Artificial Intelligence Archives - gettectonic.com - Page 4
Prompt Decorators

Prompt Decorators

Prompt Decorators: A Structured Approach to Enhancing AI Responses Artificial intelligence has transformed how we interact with technology, offering powerful capabilities in content generation, research, and problem-solving. However, the quality of AI responses often hinges on how effectively users craft their prompts. Many encounter challenges such as vague answers, inconsistent outputs, and the need for repetitive refinement. Prompt Decorators provide a solution—structured prefixes that guide AI models to generate clearer, more logical, and better-organized responses. Inspired by Python decorators, this method standardizes prompt engineering, making AI interactions more efficient and reliable. The Challenge of AI Prompting While AI models like ChatGPT excel at generating human-like text, their outputs can vary widely based on prompt phrasing. Common issues include: Without a systematic approach, users waste time fine-tuning prompts instead of getting useful answers. What Are Prompt Decorators? Prompt Decorators are simple prefixes added to prompts to modify AI behavior. They enforce structured reasoning, improve accuracy, and customize responses. Example Without a Decorator: “Suggest a name for an AI YouTube channel.”→ The AI may return a basic list of names without justification. Example With +++Reasoning Decorator: “+++Reasoning Suggest a name for an AI YouTube channel.”→ The AI first explains its naming criteria (e.g., clarity, memorability, relevance) before generating suggestions. Key Prompt Decorators & Their Uses Decorator Function Example Use Case +++Reasoning Forces AI to explain logic before answering “+++Reasoning What’s the best AI model for text generation?” +++StepByStep Breaks complex tasks into clear steps “+++StepByStep How do I fine-tune an LLM?” +++Debate Presents pros and cons for balanced discussion “+++Debate Is cryptocurrency a good investment?” +++Critique Evaluates strengths/weaknesses before suggesting improvements “+++Critique Analyze the pros and cons of online education.” +++Refine(N) Iteratively improves responses (N = refinement rounds) “+++Refine(3) Write a tagline for an AI startup.” +++CiteSources Includes references for claims “+++CiteSources Who invented the printing press?” +++FactCheck Prioritizes verified information “+++FactCheck What are the health benefits of coffee?” +++OutputFormat(FMT) Structures responses (JSON, Markdown, etc.) “+++OutputFormat(JSON) List top AI trends in 2024.” +++Tone(STYLE) Adjusts response tone (formal, casual, etc.) “+++Tone(Formal) Write an email requesting a deadline extension.” Why Use Prompt Decorators? Real-World Applications The Future of Prompt Decorators As AI evolves, Prompt Decorators could: Conclusion Prompt Decorators offer a simple yet powerful way to enhance AI interactions. By integrating structured directives, users can achieve more reliable, insightful, and actionable outputs—reducing frustration and unlocking AI’s full potential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Leveraging Data to Enhance Customer Experiences

Leveraging Data to Enhance Customer Experiences

Imagine leveraging your organization’s existing data to enhance customer experiences, enable faster decision-making, and boost efficiency. With the combined power of Data + AI + CRM, this becomes a reality. The Foundation: CRM as the Single Source of Truth At the heart of this transformation is Customer Relationship Management (CRM)—technology that centralizes customer records, providing a unified view for every department. But CRM data alone only tells part of the story. Most businesses store valuable data across various systems. By integrating Artificial Intelligence (AI), you can unify and harness this data to generate insights, automate processes, and create predictive models that drive smarter business decisions. AI: Your Ultimate Business Co-Pilot AI—especially generative AI—is a game-changer. It doesn’t just analyze data; it creates. From predicting customer behavior to generating personalized content, AI enhances productivity and innovation. When AI is integrated with your business systems, it acts as a powerful assistant, uncovering new opportunities and streamlining operations. Even more transformative are autonomous AI agents. These intelligent assistants engage with customers and teams through natural conversations, helping scale operations without increasing workload or costs. How Data + AI + CRM Work Together Each component is powerful alone, but together they create better customer experiences, faster decision-making, and increased efficiency. Let’s explore how this synergy benefits different business areas. Business Area What Data + AI + CRM Can Do Sales AI-generated, hyper-personalized emails streamline prospecting and save reps valuable time. AI agents engage inbound leads via chat, optimizing sales interactions. Customer Service AI auto-generates responses using real-time data, speeding up issue resolution. Post-interaction summaries capture key details for future reference. AI agents provide 24/7 customer support, freeing up human agents for complex cases. Marketing AI analyzes CRM data to generate personalized landing pages and campaign content. Assistive AI identifies trends and helps teams engage audiences more effectively. Commerce AI predicts product demand based on CRM and social data, ensuring optimal inventory and merchandising decisions. AI agents manage site experiences to optimize business operations. IT AI-driven code generation automates repetitive tasks, improving development efficiency and consistency. AI supports low-code solutions, enabling seamless IT operations. Implementing a Trusted Generative AI Strategy The potential of AI is immense, but responsible implementation is key. To build trust and ensure safe, effective AI adoption, focus on these core areas: ✅ Build Trust – Establish ethical AI guidelines, conduct risk assessments, and use transparency tools like the Einstein Trust Layer to mitigate bias. ✅ Ready Your Technology – Align on data metrics, enhance productivity through automation, and unify data under a single source of truth. ✅ Empower Your People – Foster continuous learning, equip teams with AI-driven tools, and customize AI agents to complement human expertise. The Future of Business: Data + AI + CRM AI continues to evolve, offering new ways to drive success. As businesses integrate autonomous agents and AI-driven insights, the potential for growth, efficiency, and customer satisfaction only expands. This is just the beginning—by implementing Data + AI + CRM strategically, your organization is poised to lead in the next era of digital transformation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI and Related Tools Boost Holiday Sales

