by providing: CRM-driven forecasting consolidates opportunities into a structured framework, improving precision through collaborative insights and AI-powered recommendations. How AI Enhances Forecasting AI-powered tools, like Salesforce Einstein, analyze historical data to identify trends and anomalies. AI-driven alerts highlight potential risks, improving forecast reliability and efficiency. Why CRM Outperforms Traditional Methods While spreadsheets suffice for early-stage businesses, scaling companies require CRM solutions for accurate sales forecasting. CRM systems streamline data integration, improving decision-making and revenue predictions. Conclusion Sales forecasting is a critical business function that blends analytical precision with industry expertise. By leveraging CRM tools and AI-driven insights, organizations can refine their forecasting strategies, optimize resource allocation, and drive sustained growth. Let’s continue the conversation and explore how data-driven forecasting can elevate your sales strategy. Contact Tectonic today! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI evolves with tools like Agentforce and Atlas

Salesforce Atlas

Salesforce Atlas: The Brainpower Behind AI-Driven Transformation A New Era of AI for Enterprise AI is reshaping industries at an unprecedented pace, and agentic AI—AI that can think, plan, and act autonomously—is at the forefront of this revolution. Salesforce is leading the charge with Agentforce, a low-code platform that allows businesses to build, refine, and deploy autonomous AI agents across multiple business functions. At the core of this innovation is Salesforce Atlas, the reasoning engine that empowers Agentforce to tackle complex decision-making tasks just like a human. But Atlas goes further—it continuously learns, adapts, and evolves, setting a new standard for AI-driven enterprises. Let’s explore how Atlas works, its capabilities, and why it’s a game-changer for businesses. Salesforce Atlas: The Reasoning Engine Powering Agentforce Atlas is the intelligent decision-making engine that powers Agentforce’s AI agents. Rather than simply following predefined rules, Atlas evaluates data, refines its approach, and continuously learns from outcomes. When an AI agent encounters a decision point, Atlas asks: ➡️ Do I have enough data to ensure accuracy?✔ If yes, it proceeds with a decision.❌ If no, it seeks additional data or escalates the issue. This iterative learning process ensures that AI agents become more reliable, context-aware, and autonomous over time. Salesforce CEO Marc Benioff teased the potential of Atlas, revealing that: 📊 “We are seeing 90-95% resolution on all service and sales issues with the new Atlas.” That’s a staggering success rate, demonstrating how AI-driven reasoning can transform enterprise efficiency and customer engagement. How Salesforce Atlas Works: The “Flywheel” Process Atlas operates using a structured flywheel process that enables self-improvement and adaptability. Here’s how it works: 1️⃣ Data Retrieval – Atlas pulls structured and unstructured data from the Salesforce Data Cloud.2️⃣ Evaluation – It analyzes the data, generates a plan of action, and assesses whether the plan will drive the desired outcome.3️⃣ Refinement – If the plan isn’t strong enough, Atlas loops back, refines its approach, and iterates until it’s confident in its decision. This cycle repeats continuously, ensuring AI agents deliver accurate, data-driven outcomes that align with business goals. Once a task is completed, Atlas learns from the results, refining its approach to become even smarter over time. The Core Capabilities of Salesforce Atlas Atlas stands out because of its advanced reasoning, adaptive learning, and built-in safeguards—all designed to deliver trustworthy, autonomous AI experiences. 1. Advanced Reasoning & Decision-Making Atlas doesn’t just execute tasks; it thinks critically, determining the best way to approach each challenge. Unlike traditional AI models that follow rigid scripts, Atlas: 🔍 Analyzes real-time data to determine the most effective course of action.📊 Refines its decisions dynamically based on live feedback.🌍 Adapts to changing circumstances to optimize outcomes. At Dreamforce 2024, Marc Benioff demonstrated Atlas’s power by showcasing how it could optimize theme park experiences in real time, analyzing: 🎢 Ride availability👥 Guest preferences🚶 Park flow patterns This real-time decision-making showcases the game-changing potential of agentic AI. 2. Advanced Data Retrieval Atlas leverages Retrieval-Augmented Generation (RAG) to pull highly relevant, verified data from multiple sources. This ensures: ✔ More accurate responses✔ Minimized AI hallucinations✔ Reliable, data-driven insights For example, Saks Fifth Avenue uses Atlas to personalize shopping recommendations for millions of customers—tailoring experiences with precision. 3. Built-in Guardrails for Security & Compliance Salesforce recognizes the importance of AI governance, and Atlas includes robust safeguards to ensure responsible AI usage. 🔐 Ethical AI protocols – Ensures compliance with evolving regulations.🚨 Escalation capabilities – AI knows when to seek human intervention for complex issues.🌍 Hyperforce security – Provides enterprise-grade privacy and security standards. These protections ensure Atlas operates securely, responsibly, and at scale across global enterprises. 4. Reinforcement Learning & Continuous Improvement Atlas doesn’t just process data—it learns from outcomes. 🔄 Refines decisions based on real-world results📈 Optimizes performance over time⚡ Becomes increasingly efficient and tailored to business needs Whether it’s increasing sales conversions, resolving service issues, or optimizing workflows, Atlas ensures AI agents grow smarter with every interaction. Why Salesforce Atlas is a Game-Changer Salesforce Atlas isn’t just another AI tool—it’s the brain behind Salesforce’s next-generation AI ecosystem. With Atlas, businesses can: ✅ Automate complex tasks with AI-driven decision-making.✅ Deliver hyper-personalized customer experiences with confidence.✅ Scale AI-powered workflows across sales, service, and operations.✅ Ensure compliance and trust with built-in governance measures.✅ Adapt AI capabilities to meet evolving business needs. Marc Benioff envisions Atlas as the core of a future where AI and humans collaborate to drive innovation and efficiency. By combining advanced reasoning, dynamic adaptability, and enterprise security, Atlas empowers organizations to work smarter, faster, and more effectively—unlocking the full potential of agentic AI. The future of AI-driven enterprise has arrived. With Salesforce Atlas, businesses can build AI agents that don’t just follow instructions—they think, learn, and evolve. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
copilots and agentic ai

