Laws Archives - gettectonic.com
ViUniT: A Breakthrough AI Framework for Reliable Visual Unit Testing in AI

ViUniT: A Breakthrough AI Framework for Reliable Visual Unit Testing in AI

Salesforce AI, in collaboration with the University of Pennsylvania, has introduced ViUniT (Visual Unit Testing)—a pioneering AI framework designed to improve the reliability of visual programs by automatically generating unit tests. By leveraging large language models (LLMs) and diffusion models, ViUniT enhances the logical correctness of visual reasoning systems, ensuring AI models produce accurate and justifiable results. The Challenge: Ensuring Logical Soundness in Visual Programs Visual programming has gained prominence in AI, particularly in computer vision, object detection, image captioning, and visual question answering (VQA). These systems excel at modularizing complex reasoning tasks, but their correctness remains a critical challenge. Unlike traditional text-based programming, where syntax errors and logic flaws can be easily debugged, visual programs often produce seemingly correct answers for incorrect reasons, making them unreliable. Recent studies highlight this issue: To address these challenges, systematic testing and verification frameworks are essential to ensure visual programs function as intended. Introducing ViUniT: A New Approach to Visual Program Reliability ViUniT is designed to systematically evaluate visual programs by generating unit tests in the form of image-answer pairs. Unlike conventional unit testing, which is primarily used for text-based applications, ViUniT focuses on: How ViUniT Works Key Applications of ViUniT ViUniT introduces four major innovations to improve model reliability: Performance & Key Findings ViUniT was extensively tested on three benchmark datasets: GQA, SugarCREPE, and Winoground, demonstrating significant improvements in model accuracy and reliability. 🔹 ViUniT improved model accuracy by 11.4% on average across datasets.🔹 Reduced logically flawed programs by 40%, ensuring models reason correctly.🔹 Enabled open-source 7B models to outperform GPT-4o-mini by 7.7%.🔹 ViUniT-based re-prompting improved performance by 7.5 percentage points compared to error-based re-prompting.🔹 Reinforcement learning strategies within ViUniT outperformed correctness-based reward strategies by 1.3%.🔹 Successfully identified unreliable programs, enhancing answer refusal strategies and reducing false confidence. Conclusion: A New Standard for Visual AI Testing ViUniT marks a significant step forward in AI-driven unit testing for visual programs, ensuring that AI models not only provide correct answers but also follow logically sound reasoning. By integrating LLMs, diffusion models, and reinforcement learning, this framework enhances trust, accuracy, and reliability in visual AI systems. As AI continues to evolve, ViUniT sets a new standard for validating and refining visual reasoning models, paving the way for more dependable AI-driven applications. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Generative AI in Marketing