AI and Related Tools Boost Holiday Sales

AI Drives Holiday Sales in 2024: A Record-Breaking Shopping Season with Rising Returns Artificial intelligence (AI) played a transformative role in shaping the 2024 holiday shopping season, with Salesforce reporting that AI-powered tools influenced $229 billion, or 19%, of global online sales. Based on data from 1.5 billion global shoppers and 1.6 trillion page views, AI tools such as product recommendations, targeted promotions, and customer service significantly boosted sales, marking a 6% year-over-year increase in engagement. Generative AI features, including conversational agents, saw a 25% surge in usage during the holiday period compared to earlier months, further highlighting their role in shaping consumer behavior. Mobile commerce amplified AI’s influence, with nearly 70% of global online sales being placed via smartphones. On Christmas Day alone, mobile orders accounted for 79% of transactions, showcasing the shift toward mobile-first shopping. “Retailers who have embraced AI and conversational agents are already reaping the benefits, but these tools will become even more critical in the new year as retailers aim to minimize revenue losses from returns and reengage with shoppers,” said Caila Schwartz, Salesforce’s Director of Consumer Insights. Record-Breaking Sales and Rising Returns Online sales hit .2 trillion globally and 2 billion in the U.S. during the holiday season, but returns surged to $122 billion globally—a 28% increase compared to 2023. Salesforce attributed this spike to evolving shopping habits like bracketing (buying multiple sizes to ensure fit) and try-on hauls (bulk purchasing for social media content), which have become increasingly common. The surge in returns presents a challenge to retailers, potentially eroding profit margins. To address this, many are turning to AI-powered solutions for streamlining returns processes. According to Salesforce, 75% of U.S. shoppers expressed interest in using AI agents for returns, with one-third showing strong enthusiasm for such tools. The Role of AI in Enhancing the Holiday Shopping Experience AI-powered chatbots saw a 42% year-over-year increase in usage during the holiday season, supporting customers with purchases, returns, and product inquiries. These conversational agents, combined with AI-driven loyalty programs and targeted promotions, were instrumental in engaging customers and increasing conversion rates. AI’s influence extended to social commerce, with platforms like TikTok Shop and Instagram driving 20% of global holiday sales. Personalized recommendations and advertisements, powered by AI algorithms, significantly boosted social media referral traffic, which grew by 8% year-over-year. Mobile Commerce and AI Synergy Mobile devices were the dominant force in holiday shopping, generating 2 billion in global online sales and 5 billion in the U.S. Orders placed via smartphones peaked on Christmas Day, with mobile accounting for 79% of all transactions. This mobile-first trend highlights the growing importance of integrating AI into mobile commerce to enhance the shopping experience. AI Integration Expands Across Retail Operations In the UK, retailers are increasingly leveraging AI to optimize operations and improve personalization. A study by IMRG and Scurri revealed that 57% of UK online retailers used generative AI for content creation in 2024, while 31% implemented AI-informed product search tools. By 2025, 75% of UK retailers plan to adopt AI for marketing efforts, and 42% aim to use AI-powered product information management systems to streamline processes. Tesco, for example, uses AI to analyze Clubcard data, enabling tailored product recommendations, healthier purchasing choices, and waste reduction. Meanwhile, Must Have Ideas, a homeware retailer, has launched an AI-driven TV shopping channel powered by proprietary software, Spark, which automates programming schedules based on real-time stock levels and market trends. Looking Ahead The 2024 holiday season underscored the transformative potential of AI in retail. While AI-powered tools drove record sales and engagement, the rise in returns presents a challenge that retailers must address to protect their bottom line. As AI continues to evolve, its role in shaping consumer behavior, streamlining operations, and enhancing customer experiences will become even more integral in the retail landscape. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
understand ai chatbots

Understand AI Chatbots

AI chatbots are software programs that use artificial intelligence (AI) and natural language processing (NLP) to simulate human-like conversations with users. They can understand and respond to text or voice input, helping with various tasks like customer service, sales, and information retrieval.  How they work: What they can do: Benefits of using AI chatbots: Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
collaboration between humans and AI