Transforming Industries and Redefining Workflows

The Rise of Agentic AI: Transforming Industries and Redefining Workflows Artificial Intelligence (AI) is evolving faster than we anticipated. No longer limited to predicting outcomes or generating content, AI systems are now capable of handling complex tasks and making autonomous decisions. This new era—driven by Agentic AI—is set to redefine the workplace and transform industries. From Prediction to Autonomy: The Three Waves of AI To understand where we’re headed, it’s important to see how far AI has come. Arun Parameswaran, SVP & MD of Salesforce India, describes it as a fundamental shift: “What has changed with agents is their ability to handle complex reasoning… and, most importantly, to take action.” Unlike previous AI models that recommend or predict, Agentic AI executes tasks, reshaping customer experiences and operational workflows. Agentic AI in Action: Industry Applications At a recent Mint x Salesforce India deep-dive event on AI, industry leaders explored how Agentic AI is driving transformation across sectors. The panel featured: Here’s how Agentic AI is already making an impact: 1. Revolutionizing Customer Support Traditional chatbots have limited capabilities. Agentic AI, however, understands urgency and context. 2. Accelerating Business Decisions In finance and supply chain management, AI agents analyze vast amounts of data and execute decisions autonomously. 3. Transforming Travel & Aviation Airlines are leveraging AI to optimize booking systems, reduce costs, and enhance efficiency. 4. Automating Wealth Management AI agents in financial services monitor markets, adjust strategies, and offer personalized investment recommendations in real time. The Risks & Responsibilities of Agentic AI With great autonomy comes great responsibility. The potential of Agentic AI is vast—but so are the challenges: The Future of Work: AI as a Partner, Not a Replacement Despite concerns about job displacement, AI is more likely to reshape rather than replace roles. What Are AI Agents? AI agents go beyond traditional models like ChatGPT or Gemini. They are proactive, self-learning systems that: They fall into two categories: “AI agents don’t just wait for commands; they anticipate needs and act,” says Dr. Tomer Simon, Chief Scientist at Microsoft Research Israel. AI Agents in the Workplace: A Shift in Roles AI agents streamline processes, but they don’t eliminate the need for human oversight. Salesforce’s Agentforce is a prime example: “Companies need to integrate AI, not fear it. Those who fail to adopt AI tools risk drowning in tasks AI can handle,” warns Dr. Omri Allouche, Chief Scientist at Gong. The Road Ahead: AI-Driven Business Growth Agentic AI is not about replacing people—it’s about empowering them. As organizations re-evaluate workflows and embrace AI collaboration, the companies that act early will gain a competitive edge in efficiency and innovation. Final Thought The AI revolution is here, and Agentic AI is at its forefront. The key question isn’t whether AI will transform industries—it’s how organizations will adapt and thrive in this new era. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Einstein Service Agent