Generative AI in Marketing

Generative Artificial Intelligence (GenAI) continues to reshape industries, providing product managers (PMs) across domains with opportunities to embrace AI-focused innovation and enhance their technical expertise. Over the past few years, GenAI has gained immense popularity. AI-enabled products have proliferated across industries like a rapidly expanding field of dandelions, fueled by abundant venture capital investment. From a product management perspective, AI offers numerous ways to improve productivity and deepen strategic domain knowledge. However, the fundamentals of product management remain paramount. This discussion underscores why foundational PM practices continue to be indispensable, even in the evolving landscape of GenAI, and how these core skills can elevate PMs navigating this dynamic field. Why PM Fundamentals Matter, AI or Not Three core reasons highlight the enduring importance of PM fundamentals and actionable methods for excelling in the rapidly expanding GenAI space. 1. Product Development is Inherently Complex While novice PMs might assume product development is straightforward, the reality reveals a web of interconnected and dynamic elements. These may include team dependencies, sales and marketing coordination, internal tooling managed by global teams, data telemetry updates, and countless other tasks influencing outcomes. A skilled product manager identifies and orchestrates these moving pieces, ensuring product growth and delivery. This ability is often more impactful than deep technical AI expertise (though having both is advantageous). The complexity of modern product development is further amplified by the rapid pace of technological change. Incorporating AI tools such as GitHub Copilot can accelerate workflows but demands a strong product culture to ensure smooth integration. PMs must focus on fundamentals like understanding user needs, defining clear problems, and delivering value to avoid chasing fleeting AI trends instead of solving customer problems. While AI can automate certain tasks, it is limited by costs, specificity, and nuance. A PM with strong foundational knowledge can effectively manage these limitations and identify areas for automation or improvement, such as: 2. Interpersonal Skills Are Irreplaceable As AI product development grows more complex, interpersonal skills become increasingly critical. PMs work with diverse teams, including developers, designers, data scientists, marketing professionals, and executives. While AI can assist in specific tasks, strong human connections are essential for success. Key interpersonal abilities for PMs include: Stakeholder management remains a cornerstone of effective product management. PMs must build trust and tailor their communication to various audiences—a skill AI cannot replicate. 3. Understanding Vertical Use Cases is Essential Vertical use cases focus on niche, specific tasks within a broader context. In the GenAI ecosystem, this specificity is exemplified by AI agents designed for narrow applications. For instance, Microsoft Copilot includes a summarization agent that excels at analyzing Word documents. The vertical AI market has experienced explosive growth, valued at .1 billion in 2024 and projected to reach .1 billion by 2030. PMs are crucial in identifying and validating these vertical use cases. For example, the team at Planview developed the AI Assistant “Planview Copilot” by hypothesizing specific use cases and iteratively validating them through customer feedback and data analysis. This approach required continuous application of fundamental PM practices, including discovery, prioritization, and feedback internalization. PMs must be adept at discovering vertical use cases and crafting strategies to deliver meaningful solutions. Key steps include: Conclusion Foundational product management practices remain critical, even as AI transforms industries. These core skills ensure that PMs can navigate the challenges of GenAI, enabling organizations to accelerate customer value in work efficiency, time savings, and quality of life. By maintaining strong fundamentals, PMs can lead their teams to thrive in an AI-driven future. AI Agents on Madison Avenue: The New Frontier in Advertising AI agents, hailed as the next big advancement in artificial intelligence, are making their presence felt in the world of advertising. Startups like Adaly and Anthrologic are introducing personalized AI tools designed to boost productivity for advertisers, offering automation for tasks that are often time-consuming and tedious. Retail brands such as Anthropologie are already adopting this technology to streamline their operations. How AI Agents WorkIn simple terms, AI agents operate like advanced AI chatbots. They can handle tasks such as generating reports, optimizing media budgets, or analyzing data. According to Tyler Pietz, CEO and founder of Anthrologic, “They can basically do anything that a human can do on a computer.” Big players like Salesforce, Microsoft, Anthropic, Google, and Perplexity are also championing AI agents. Perplexity’s CEO, Aravind Srinivas, recently suggested that businesses will soon compete for the attention of AI agents rather than human customers. “Brands need to get comfortable doing this,” he remarked to The Economic Times. AI Agents Tailored for Advertisers Both Adaly and Anthrologic have developed AI software specifically trained for advertising tasks. Built on large language models like ChatGPT, these platforms respond to voice and text prompts. Advertisers can train these AI systems on internal data to automate tasks like identifying data discrepancies or analyzing economic impacts on regional ad budgets. Pietz noted that an AI agent can be set up in about a month and take on grunt work like scouring spreadsheets for specific figures. “Marketers still log into 15 different platforms daily,” said Kyle Csik, co-founder of Adaly. “When brands in-house talent, they often hire people to manage systems rather than think strategically. AI agents can take on repetitive tasks, leaving room for higher-level work.” Both Pietz and Csik bring agency experience to their ventures, having crossed paths at MediaMonks. Industry Response: Collaboration, Not Replacement The targets for these tools differ: Adaly focuses on independent agencies and brands, while Anthrologic is honing in on larger brands. Meanwhile, major holding companies like Omnicom and Dentsu are building their own AI agents. Omnicom, on the verge of merging with IPG, has developed internal AI solutions, while Dentsu has partnered with Microsoft to create tools like Dentsu DALL-E and Dentsu-GPT. Havas is also developing its own AI agent, according to Chief Activation Officer Mike Bregman. Bregman believes AI tools won’t immediately threaten agency jobs. “Agencies have a lot of specialization that machines can’t replace today,” he said. “They can streamline processes, but

Read More
Scope of Generative AI

Generative AI Game Changer for Cybersecurity

Generative AI: A Game Changer for Cybersecurity—Both Good and Bad Generative AI is revolutionizing cybersecurity, enabling both cybercriminals and defenders to operate faster, smarter, and at a larger scale. How Hackers Leverage GenAI Cybercriminals are using generative AI to: One real-world example: In early 2024, fraudsters used a deepfake of a multinational company’s CFO to trick an employee into transferring $25 million. How Cybersecurity Teams Use GenAI for Defense Enterprise security teams are adopting generative AI to: According to a 2024 CrowdStrike survey, 64% of cybersecurity professionals are already researching or using AI tools, with 69% planning to invest further within a year. The Risks of AI in Cybersecurity Despite its benefits, AI introduces new risks: Security leaders must balance AI adoption with human oversight to maximize its defensive potential while minimizing unintended risks. As AI continues to shape the cybersecurity landscape, both attackers and defenders must adapt to stay ahead. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
deepseek deep dive