The Synergy of AI and Human Expertise in Modern Customer Service

The Balanced Approach to Customer Support In today’s demanding service landscape, businesses face a critical challenge: meeting rising customer expectations while maintaining operational efficiency. Research reveals that 77% of customers demand immediate interaction when contacting companies, while 65% expect organizations to adapt dynamically to their evolving needs. The solution lies not in choosing between artificial intelligence and human representatives, but in strategically combining their complementary strengths. The AI Advantage in Customer Service Artificial intelligence brings transformative capabilities to customer support operations: 1. Operational Efficiency 2. Intelligent Insights 3. Proactive Engagement Platforms like Salesforce’s Agentforce demonstrate AI’s potential, combining around-the-clock availability with continuous learning capabilities that adapt to changing customer needs while operating within established business parameters. The Irreplaceable Human Element While AI excels at efficiency, human representatives provide essential qualities that technology cannot replicate: 1. Emotional Intelligence 2. Complex Problem-Solving 3. Relationship Building The Power of Collaborative Service The most effective customer service strategies integrate AI and human capabilities through: 1. Intelligent Assistance ToolsPlatforms like Service Assistant demonstrate this synergy by: 2. Optimized Workflows 3. Continuous Improvement Implementing an Integrated Service Strategy Organizations can develop this balanced approach through: 1. Strategic Technology Deployment 2. Workforce Development 3. Performance Measurement The Future of Customer Service The most successful service organizations will be those that: By harmonizing artificial intelligence with human expertise, businesses can deliver the responsive, personalized service that modern customers demand while maintaining the authentic connections that build lasting loyalty. This balanced approach represents not just the present of customer service, but its future. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
copilots and agentic ai

Transforming Industries and Redefining Workflows

The Rise of Agentic AI: Transforming Industries and Redefining Workflows Artificial Intelligence (AI) is evolving faster than we anticipated. No longer limited to predicting outcomes or generating content, AI systems are now capable of handling complex tasks and making autonomous decisions. This new era—driven by Agentic AI—is set to redefine the workplace and transform industries. From Prediction to Autonomy: The Three Waves of AI To understand where we’re headed, it’s important to see how far AI has come. Arun Parameswaran, SVP & MD of Salesforce India, describes it as a fundamental shift: “What has changed with agents is their ability to handle complex reasoning… and, most importantly, to take action.” Unlike previous AI models that recommend or predict, Agentic AI executes tasks, reshaping customer experiences and operational workflows. Agentic AI in Action: Industry Applications At a recent Mint x Salesforce India deep-dive event on AI, industry leaders explored how Agentic AI is driving transformation across sectors. The panel featured: Here’s how Agentic AI is already making an impact: 1. Revolutionizing Customer Support Traditional chatbots have limited capabilities. Agentic AI, however, understands urgency and context. 2. Accelerating Business Decisions In finance and supply chain management, AI agents analyze vast amounts of data and execute decisions autonomously. 3. Transforming Travel & Aviation Airlines are leveraging AI to optimize booking systems, reduce costs, and enhance efficiency. 4. Automating Wealth Management AI agents in financial services monitor markets, adjust strategies, and offer personalized investment recommendations in real time. The Risks & Responsibilities of Agentic AI With great autonomy comes great responsibility. The potential of Agentic AI is vast—but so are the challenges: The Future of Work: AI as a Partner, Not a Replacement Despite concerns about job displacement, AI is more likely to reshape rather than replace roles. What Are AI Agents? AI agents go beyond traditional models like ChatGPT or Gemini. They are proactive, self-learning systems that: They fall into two categories: “AI agents don’t just wait for commands; they anticipate needs and act,” says Dr. Tomer Simon, Chief Scientist at Microsoft Research Israel. AI Agents in the Workplace: A Shift in Roles AI agents streamline processes, but they don’t eliminate the need for human oversight. Salesforce’s Agentforce is a prime example: “Companies need to integrate AI, not fear it. Those who fail to adopt AI tools risk drowning in tasks AI can handle,” warns Dr. Omri Allouche, Chief Scientist at Gong. The Road Ahead: AI-Driven Business Growth Agentic AI is not about replacing people—it’s about empowering them. As organizations re-evaluate workflows and embrace AI collaboration, the companies that act early will gain a competitive edge in efficiency and innovation. Final Thought The AI revolution is here, and Agentic AI is at its forefront. The key question isn’t whether AI will transform industries—it’s how organizations will adapt and thrive in this new era. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
salesforce agentforce ai powered agentic agents