It’s been a little over a year since the global surge in GenAI chatbots, sparked by the excitement around ChatGPT. Since then, numerous vendors, both large and mid-sized, have invested heavily in the technology, and many users have already adopted AI-powered chatbots. The competition is intensifying, with CRM giant Salesforce releasing its own GenAI chatbot software, Einstein Service Agent. Einstein Service Agent, built on the Einstein 1 Platform, is Salesforce’s first fully autonomous AI agent. It interacts with large language models (LLMs) by analyzing the context of customer messages to determine the next actions. Utilizing GenAI, the agent generates conversational responses grounded in a company’s trusted business data, including Salesforce CRM data. Salesforce claims that service organizations can now significantly reduce the number of tedious inquiries that hinder productivity, allowing human agents to focus on more complex tasks. For customers, this means getting answers faster without waiting for human agents. Additionally, the service promises 24/7 availability for customer communication in natural language, with an easy handoff to human agents for more complicated issues. Businesses are increasingly turning to AI-based chatbots because, unlike traditional chatbots, they don’t rely on specific programmed queries and can understand context and nuance. Alongside Salesforce, other tech leaders like AWS and Google Cloud have released their own chatbots, such as Amazon Lex and Vertex AI, continuously enhancing their software. Recently, AWS updated its chatbot with the QnAIntent capability in Amazon Lex, allowing integration with a knowledge base in Amazon Bedrock. Similarly, Google released Vertex AI Agent Builder earlier this year, enabling organizations to build AI agents with no code, which can function together with one main agent and subagents. The AI arms race is just beginning, with more vendors developing software to meet market demands. For users, this means that while AI takes over many manual and tedious tasks, the primary challenge will be choosing the right vendor that best suits the needs and resources of their business. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents in Government

AI Agents in Government

AI Agents: A Key to Rebuilding Public Trust in Government Public trust in government services has been in decline for years, but new research from Salesforce suggests that AI agents could play a crucial role in reversing this trend. Citizens worldwide recognize the need for improved government interactions, with 40% reporting difficulties when seeking assistance and over a third unsure of the programs available to them. However, there is strong public support for AI-driven solutions—90% of global respondents indicated they would use an AI agent to engage with their government. AI Agents: A Game-Changer for Public Services The introduction of AI-powered agents presents a transformative opportunity for governments to enhance service delivery, improve response times, and build stronger constituent relationships. With budget constraints making it difficult to expand government workforces, AI agents can augment public servants, allowing them to operate more efficiently without increasing headcount. Imagine a trip to the AI Agent DMV! “It is clear from our research that AI solutions like Salesforce’s Agentforce can help governments streamline and scale services to better meet the needs of their constituents,” says Nasi Jazayeri, Executive Vice President and GM of Public Sector at Salesforce. “As global leaders convene in Davos, we have a tremendous opportunity for the public and private sectors to collaborate and explore how advancements in AI can improve how governments serve their citizens.” Key Findings from Salesforce’s Research Citizens Call for Improved Government Services Growing Public Interest in AI Agents Top Priorities for AI-Driven Government Services When considering AI adoption in public services, global respondents prioritize: The Future of AI in Government As AI technology continues to evolve, its important role in the public sector is becoming increasingly significant. By enhancing accessibility, streamlining processes, and providing real-time assistance, AI-powered agents can help bridge the trust gap between governments and their constituents. With strong public support, governments have a unique opportunity to leverage AI to build more responsive, efficient, and citizen-friendly services—ushering in a new era of digital governance. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents and Digital Transformation