DeepSeek iOS App Poses Major Privacy Risks

Security Alert: DeepSeek iOS App Poses Major Privacy Risks Cybersecurity researchers at NowSecure have issued a stark warning about the iOS version of DeepSeek, currently the third most popular app on the App Store. Their analysis reveals serious security flaws, making the app a major privacy risk that users should delete immediately. According to NowSecure’s findings, DeepSeek: Additionally, DeepSeek relies on ByteDance’s Volcano Engine, tying it to TikTok’s parent company, further raising privacy and regulatory concerns. For personal devices, this poses a significant security risk. For company-owned iPhones, the risks are even greater, especially regarding data privacy and compliance. US Regulators Take Action DeepSeek’s security risks have drawn scrutiny from U.S. lawmakers concerned about national security and data privacy. Representatives Josh Gottheimer (D-NJ) and Darin LaHood (R-IL) have introduced the No DeepSeek on Government Devices Act, seeking to ban the app from government-issued phones. While the full text of the bill is not yet available, legislators cite research indicating that DeepSeek’s code is “directly linked to the Chinese Communist Party” and capable of transmitting user data to China Mobile, a Chinese state-owned telecom firm sanctioned by the U.S. For those concerned about data security, the safest approach is to remove DeepSeek from your device and, if necessary, switch to a locally-run model that does not transmit data externally. HPE Warns Employees of Data Breach Meanwhile, Hewlett Packard Enterprise (HPE) has notified employees of a nation-state attack that may have compromised personal data. In a letter sent to staff, HPE disclosed that an unauthorized party accessed its cloud email environment, potentially exposing employee information. While the impact appears limited—only ten employees were affected, according to Massachusetts’ data breach report—the breach raises concerns about targeted cyberattacks on enterprise tech firms. HPE had previously disclosed a similar attack in January 2024, attributing it to Russia’s Cozy Bear hacking group, which is known for infiltrating high-profile networks. Reports suggest this latest breach also targeted Microsoft Office 365 accounts, highlighting ongoing threats to corporate cloud environments. Takeaway From DeepSeek’s security risks to HPE’s cyberattack, these incidents underscore the importance of data privacy, secure app usage, and robust enterprise security measures. Whether for personal or corporate security, staying informed and taking proactive steps is critical in today’s evolving digital landscape. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
No-Code Generative AI

Generative-Driven Development

Nowhere has the rise of generative AI tools been more transformative than in software development. It began with GitHub Copilot’s enhanced autocomplete, which then evolved into interactive, real-time coding assistants like Aider and Cursor that allow engineers to dictate changes and see them applied live in their editor. Today, platforms like Devin.ai aim even higher, aspiring to create autonomous software systems capable of interpreting feature requests or bug reports and delivering ready-to-review code. At its core, the ambition of these AI tools mirrors the essence of software itself: to automate human work. Whether you were writing a script to automate CSV parsing in 2005 or leveraging AI today, the goal remains the same—offloading repetitive tasks to machines. What makes generative AI tools distinct, however, is their focus on automating the work of automation itself. Framing this as a guiding principle enables us to consider the broader challenges and opportunities generative AI brings to software development. Automate the Process of Automation The Doctor-Patient Strategy Most contemporary generative AI tools operate under what can be called the Doctor-Patient strategy. In this model, the GenAI tool acts on a codebase as a distinct, external entity—much like a doctor treats a patient. The relationship is one-directional: the tool modifies the codebase based on given instructions but remains isolated from the architecture and decision-making processes within it. Why This Strategy Dominates: However, the limitations of this strategy are becoming increasingly apparent. Over time, the unidirectional relationship leads to bot rot—the gradual degradation of code quality due to poorly contextualized, repetitive, or inconsistent changes made by generative AI. Understanding Bot Rot Bot rot occurs when AI tools repeatedly make changes without accounting for the macro-level architecture of a codebase. These tools rely on localized context, often drawing from semantically similar code snippets, but lack the insight needed to preserve or enhance the overarching structure. Symptoms of Bot Rot: Example:Consider a Python application that parses TPS report IDs. Without architectural insight, a code bot may generate redundant parsing methods across multiple modules rather than abstracting the logic into a centralized model. Over time, this duplication compounds, creating a chaotic and inefficient codebase. A New Approach: Generative-Driven Development (GDD) To address the flaws of the Doctor-Patient strategy, we propose Generative-Driven Development (GDD), a paradigm where the codebase itself is designed to enable generative AI to enhance automation iteratively and sustainably. Pillars of GDD: How GDD Improves the Development Lifecycle Under GDD, the traditional Test-Driven Development (TDD) cycle (red, green, refactor) evolves to integrate AI processes: This complete cycle eliminates the gaps present in current generative workflows, reducing bot rot and enabling sustainable automation. Over time, GDD-based codebases become easier to maintain and automate, reducing error rates and cycle times. A Day in the Life of a GDD Engineer Imagine a GDD-enabled workflow for a developer tasked with updating TPS report parsing: By embedding AI into the development process, GDD empowers engineers to focus on high-level decision-making while ensuring the automation process remains sustainable and aligned with architectural goals. Conclusion Generative-Driven Development represents a significant shift in how we approach software development. By prioritizing architecture, embedding automation into the software itself, and writing GenAI-optimized code, GDD offers a sustainable path to achieving the ultimate goal: automating the process of automation. As AI continues to reshape the industry, adopting GDD will be critical to harnessing its full potential while avoiding the pitfalls of bot rot. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
unpatched ai