AI for Membership Sites

AI for Membership Sites: How Artificial Intelligence is Driving New Revenue for Member-Only Platforms Membership sites are entering a transformative era where “AI is the New UI.” Two recent developments illustrate this trend and underscore how artificial intelligence is redefining user interaction and unlocking new revenue streams. The first insight comes from Dr. John Sviokla’s Forbes article, “AI Is The New UI: 3 Steps Business Leaders Must Take Now”. Sviokla emphasizes a fundamental shift: “For decades, we’ve interacted with technology through screens, buttons, and menus. But a fundamental shift is underway — artificial intelligence is becoming the new user interface.” The second example involves a large members-only association in the airline industry. This organization has implemented custom AI chatbots within its member portal to address a growing challenge: members no longer have time to sift through lengthy PDFs or dense slide decks. Instead, they crave fast, ChatGPT-style access to information—and they’re willing to pay for it. A Paradigm Shift in User Interfaces Historically, intuitive gestures and responsive designs revolutionized how people interacted with technology. Today, AI is driving the next evolution, moving interfaces from static designs to dynamic, user-centric experiences. Dr. Sviokla notes: “This transformation isn’t just about chatbots; it’s about AI becoming the primary means through which we interact with systems, data, and machines. For business leaders, this shift represents both an opportunity and an imperative to reimagine how their organizations engage with customers and operate internally.” AI-powered interfaces offer users immediate, conversational, and personalized access to information, bypassing the traditional maze of links and menus. For membership sites, this evolution is particularly significant, as it transforms how members interact with content and services. The “ChatGPT Effect” on Membership Sites The rise of ChatGPT has shifted consumer expectations for digital interactions. Websites are now adopting chatbots and virtual assistants that provide tailored experiences. For membership sites, this technology enables: For example, organizations are deploying AI assistants on their websites to handle various functions, such as sales inquiries, product support, and pricing guidance. These tools enhance member satisfaction and provide opportunities for new revenue streams. AI as a Revenue Generator Membership sites leveraging AI are seeing measurable financial benefits. Consider a crypto token regulation platform that integrated custom AI chatbots. These tools allow members to interact with proprietary data in real time, transforming static content into a dynamic, accessible resource. This shift has significantly increased the platform’s value proposition, attracting and retaining members willing to pay a premium for enhanced access. Starting Small: A Scalable Approach to AI Implementing AI doesn’t require a complete system overhaul. Membership sites can begin with a simple, custom chatbot built using existing content, such as publicly available documents or FAQs. By monitoring member interactions and gathering feedback, organizations can gradually expand their AI capabilities. The key is to focus on enhancing the member experience. Missteps often occur when organizations adopt overly complex solutions that fail to address real user needs. A phased approach ensures AI integration adds value and aligns with member expectations. The Future of AI in Membership Sites The potential for AI in membership sites extends far beyond chatbots. Future applications include: For example, the Martin Trust Center for MIT Entrepreneurship recently launched an AI-powered tool specifically designed to serve its members. These types of innovations highlight how AI can enhance the member experience while driving operational and financial success. Reimagining Member Engagement Membership sites that embrace AI as a foundational component of their user experience are positioning themselves for long-term success. By focusing on solving real problems and delivering meaningful interactions, organizations can strengthen member relationships and drive sustainable growth. For membership sites, the question is no longer whether to adopt AI but how quickly they can integrate it. AI represents an opportunity—and an imperative—to transform the way members interact with content, data, and services. The sites that act now will set the standard for the future of member-driven platforms. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Opportunity Scoring with Einstein

Agentforce Versus Einstein

Salesforce offers a variety of tools and platforms to help businesses manage customer relationships, automate processes, and leverage AI for better decision-making. Two of its prominent offerings in the customer service and AI space are Service Cloud (Agent Console) and Einstein AI. Here’s a comparison of Agent Console (part of Service Cloud) and Einstein: 1. Salesforce Agent Console (Service Cloud) The Agent Console is a core component of Salesforce’s Service Cloud, which is designed to help customer service agents manage cases, interactions, and customer data efficiently. Key Features: Use Case: The Agent Console is ideal for customer service teams that need a centralized platform to manage customer interactions and resolve issues quickly. 2. Salesforce Einstein Einstein is Salesforce’s AI platform that integrates artificial intelligence across Salesforce products, including Service Cloud, Sales Cloud, Marketing Cloud, and more. It provides predictive analytics, automation, and personalized recommendations. Key Features: Use Case: Einstein is ideal for organizations looking to leverage AI to enhance customer service, improve decision-making, and automate routine tasks. Agent Console vs. Einstein: Key Differences Feature/Aspect Agent Console (Service Cloud) Einstein AI Purpose Centralized platform for managing customer service operations. AI-powered insights, automation, and personalization. Core Functionality Case management, omnichannel support, and agent productivity tools. Predictive analytics, chatbots, and AI-driven recommendations. Automation Workflow automation for case management and task routing. AI bots and automated responses for customer inquiries. Insights Basic reporting and analytics for agent performance. Advanced predictive analytics and AI-driven insights. Integration Part of Service Cloud, focused on customer service. Integrated across Salesforce products (Sales, Service, Marketing, etc.). User Interaction Primarily used by customer service agents. Used by agents, managers, and customers (via bots). How They Work Together The Agent Console and Einstein are not mutually exclusive; they complement each other. For example: Which One Should You Use? In many cases, businesses use both together to create a seamless, AI-enhanced customer service experience. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Salesforce and AWS-Agentic Enterprise

Salesforce and AWS: Driving the Future of the Agentic Enterprise As AI-powered agents redefine the way businesses operate, strategic partnerships are playing a pivotal role in harnessing the power of data and artificial intelligence. Salesforce and AWS, two industry leaders, have taken significant steps toward building a smarter, agentic enterprise through their expanded collaboration. One year into this strategic partnership, their joint efforts are delivering transformative AI and data solutions, helping customers like Buyers Edge Platform unlock new efficiencies and capabilities. A Partnership Fueling Agentic AI Salesforce and AWS are aligning their AI and data initiatives to pave the way for advanced agentic systems—autonomous AI agents designed to enhance business operations and customer experiences. Among their notable achievements over the past year are: These innovations are creating an ecosystem that supports the delivery of agentic AI, enabling businesses to streamline operations and tap into new value from their data. “By integrating data and AI capabilities across our platforms, Salesforce and AWS are building a strong foundation for the future of agentic systems,” said Brian Landsman, EVP of Global Business Development and Technology Partnerships at Salesforce. “With a majority of large companies planning to implement agents by 2027, organizations need trusted partners to help them achieve their vision of a smarter enterprise.” Making AI More Accessible Salesforce is simplifying access to AI technology through the AWS Marketplace, offering customers an integrated solution that includes Agentforce—the agentic layer of the Salesforce platform. Agentforce enables businesses to deploy autonomous AI agents across various operations, streamlining workflows and delivering measurable results. Available in 23 countries, Salesforce’s presence on AWS Marketplace offers customers key advantages, including: By removing barriers to adoption, Salesforce and AWS empower companies to focus on leveraging technology for growth rather than navigating complex procurement systems. A New Era of Enterprise Efficiency As businesses increasingly rely on data and AI to remain competitive, the Salesforce-AWS partnership is setting the stage for enterprises to achieve more with agentic systems. These systems allow companies to execute complex tasks with unprecedented efficiency, maximizing ROI on technology investments. “Our partnership with Salesforce empowers mutual customers to realize the full potential of their data and AI investments,” said Chris Grusz, Managing Director of Technology Partnerships at AWS. “Together, we’re delivering immediate, actionable insights with agentic AI, enabling organizations to automate strategically and unlock more value across their operations.” Looking Ahead By seamlessly integrating data and AI capabilities, Salesforce and AWS are not just building technology solutions—they’re reshaping how enterprises operate and thrive in the digital age. As agentic AI becomes an essential part of business strategy, this partnership provides a blueprint for leveraging technology to drive smarter, more agile, and more effective enterprises. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Unlocking the Future of AI with Phidata