AI Agents Help Streamline Customer Service

AI Agents Help Fisher & Paykel Streamline Customer Service Through Expanded Salesforce Partnership Fisher & Paykel, the New Zealand-based luxury appliance manufacturer, is leveraging AI agents to automate customer service tasks, such as answering frequently asked questions and scheduling service appointments. This initiative is designed to free up employee time for more value-added tasks, enhancing the overall customer service experience. In collaboration with Salesforce, Fisher & Paykel is using autonomous agents that integrate seamlessly with its CRM system, providing agents with greater visibility into customers’ interaction histories. This enables more efficient, data-driven interactions and allows the company to proactively resolve issues, such as freezer temperature irregularities, by automatically notifying customers and helping them schedule necessary appointments. For instance, AI agents can diagnose appliance issues, alert the service team, and assist customers in scheduling repair appointments. These agents also support on-site technicians by providing critical information, such as appointment locations and appliance age, while offering helpful articles and generating post-service summaries. Additionally, the integration of AI agents will enhance collaboration with Fisher & Paykel’s retail, builder, and designer partners. These partners will benefit from more efficient access to inventory information, accurate quotes for multiple products, and streamlined order placement and tracking. Enhancing Automation-Ready Environments This initiative builds on existing capabilities from the partnership, combining AI, data, and CRM functions such as subscription management and consolidated customer engagement data. The results have been impressive: Fisher & Paykel saw a 206% increase in unique email opens and a 112% rise in unique clicks in 2023. They also reduced manual effort by 30 minutes per order and saved up to 3,300 hours through automation in the B2B side of their business, according to Salesforce. In addition to service automation, Fisher & Paykel is tapping into AI-driven automated journeys based on consumer buying signals and cloud-based customer service support that automates appointment confirmations. Rudi Khoury, Chief Digital Officer at Fisher & Paykel, emphasized that customer expectations for efficiency and personalized service align perfectly with the brand’s luxury offerings, highlighting the importance of AI in meeting these demands. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents and Work

Maximizing Generative AI in Learning and Development

Maximizing Generative AI in Learning and DevelopmentHow organisations can harness the power of generative AI to enhance learning and development with strategic integration, best practices, and a culture of continuous growth CREDIT: This is an edited version of an article originally published on Vistage Organisations are increasingly recognising the value of generative AI in learning and development. While your employees may already be using it, they may not yet be maximising its potential due to limited resources or understanding. This article offers strategies for organisations to more effectively leverage generative AI and amplify its impact on their teams. A global survey of 14,000 workers by Salesforce in late 2023 revealed that 28% were already using generative AI at work, with over half doing so without formal approval. Similarly, a 2023 McKinsey report echoed these findings, and these numbers are likely even higher now. A recent study by Harvard Business School and Boston Consulting Group (BCG) highlighted the transformative impact of AI, showing that consultants using generative AI completed tasks 22% faster and produced 40% higher quality work compared to those not using it. Unlocking AI Insights Begin by conducting an internal survey to better understand how your employees are using generative AI. Gather data on the tools they use, how often they use them, and how these tools enhance their work. Frame the survey as an opportunity to learn about their experiences rather than as an evaluation or compliance check. Once you’ve analysed the results, identify employees who are using generative AI in creative and effective ways. These individuals—often informal leaders—can provide valuable insights into the practical applications of AI, as well as the challenges they face and how they overcome them. Fostering a Learning Culture Incorporating generative AI into your organisation’s learning and development strategy helps employees tap into the knowledge of early adopters while aligning AI use with broader organisational goals. Cultivate a culture that prioritises continuous learning and upskilling to stay ahead in the rapidly evolving AI landscape. Regularly update training materials to reflect new advancements in AI. Provide opportunities for employees to attend conferences, webinars, and other educational events to stay current. Encourage peer learning by fostering a culture where employees are motivated to share their experiences, tips, and best practices with one another. Developing Best Practices Leverage the expertise of your AI pioneers to establish best practices that are tailored to your organisation’s needs. Create a collaborative environment where these early adopters can share their experiences and insights, and involve them in the development of formal training programs. This ensures that the content is both relevant and practical for your workforce. Pilot these best practices with a small, controlled group of employees before rolling them out more broadly. This allows you to gather feedback, refine the practices, and address any issues. Additionally, create comprehensive guides, FAQs, and video tutorials to give employees easy access to the information they need. Tracking the progress and outcomes of your AI-related learning initiatives is essential. Use data to customise learning experiences and promote a growth mindset among employees. By integrating generative AI into your learning and development strategy, you can tap into internal expertise to drive innovation and improve efficiency across the organisation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents as Tools of Trust