Unpatched.ai

The Mystery of Unpatched.ai: AI-Powered Vulnerability Discovery Raises Questions During January’s Patch Tuesday, Microsoft credited Unpatched.ai for reporting multiple high-severity vulnerabilities. Yet, despite its contributions, the AI-driven bug-finding tool remains an enigma to the cybersecurity community. Last month, Microsoft addressed 159 new vulnerabilities across its widely used products. Among them, Unpatched.ai was acknowledged for identifying three remote code execution flaws—CVE-2025-21186, CVE-2025-21366, and CVE-2025-21395—all of which affect Microsoft Access and received a CVSS score of 7.8. While Microsoft’s recognition highlights Unpatched.ai’s role in vulnerability discovery, little is known about the tool itself. Informa TechTarget reached out to multiple security vendors and experts for insights, but responses only deepened the mystery. A Cryptic Online Presence Unpatched.ai describes itself as “vulnerability discovery by an AI-guided cybersecurity platform” on its website. It provides a list of reported vulnerabilities, which consists solely of Microsoft-related flaws—primarily within Microsoft Access. The platform states that it collaborates with “select enterprise, government, and security vendors based in the U.S. and ally countries.” The company’s “About” page sheds some light on its mission, attributing its research to the need for greater transparency around unpatched software flaws: “We find unpatched issues in software to help customers better identify and manage cyber risk. Many issues are unknown or silently fixed by software vendors, hiding the true risk profile of their products. With the help of AI, we are developing an automated platform to help find and analyze these issues for our customers.” Beyond the website, Unpatched.ai maintains an X account, though much of its activity has been erased. A now-deleted post from January 29 warned that Microsoft’s patch for CVE-2025-21396 was insufficient. When contacted about the post, a Microsoft spokesperson responded, “We are aware of these reports and will take action as needed to help protect customers.” However, Microsoft did not provide additional background on Unpatched.ai. Attempts to reach Unpatched.ai directly have gone unanswered. Piecing Together the Puzzle Efforts to uncover more about Unpatched.ai yielded few concrete details. The domain was registered through Namecheap in September, with ownership masked by a privacy service based in Reykjavik, Iceland. Adam Barnett, lead software engineer at Rapid7, noted that beyond Unpatched.ai’s website, information is scarce. However, he identified a Reddit user, “Fit_Tie_9430,” who has claimed affiliation with the platform. This user shared details about Unpatched.ai’s vulnerability discoveries and linked to now-private YouTube videos demonstrating exploits against Microsoft Access vulnerabilities. Barnett pointed out that Unpatched.ai was also credited for a December Patch Tuesday flaw, CVE-2024-49142. Initially published without attribution, Microsoft later updated the advisory to acknowledge Unpatched.ai’s discovery. Interestingly, the Unpatched.ai website’s favicon—a simple “:)” emoticon—appears to reference the Windows Blue Screen of Death’s “:(” symbol. “It’s a nice touch,” Barnett said, “but I still don’t know who’s behind it. It could be just about anyone with the time, resources, and skills.” Other industry experts share the same uncertainty. Satnam Narang, senior staff research engineer at Tenable, observed that Unpatched.ai’s X account follows only a handful of infosec professionals. “It’s unclear if the service is still in a closed-door phase and will eventually provide more insights about its leadership and team, or who may be backing it,” he said. Alon Yamin, co-founder and CEO of Copyleaks, noted that an AI-driven vulnerability discovery platform was inevitable given the surge in software flaws. While AI can be a game-changer for proactive threat detection, he cautioned against potential misuse. “It’s crucial that Unpatched.ai is deployed carefully, responsibly, and ethically, with safeguards to prevent attackers from exploiting the vulnerabilities it identifies,” Yamin said. The Future of AI-Powered Bug Hunting AI-driven vulnerability discovery is an emerging focus in cybersecurity, though few major breakthroughs have been publicly confirmed. In November, Google announced it had discovered a zero-day vulnerability using AI. Google Project Zero and DeepMind’s AI-powered agent, Big Sleep, identified a buffer stack underflow flaw in the SQLite open-source database engine. With Unpatched.ai making waves yet remaining elusive, the cybersecurity community is left with more questions than answers. Is this the beginning of a new era in AI-powered vulnerability research, or is Unpatched.ai an outlier? Until more information surfaces, the mystery remains. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
copilots and agentic ai