Data Masking Explained

What is Data Masking? Data masking is a crucial data security technique that replaces sensitive information with realistic yet fictitious values, ensuring the original data remains protected from unauthorized access. This method secures sensitive data—such as personally identifiable information (PII), financial records, or proprietary business data—while still allowing it to be used for testing, development, or analytics. An effective data masking solution should include these core features: Data masking plays a vital role in data governance, helping organizations control access to sensitive information while balancing security and usability. Why Does Data Masking Matter for AI and Agent Testing? As artificial intelligence continues to drive business transformation, it relies heavily on data to train models, generate insights, and automate workflows. However, using real customer and enterprise data in AI development poses significant privacy risks. Data masking mitigates these risks by enabling AI systems to train on realistic yet anonymized datasets, keeping sensitive production data secure. Protecting Sensitive Data Testing AI-powered Salesforce applications often requires realistic datasets, including PII, financial information, and confidential business records. Using unmasked data in non-production environments increases exposure risks, such as insider threats, misconfigurations, or accidental leaks. By replacing sensitive data with masked equivalents, organizations can maintain privacy while enabling effective development and testing. Ensuring Compliance with Data Protection Regulations Regulatory frameworks like GDPR, CCPA, and HIPAA impose strict requirements for handling sensitive data—even in testing environments. GDPR, for example, mandates pseudonymization or anonymization to protect privacy. Failure to implement proper data masking strategies can result in severe fines and reputational damage. Masking ensures compliance while maintaining a secure foundation for Salesforce testing. Enhancing Test Accuracy AI-driven Salesforce applications require realistic testing scenarios to ensure functionality and accuracy. Masked data preserves the structure and variability of original CRM datasets, allowing developers to simulate real-world interactions without exposing sensitive information. This approach improves test precision and accelerates the deployment of high-quality applications. Reducing Bias and Promoting Fairness Data masking also supports fairness in AI models by removing personally identifiable details that could unintentionally introduce bias. Anonymizing sensitive attributes helps organizations build ethical, unbiased AI systems that support diverse and equitable outcomes. Key Considerations for Implementing Data Masking To effectively implement data masking in Salesforce environments, organizations should consider the following: Define Scope and Objectives Before masking data, determine what needs protection—whether it’s customer records, financial transactions, or proprietary insights. Align masking strategies with business goals, such as development, testing, or compliance, to ensure maximum effectiveness. Select the Right Masking Techniques Different masking methods serve distinct purposes: By integrating data masking into privacy-first strategies, organizations not only ensure compliance but also foster secure innovation and long-term digital trust. A Privacy-First Approach to AI Development As privacy becomes a defining factor in AI and trust-driven application development, data masking is an essential safeguard for security, compliance, and ethical innovation. For organizations leveraging Salesforce AI solutions like Agentforce, masking enables the safe use of realistic but anonymized datasets, ensuring privacy while accelerating AI-driven transformation. Start with Salesforce’s built-in data masking tools to secure sensitive information and empower secure, compliant, and forward-thinking AI development. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
From Chatbots to Agentic AI