Reviving Cold Leads with AI Agents

Reviving Cold Leads with AI Agents: Turning Dormant Prospects into Sales Opportunities In sales and marketing, cold or dormant leads often represent untapped potential. AI-powered agents can transform these “dead” leads into engaged prospects by analyzing past interactions, identifying key behavioral patterns, and executing data-driven re-engagement strategies. By leveraging AI, businesses can reignite interest and significantly improve conversion rates, ensuring that no potential customer is left behind. How AI Agents Revive Leads 1. Intelligent Lead Scoring and Prioritization AI can assess historical data, engagement levels, and demographic information to rank leads based on their likelihood to convert. This enables sales teams to focus on high-potential leads while automating engagement with lower-priority ones. 2. Hyper-Personalized Communication AI-driven insights allow businesses to craft highly relevant, tailored messages that align with each lead’s past interactions, preferences, and pain points. 3. Automated Nurture Campaigns AI streamlines lead nurturing through automated workflows that deliver relevant content across multiple channels, ensuring consistent engagement without manual intervention. 4. Predictive Analytics for Lead Conversion By leveraging machine learning models, AI predicts which leads are most likely to convert and recommends the best engagement strategies. 5. Real-Time Dynamic Content Adaptation AI ensures that communication remains relevant by adjusting messaging in real-time based on user behavior and engagement. Key Benefits of Using AI to Revive Leads 1. Increased Conversion Rates AI enhances engagement by delivering highly targeted, relevant messaging, increasing the likelihood of turning cold leads into paying customers. 2. Enhanced Sales Efficiency By automating lead nurturing and prioritization, AI allows sales teams to focus on high-value interactions, reducing manual workload and improving overall efficiency. 3. Cost Reduction and Resource Optimization AI minimizes wasted marketing spend by identifying which leads are worth pursuing, ensuring that budgets are allocated effectively. 4. Scalable and Consistent Engagement AI-powered systems ensure that no lead falls through the cracks, maintaining consistent follow-ups and personalized interactions at scale. 5. Data-Driven Decision Making By continuously analyzing engagement metrics and refining strategies, AI enables sales and marketing teams to make smarter, data-backed decisions. Conclusion AI agents are revolutionizing lead revival by intelligently prioritizing prospects, personalizing communication, and automating engagement strategies. Salesforce Agentforce is leading the charge. By leveraging AI-driven insights and predictive analytics, businesses can transform dormant leads into active opportunities, driving higher conversions and maximizing sales efficiency. As AI technology continues to evolve, its ability to re-engage and convert leads will only become more sophisticated, making it an essential tool for any sales and marketing team. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
salesforce agentforce ai powered agentic agents

Agentforce 2.0

Salesforce, the leading CRM provider, is set to launch Agentforce 2.0 in February 2025—an AI-powered toolset designed as a “digital labor platform for building a limitless workforce for the enterprise.” Agentforce 2.0 is a comprehensive AI system that enhances teams with autonomous AI agents embedded in everyday workflows. Among its key offerings are AI-driven agents for Sales Development and Sales Coaching, with pricing starting at $2 per conversation. With this release, Salesforce introduces a library of pre-built skills and workflow integrations, enabling rapid customization and seamless deployment within Slack. Marc Benioff, Chair and CEO of Salesforce, stated, “We’re seamlessly bringing together AI, data, apps, and automation with humans to reshape how work gets done. Agentforce 2.0 cements our position as the leader in digital labor solutions, allowing any company to build a limitless workforce that can truly transform their business.” Agentforce 2.0 includes pre-built AI skills across CRM, Slack, Tableau, and partner-developed integrations via the AppExchange. Customers can further extend Agentforce’s capabilities using MuleSoft, enabling low-code workflows that integrate with any system. The release also introduces an enhanced Agent Builder, which interprets natural language instructions—such as “Onboard New Product Managers”—to automatically generate new AI agents. These agents combine pre-made skills with custom logic built directly in Salesforce, offering unmatched flexibility and efficiency. Additionally, Agentforce 2.0 features Tableau Skills for advanced analytics and insights, further empowering businesses to harness AI-driven decision-making. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com