Transforming Industries and Redefining Workflows

The Rise of Agentic AI: Transforming Industries and Redefining Workflows Artificial Intelligence (AI) is evolving faster than we anticipated. No longer limited to predicting outcomes or generating content, AI systems are now capable of handling complex tasks and making autonomous decisions. This new era—driven by Agentic AI—is set to redefine the workplace and transform industries. From Prediction to Autonomy: The Three Waves of AI To understand where we’re headed, it’s important to see how far AI has come. Arun Parameswaran, SVP & MD of Salesforce India, describes it as a fundamental shift: “What has changed with agents is their ability to handle complex reasoning… and, most importantly, to take action.” Unlike previous AI models that recommend or predict, Agentic AI executes tasks, reshaping customer experiences and operational workflows. Agentic AI in Action: Industry Applications At a recent Mint x Salesforce India deep-dive event on AI, industry leaders explored how Agentic AI is driving transformation across sectors. The panel featured: Here’s how Agentic AI is already making an impact: 1. Revolutionizing Customer Support Traditional chatbots have limited capabilities. Agentic AI, however, understands urgency and context. 2. Accelerating Business Decisions In finance and supply chain management, AI agents analyze vast amounts of data and execute decisions autonomously. 3. Transforming Travel & Aviation Airlines are leveraging AI to optimize booking systems, reduce costs, and enhance efficiency. 4. Automating Wealth Management AI agents in financial services monitor markets, adjust strategies, and offer personalized investment recommendations in real time. The Risks & Responsibilities of Agentic AI With great autonomy comes great responsibility. The potential of Agentic AI is vast—but so are the challenges: The Future of Work: AI as a Partner, Not a Replacement Despite concerns about job displacement, AI is more likely to reshape rather than replace roles. What Are AI Agents? AI agents go beyond traditional models like ChatGPT or Gemini. They are proactive, self-learning systems that: They fall into two categories: “AI agents don’t just wait for commands; they anticipate needs and act,” says Dr. Tomer Simon, Chief Scientist at Microsoft Research Israel. AI Agents in the Workplace: A Shift in Roles AI agents streamline processes, but they don’t eliminate the need for human oversight. Salesforce’s Agentforce is a prime example: “Companies need to integrate AI, not fear it. Those who fail to adopt AI tools risk drowning in tasks AI can handle,” warns Dr. Omri Allouche, Chief Scientist at Gong. The Road Ahead: AI-Driven Business Growth Agentic AI is not about replacing people—it’s about empowering them. As organizations re-evaluate workflows and embrace AI collaboration, the companies that act early will gain a competitive edge in efficiency and innovation. Final Thought The AI revolution is here, and Agentic AI is at its forefront. The key question isn’t whether AI will transform industries—it’s how organizations will adapt and thrive in this new era. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
computer hackers in a genai desert