From Chatbots to Agentic AI

The transition from LLM-powered chatbots to agentic systems, or agentic AI, can be summed up by the old saying: “Less talk, more action.” Keeping up with advancements in AI can be overwhelming, especially when managing an existing business. The speed and complexity of innovation can make it feel like the first day of school all over again. This insight offers a comprehensive look at AI agents, their components, and key characteristics. The introductory section breaks down the elements that form the term “AI agent,” providing a clear definition. After establishing this foundation, we explore the evolution of LLM applications, particularly the shift from traditional chatbots to agentic systems. The goal is to understand why AI agents are becoming increasingly vital in AI development and how they differ from LLM-powered chatbots. By the end of this guide, you will have a deeper understanding of AI agents, their potential applications, and their impact on organizational workflows. For those of you with a technical background who prefer to get hands-on, click here for the best repository for AI developers and builders. What is an AI Agent? Components of AI Agents To understand the term “AI agent,” we need to examine its two main components. First, let’s consider artificial intelligence, or AI. Artificial Intelligence (AI) refers to non-biological intelligence that mimics human cognition to perform tasks traditionally requiring human intellect. Through machine learning and deep learning techniques, algorithms—especially neural networks—learn patterns from data. AI systems are used for tasks such as detection, classification, and prediction, with content generation becoming a prominent domain due to transformer-based models. These systems can match or exceed human performance in specific scenarios. The second component is “agent,” a term commonly used in both technology and human contexts. In computer science, an agent refers to a software entity with environmental awareness, able to perceive and act within its surroundings. A computational agent typically has the ability to: In human contexts, an agent is someone who acts on behalf of another person or organization, making decisions, gathering information, and facilitating interactions. They often play intermediary roles in transactions and decision-making. To define an AI agent, we combine these two perspectives: it is a computational entity with environmental awareness, capable of perceiving inputs, acting with tools, and processing information using foundation models backed by both long-term and short-term memory. Key Components and Characteristics of AI Agents From LLMs to AI Agents Now, let’s take a step back and understand how we arrived at the concept of AI agents, particularly by looking at how LLM applications have evolved. The shift from traditional chatbots to LLM-powered applications has been rapid and transformative. Form Factor Evolution of LLM Applications Traditional Chatbots to LLM-Powered Chatbots Traditional chatbots, which existed before generative AI, were simpler and relied on heuristic responses: “If this, then that.” They followed predefined rules and decision trees to generate responses. These systems had limited interactivity, with the fallback option of “Speak to a human” for complex scenarios. LLM-Powered Chatbots The release of OpenAI’s ChatGPT on November 30, 2022, marked the introduction of LLM-powered chatbots, fundamentally changing the game. These chatbots, like ChatGPT, were built on GPT-3.5, a large language model trained on massive datasets. Unlike traditional chatbots, LLM-powered systems can generate human-like responses, offering a much more flexible and intelligent interaction. However, challenges remained. LLM-powered chatbots struggled with personalization and consistency, often generating plausible but incorrect information—a phenomenon known as “hallucination.” This led to efforts in grounding LLM responses through techniques like retrieval-augmented generation (RAG). RAG Chatbots RAG is a method that combines data retrieval with LLM generation, allowing systems to access real-time or proprietary data, improving accuracy and relevance. This hybrid approach addresses the hallucination problem, ensuring more reliable outputs. LLM-Powered Chatbots to AI Agents As LLMs expanded, their abilities grew more sophisticated, incorporating advanced reasoning, multi-step planning, and the use of external tools (function calling). Tool use refers to an LLM’s ability to invoke specific functions, enabling it to perform more complex tasks. Tool-Augmented LLMs and AI Agents As LLMs became tool-augmented, the emergence of AI agents followed. These agents integrate reasoning, planning, and tool use into an autonomous, goal-driven system that can operate iteratively within a dynamic environment. Unlike traditional chatbot interfaces, AI agents leverage a broader set of tools to interact with various systems and accomplish tasks. Agentic Systems Agentic systems—computational architectures that include AI agents—embody these advanced capabilities. They can autonomously interact with systems, make decisions, and adapt to feedback, forming the foundation for more complex AI applications. Components of an AI Agent AI agents consist of several key components: Characteristics of AI Agents AI agents are defined by the following traits: Conclusion AI agents represent a significant leap from traditional chatbots, offering greater autonomy, complexity, and interactivity. However, the term “AI agent” remains fluid, with no universal industry standard. Instead, it exists on a continuum, with varying degrees of autonomy, adaptability, and proactive behavior defining agentic systems. Value and Impact of AI Agents The key benefits of AI agents lie in their ability to automate manual processes, reduce decision-making burdens, and enhance workflows in enterprise environments. By “agentifying” repetitive tasks, AI agents offer substantial productivity gains and the potential to transform how businesses operate. As AI agents evolve, their applications will only expand, driving new efficiencies and enabling organizations to leverage AI in increasingly sophisticated ways. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce AI Research Introduces BLIP-3-Video

Salesforce AI Research Introduces BLIP-3-Video

Salesforce AI Research Introduces BLIP-3-Video: A Groundbreaking Multimodal Model for Efficient Video Understanding Vision-language models (VLMs) are transforming artificial intelligence by merging visual and textual data, enabling advancements in video analysis, human-computer interaction, and multimedia applications. These tools empower systems to generate captions, answer questions, and support decision-making, driving innovation in industries like entertainment, healthcare, and autonomous systems. However, the exponential growth in video-based tasks has created a demand for more efficient processing solutions that can manage the vast amounts of visual and temporal data inherent in videos. The Challenge of Scaling Video Understanding Existing video-processing models face significant inefficiencies. Many rely on processing each frame individually, creating thousands of visual tokens that demand extensive computational resources. This approach struggles with long or complex videos, where balancing computational efficiency and accurate temporal understanding becomes crucial. Attempts to address this issue, such as pooling techniques used by models like Video-ChatGPT and LLaVA-OneVision, have only partially succeeded, as they still produce thousands of tokens. Introducing BLIP-3-Video: A Breakthrough in Token Efficiency To tackle these challenges, Salesforce AI Research has developed BLIP-3-Video, a cutting-edge vision-language model optimized for video processing. The key innovation lies in its temporal encoder, which reduces visual tokens to just 16–32 tokens per video, significantly lowering computational requirements while maintaining strong performance. The temporal encoder employs a spatio-temporal attentional pooling mechanism, selectively extracting the most informative data from video frames. By consolidating spatial and temporal information into compact video-level tokens, BLIP-3-Video streamlines video processing without sacrificing accuracy. Efficient Architecture for Scalable Video Tasks BLIP-3-Video’s architecture integrates: This design ensures that the model efficiently captures essential temporal information while minimizing redundant data. Performance Highlights BLIP-3-Video demonstrates remarkable efficiency, achieving accuracy comparable to state-of-the-art models like Tarsier-34B while using a fraction of the tokens: For context, Tarsier-34B requires 4608 tokens for eight video frames, whereas BLIP-3-Video achieves similar results with only 32 tokens. On multiple-choice tasks, the model excelled: These results highlight BLIP-3-Video as one of the most token-efficient models in video understanding, offering top-tier performance while dramatically reducing computational costs. Advancing AI for Real-World Video Applications BLIP-3-Video addresses the critical challenge of token inefficiency, proving that complex video data can be processed effectively with far fewer resources. Developed by Salesforce AI Research, the model paves the way for scalable, real-time video processing across industries, including healthcare, autonomous systems, and entertainment. By combining efficiency with high performance, BLIP-3-Video sets a new standard for vision-language models, driving the practical application of AI in video-based systems. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Captivates the World