How Hackers Exploit GenAI

Hackers are increasingly leveraging generative AI (GenAI) to execute sophisticated cyberattacks, with real-world incidents highlighting its growing role in cybercrime. In early 2024, fraudsters used a deepfake of a multinational firm’s CFO to trick a finance employee into transferring $25 million—a stark example of how GenAI is reshaping cyber threats. Experts warn this is just the beginning. Here’s how cybercriminals are using GenAI to their advantage: 1. Crafting Advanced Phishing & Social Engineering Attacks GenAI-powered tools like ChatGPT enable hackers to generate professional-grade phishing emails that closely mimic corporate communications. These emails, now nearly flawless in grammar and formatting, are far more convincing to targets. Additionally, GenAI can: 2. Writing & Enhancing Malicious Code Just as developers use GenAI to accelerate coding, cybercriminals use it to: This automation fuels a rise in zero-day attacks, where vulnerabilities are exploited before developers can patch them. 3. Identifying Vulnerabilities at Scale GenAI accelerates the discovery of security weaknesses by: With GenAI, cybercriminals can scale and refine their tactics faster than ever. 4. Automating Target Research & Attack Planning Hackers use GenAI to: While mainstream AI tools have built-in safeguards, threat actors find ways to bypass them, using alternative AI models or dark web resources. 5. Lowering the Barrier to Cybercrime GenAI democratizes cyberattacks by: This increased accessibility means more people—beyond seasoned cybercriminals—can launch effective cyberattacks. The Hidden Risk: AI-Powered Coding in Enterprises The security risk of GenAI isn’t limited to adversarial use. Businesses adopting AI-powered coding tools may unintentionally introduce vulnerabilities into their systems. Joseph Nwankpa, director of cybersecurity initiatives at Miami University’s Farmer School of Business, warns: The Takeaway While GenAI offers groundbreaking advancements, it also amplifies cyber threats. Organizations must remain vigilant—investing in AI security measures, strengthening human oversight, and educating employees to counter AI-powered attacks. The race between AI-driven innovation and cybercrime is just getting started. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Apple's Privacy Changes: A Call for Email Marketing Innovation

Liar Liar Apple on Fire

Apple Developing Update After AI System Generates Inaccurate News Summaries Apple is working on a software update to address inaccuracies generated by its Apple Intelligence system after multiple instances of false news summaries were reported. The BBC first alerted Apple in mid-December to significant errors in the system, including a fabricated summary that falsely attributed a statement to BBC News. The summary suggested Luigi Mangione, accused of killing United Healthcare CEO Brian Thompson, had shot himself, a claim entirely unsubstantiated. Other publishers, such as ProPublica, also raised concerns about Apple Intelligence producing misleading summaries. While Apple did not respond immediately to the BBC’s December report, it issued a statement after pressure mounted from groups like the National Union of Journalists and Reporters Without Borders, both of which called for the removal of Apple Intelligence. Apple assured stakeholders it is working to refine the technology. A Widespread AI Issue: Hallucinations Apple joins the ranks of other AI vendors struggling with generative AI hallucinations—instances where AI produces false or misleading information. In October 2024, Perplexity AI faced a lawsuit from Dow Jones & Co. and the New York Post over fabricated news content attributed to their publications. Similarly, Google had to improve its AI summaries after providing users with inaccurate information. On January 16, Apple temporarily disabled AI-generated summaries for news apps on iPhone, iPad, and Mac devices. The Core Problem: AI Hallucination Chirag Shah, a professor of Information Science at the University of Washington, emphasized that hallucination is inherent to the way large language models (LLMs) function. “The nature of AI models is to generate, synthesize, and summarize, which makes them prone to mistakes,” Shah explained. “This isn’t something you can debug easily—it’s intrinsic to how LLMs operate.” While Apple plans to introduce an update that clearly labels summaries as AI-generated, Shah believes this measure falls short. “Most people don’t understand how these headlines or summaries are created. The responsible approach is to pause the technology until it’s better understood and mitigation strategies are in place,” he said. Legal and Brand Implications for Apple The hallucinated summaries pose significant reputational and legal risks for Apple, according to Michael Bennett, an AI adviser at Northeastern University. Before launching Apple Intelligence, the company was perceived as lagging in the AI race. The release of this system was intended to position Apple as a leader. Instead, the inaccuracies have damaged its credibility. “This type of hallucinated summarization is both an embarrassment and a serious legal liability,” Bennett said. “These errors could form the basis for defamation claims, as Apple Intelligence misattributes false information to reputable news sources.” Bennett criticized Apple’s seemingly minimal response. “It’s surprising how casual Apple’s reaction has been. This is a major issue for their brand and could expose them to significant legal consequences,” he added. Opportunity for Publishers The incident highlights the need for publishers to protect their interests when partnering with AI vendors like Apple and Google. Publishers should demand stronger safeguards to prevent false attributions and negotiate new contractual clauses to minimize brand risk. “This is an opportunity for publishers to lead the charge, pushing AI companies to refine their models or stop attributing false summaries to news sources,” Bennett said. He suggested legal action as a potential recourse if vendors fail to address these issues. Potential Regulatory Action The Federal Trade Commission (FTC) may also scrutinize the issue, as consumers paying for products like iPhones with AI capabilities could argue they are not receiving the promised service. However, Bennett believes Apple will likely act to resolve the problem before regulatory involvement becomes necessary. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Digital Marketing for Casinos

Unveiling the Casino Experience: Harnessing the Power of Digital Marketing In the exciting world of casinos—where entertainment meets sophistication—the influence of digital marketing is undeniable. A strategic approach is packed with actionable insights designed to boost online presence, engage audiences, and drive sustained success. Discover how to craft compelling content, wield social media’s dynamic power, utilize a customer relationship platform, and optimize visibility to ensure your casino stands out in an increasingly competitive digital arena. Tectonic has a successful, winning track record in Salesforce implementation for casinos. Whether you’re promoting exclusive guest events, captivating diverse demographics, or showcasing the unique experience of your casino, this insight equips you to master the digital space with Salesforce. With these strategies, casinos can create a ever-growing online presence that not only strengthens bonds with existing patrons but also entices new guests. Generating New and Repeat Guest Traffic with Salesforce Key Takeaways Why Digital Marketing is a Critical Component for Casinos Digital marketing serves as a critical driver of customer engagement, loyalty, and revenue growth in the casino industry. Strategies such as SEO, email marketing, and social media engagement empower casinos to connect with target audiences and continuously refine their efforts to remain competitive. In today’s crowded and competitive gaming world, leveraging data-driven marketing offers the competitive edge needed to captivate and retain customers. Winning Strategies for Casino Marketing 1. Search Engine Optimization (SEO):Ensure your casino is easy to find with these tactics: 2. Pay-Per-Click Advertising (PPC):Drive traffic with targeted PPC campaigns by: 3. Social Media Marketing:Create buzz with engaging social media campaigns: 4. Email Marketing:Maintain direct communication with: 5. Salesforce 360 Degree Guest View:Maintain personalized communication with: Reaching the Right Audience with Precision Audience Segmentation:Segmenting your audience by behavior, demographics, and preferences ensures more effective marketing. Navigating Legal and Ethical Challenges in Casino Marketing Compliance is essential in maintaining trust and navigating complex regulations. Measuring Success: Metrics and Optimization Key Metrics to Monitor: Campaign Optimization: Addressing Industry Challenges with Marketing 1. Rising Competition:Stand out by delivering unmatched gaming experiences and innovative promotions. 2. High Player Churn:Combat churn with data-driven marketing and personalized offerings to boost player lifetime value. 3. ROI Challenges:Optimize your mix of games and services to balance player satisfaction and profitability. The Road Ahead: Commitment to Digital Transformation With the global online gaming market projected to grow at a significant pace, casinos must embrace a future grounded in digital and data-driven marketing. Investments in technology, analytics, and talent will be pivotal in securing long-term profitability and differentiation. In an industry where chance often rules, success lies in a deliberate, strategic approach to digital marketing. This insight equips you with the tools to not only compete but thrive in this dynamic landscape. Contact Tectonic today to explore Salesforce tools to better reach, engage, and serve your guests. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Meta Joins the Race to Reinvent Search with AI