AI Captivates the World

In the late 1990s, a transformative moment unfolded that expanded the world to enquiring minds—the screeching of a dial-up modem, followed by a pixelated “Welcome” screen that connected users to a vast, invisible network spanning the globe. The internet revolution redefined how people interacted with information and one another, permanently reshaping digital communication. Fast forward to 2024, and a similar wave of innovation is underway. Artificial intelligence is captivating the world with its ability to understand, create, and process information. Massive datasets can now be uploaded to AI tools, which instantly distill complex insights—tasks that once took teams of analysts weeks to complete are now executed in seconds. Just as the internet linked people and information, AI is deepening connectivity across all aspects of life, from healthcare and finance to workplaces and homes. In this evolving digital divide, designers hold a critical role—not only in making AI usable but in ensuring it remains understandable, trustworthy, and human-centered. As Fei-Fei Li, Co-Director of Stanford’s Human-Centered AI Institute, states, “If we want machines to think, we need to teach them to see.” The traditional linear process of problem ideation, design, prototyping, and delivery is no longer sufficient for AI design. Instead, designers find themselves on an “AI design rollercoaster”—a dynamic cycle of constant iteration. One day, a seemingly impossible feature is prototyped, and the next, the entire approach pivots due to breakthroughs in large language model (LLM) capabilities. Many teams develop working prototypes before even defining their target audience. It is akin to painting a landscape from a moving train—compelling, challenging, and occasionally bewildering. However, this state of flux is where innovation thrives. Strategies for Designers: Understanding AI’s Capabilities and Limitations Designing for AI requires an understanding of its strengths and weaknesses. While designers do not need to become machine learning engineers, they must grasp AI fundamentals to communicate effectively with technical teams. For example, neural networks excel at recognizing patterns in unstructured data but often struggle with logical reasoning. Recognizing these limitations prevents the development of features that sound promising in theory but fail in practice. Strategies for Designers: Designing for Data Scalability Data is the lifeblood of AI systems, yet its quality and availability fluctuate over time. Designers must create interfaces that can adapt to changing data landscapes. For instance, an AI-powered personal finance app may initially rely on basic transaction data but later incorporate richer datasets for advanced investment recommendations. Interfaces should be modular and scalable, capable of accommodating evolving AI functionalities. Strategies for Designers: The Role of Prototyping in AI Design Static wireframes and basic mockups are insufficient for AI-driven products. AI prototypes must capture the responsive, dynamic nature of intelligent systems. Interactive prototypes offer stakeholders a tangible preview of AI’s potential, highlighting both opportunities and challenges early in the design process. Strategies for Designers: Developing AI Design Intuition To navigate AI design effectively, professionals must cultivate an “AI design sixth sense”—an intuitive understanding of what works well in AI-driven interactions. Immersing in AI experiences, exploring different tools, and analyzing emerging design patterns help build this expertise. Strategies for Designers: Pushing Boundaries in AI Design There are no established rulebooks for AI design—only a vast frontier waiting to be explored. The absence of rigid norms offers designers the freedom to experiment and push boundaries. Some of the most groundbreaking innovations stem from unconventional ideas once deemed impractical. Strategies for Designers: Strengthening Collaboration Between Design and Engineering In AI product design, the traditional “design then handoff” model is giving way to a more integrated approach. Designers and engineers increasingly work in tandem, refining AI experiences through continuous iteration. Some of the most effective design solutions emerge from close collaboration with technical teams. Strategies for Designers: The Next Frontier of Design As AI design continues to evolve, the parallels to the early days of the internet are striking. The excitement, potential, and magnitude of change are reminiscent of Web 1.0, yet amplified in scope. Looking ahead, the field must address profound questions: Will AI become indistinguishable from human intelligence? Will designers craft interfaces for AI-human hybrids yet to be imagined? Designers play an essential role in shaping this future—not as passive observers, but as architects of the next digital revolution. The experiences they create will define humanity’s interactions with artificial intelligence. This responsibility should inspire innovation, challenge conventions, and push the boundaries of what is possible. Call to Action Begin the AI design journey today. Choose an AI tool, explore its interface, and analyze its capabilities. Identify strengths, weaknesses, and opportunities for improvement. Share insights with fellow designers and contribute to the evolving conversation on AI design. The next breakthrough may arise from a single moment of curiosity. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
ai

2024 The Year of Generative AI

Was 2024 the Year Generative AI Delivered? Here’s What Happened Industry experts hailed 2024 as the year generative AI would take center stage. Operational use cases were emerging, technology was simplifying access, and general artificial intelligence felt imminent. So, how much of that actually came true? Well… sort of. As the year wraps up, some predictions have hit their mark, while others — like general AI — remain firmly in development. Let’s break down the trends, insights from investor Tomasz Tunguz, and what’s ahead for 2025. 1. A World Without Reason Three years into our AI evolution, businesses are finding value, but not universally. Tomasz Tunguz categorizes AI’s current capabilities into: While prediction and search have gained traction, reasoning models still struggle. Why? Model accuracy. Tunguz notes that unless a model has repeatedly seen a specific pattern, it falters. For example, an AI generating an FP&A chart might succeed — but introduce a twist, like usage-based billing, and it’s lost. For now, copilots and modestly accurate search reign supreme. 2. Process Over Tooling A tool’s value lies in how well it fits into established processes. As data teams adopt AI, they’re realizing that production-ready AI demands robust processes, not just shiny tools. Take data quality — a critical pillar for AI success. Sampling a few dbt tests or point solutions won’t cut it anymore. Teams need comprehensive solutions that deliver immediate value. In 2025, expect a shift toward end-to-end platforms that simplify incident management, enhance data quality ownership, and enable domain-level solutions. The tools that integrate seamlessly and address these priorities will shape AI’s future. 3. AI: Cost Cutter, Not Revenue Generator For now, AI’s primary business value lies in cost reduction, not revenue generation. Tools like AI-driven SDRs can increase sales pipelines, but often at the cost of quality. Instead, companies are leveraging AI to cut costs in areas like labor. Examples include Klarna reducing two-thirds of its workforce and Microsoft boosting engineering productivity by 50-75%. Cost reduction works best in scenarios with repetitive tasks, hiring challenges, or labor shortages. Meanwhile, specialized services like EvenUp, which automates legal demand letters, show potential for revenue-focused AI use cases. 4. A Slower but Smarter Adoption Curve While 2023 saw a wave of experimentation with AI, 2024 marked a period of reflection. Early adopters have faced challenges with implementation, ROI, and rapidly changing tech. According to Tunguz, this “dress rehearsal” phase has informed organizations about what works and what doesn’t. Heading into 2025, expect a more calculated wave of AI adoption, with leaders focusing on tools that deliver measurable value — and faster. 5. Small Models for Big Gains In enterprise AI, small, fine-tuned models are gaining favor over massive, general-purpose ones. Why? Small models are cheaper to run and often outperform their larger counterparts when fine-tuned for specific tasks. For example, training an 8-billion-parameter model on 10,000 support tickets can yield better results than a general model trained on a broad corpus. Legal and cost challenges surrounding large proprietary models further push enterprises toward smaller, open-source solutions, especially in highly regulated industries. 6. Blurring Lines Between Analysts and Engineers The demand for data and AI solutions is driving a shift in responsibilities. AI-enabled pipelines are lowering barriers to entry, making self-serve data workflows more accessible. This trend could consolidate analytical and engineering roles, streamlining collaboration and boosting productivity in 2025. 7. Synthetic Data: A Necessary Stopgap With finite real-world training data, synthetic datasets are emerging as a stopgap solution. Tools like Tonic and Gretel create synthetic data for AI training, particularly in regulated industries. However, synthetic data has limits. Over time, relying too heavily on it could degrade model performance, akin to a diet lacking fresh nutrients. The challenge will be finding a balance between real and synthetic data as AI advances. 8. The Rise of the Unstructured Data Stack Unstructured data — long underutilized — is poised to become a cornerstone of enterprise AI. Only about half of unstructured data is analyzed today, but as AI adoption grows, this figure will rise. Organizations are exploring tools and strategies to harness unstructured data for training and analytics, unlocking its untapped potential. 2025 will likely see the emergence of a robust “unstructured data stack” designed to drive business value from this vast, underutilized resource. 9. Agentic AI: Not Ready for Prime Time While AI copilots have proven useful, multi-step AI agents still face significant challenges. Due to compounding accuracy issues (e.g., 90% accuracy over three steps drops to ~50%), these agents are not yet ready for production use. For now, agentic AI remains more of a conversation piece than a practical tool. 10. Data Pipelines Are Growing, But Quality Isn’t As enterprises scale their AI efforts, the number of data pipelines is exploding. Smaller, fine-tuned models are being deployed at scale, often requiring hundreds of millions of pipelines. However, this rapid growth introduces data quality risks. Without robust quality management practices, teams risk inconsistent outputs, bottlenecks, and missed opportunities. Looking Ahead to 2025 As AI evolves, enterprises will face growing pains, but the opportunities are undeniable. From streamlining processes to leveraging unstructured data, 2025 promises advancements that will redefine how organizations approach AI and data strategy. The real challenge? Turning potential into measurable, lasting impact. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com