Meta Joins the Race to Reinvent Search with AI

Meta Joins the Race to Reinvent Search with AI Meta, the parent company of Facebook, Instagram, and WhatsApp, is stepping into the evolving AI-driven search landscape. As vendors increasingly embrace generative AI to transform search experiences, Meta aims to challenge Google’s dominance in this space. The company is reportedly developing an AI-powered search engine designed to provide conversational, AI-generated summaries of recent events and news. These summaries would be delivered via Meta’s AI chatbot, supported by a multiyear partnership with Reuters for real-time news insights, according to The Information. AI Search: A Growing Opportunity The push comes as generative AI reshapes search technology across the industry. Google, the long-standing leader, has integrated AI features such as AI Overviews into its search platform, offering users summarized search results, product comparisons, and more. This feature, now available in over 100 countries as of October 2024, signals a shift in traditional search strategies. Similarly, OpenAI, the creator of ChatGPT, has been exploring its own AI search model, SearchGPT, and forging partnerships with media organizations like the Associated Press and Hearst. However, OpenAI faces legal challenges, such as a lawsuit from The New York Times over alleged copyright infringement. Meta’s entry into AI-powered search aligns with a broader trend among tech giants. “It makes sense for Meta to explore this,” said Mark Beccue, an analyst with TechTarget’s Enterprise Strategy Group. He noted that Meta’s approach seems more targeted at consumer engagement than enterprise solutions, particularly appealing to younger audiences who are shifting away from traditional search behaviors. Shifting User Preferences Generational changes in search habits are creating opportunities for new players in the market. Younger users, particularly Gen Z and Gen Alpha, are increasingly turning to platforms like TikTok for lifestyle advice and Amazon for product recommendations, bypassing traditional search engines like Google. “Recent studies show younger generations are no longer using ‘Google’ as a verb,” said Lisa Martin, an analyst with the Futurum Group. “This opens the playing field for competitors like Meta and OpenAI.” Forrester Research corroborates this trend, noting a diversification in search behaviors. “ChatGPT’s popularity has accelerated this shift,” said Nikhil Lai, a Forrester analyst. He added that these changes could challenge Google’s search ad market, with its dominance potentially waning in the years ahead. Meta’s AI Search Potential Meta’s foray into AI search offers an opportunity to enhance user experiences and deepen engagement. Rather than pushing news content into users’ feeds—an approach that has drawn criticism—AI-driven search could empower users to decide what content they see and when they see it. “If implemented thoughtfully, it could transform the user experience and give users more control,” said Martin. This approach could also boost engagement by keeping users within Meta’s ecosystem. The Race for Revenue and Trust While AI-powered search is expected to increase engagement, monetization strategies remain uncertain. Google has yet to monetize its AI Overviews, and OpenAI’s plans for SearchGPT remain unclear. Other vendors, like Perplexity AI, are experimenting with models such as sponsored questions instead of traditional results. Trust remains a critical factor in the evolving search landscape. “Google is still seen as more trustworthy,” Lai noted, with users often returning to Google to verify AI-generated information. Despite the competition, the conversational AI search market lacks a definitive leader. “Google dominated traditional search, but the race for conversational search is far more open-ended,” Lai concluded. Meta’s entry into this competitive space underscores the ongoing evolution of search technology, setting the stage for a reshaped digital landscape driven by AI innovation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
salesforce government digital transformation

Salesforce Drives Digital Transformation in Governmental Agencies

How Salesforce Drives Digital Transformation in Governmental Agencies in 2025 In the evolving digital age, government agencies face an increasing demand to modernize their services, improve citizen engagement, and deliver seamless digital experiences. These organizations require transformational technologies that not only streamline internal operations but also adopt a citizen-first approach. Salesforce emerges as a key enabler of this transformation, empowering government agencies with tools to build unified, transparent platforms while fostering efficiency and enhancing citizen interaction. Leveraging Salesforce Commerce Cloud and Salesforce CRM, agencies can overcome common challenges and embrace a more digitally enabled public sector. Let’s explore the pressing challenges government agencies face and how Salesforce provides practical, scalable solutions to address them. 1. Citizen Engagement and Accessibility: Bridging the Digital Divide Challenge: Citizens now expect government services to be as user-friendly and accessible as private-sector experiences. Lengthy response times, disconnected platforms, and inconsistent experiences across digital and physical touchpoints erode trust and hinder accessibility. Solution: 2. Data Security and Compliance: Safeguarding Citizen Trust Challenge: Handling sensitive citizen data requires robust security and strict compliance with regulations like GDPR, CCPA, and other local data privacy laws. Solution: 3. Legacy Systems and Integration: Modernizing Infrastructure Challenge: Legacy systems often limit agility, making it difficult to integrate new technologies and slowing the pace of digital transformation. Solution: 4. Budget Constraints: Implementing Cost-Effective Solutions Challenge: Budget limitations often hinder the adoption of new technologies, especially those requiring significant upfront investment. Solution: 5. Efficient Service Delivery: Streamlining Workflows Challenge: Paper-heavy, bureaucratic processes delay service delivery and frustrate both staff and citizens. Solution: 6. Data-Driven Decision-Making: Analytics for Informed Policies Challenge: Generating actionable insights from vast amounts of data is challenging, affecting policymaking and government efficiency. Solution: 7. Enhancing Collaboration: A Unified Workforce Challenge: Siloed departments hinder collaboration and reduce overall productivity, making it difficult to provide cohesive citizen services. Solution: 8. Real-Time Responsiveness: Meeting Citizen Expectations Challenge: Citizens expect real-time support and proactive communication from government agencies. Delays lead to frustration and diminished trust. Solution: Transforming Government Services with Salesforce Salesforce Commerce Cloud and Salesforce CRM are tailored to address public sector challenges in 2025. By leveraging these tools, government agencies can: Salesforce offers a clear path to a digitally empowered future, enabling government agencies to meet today’s demands while laying the foundation for innovation. Ready to Transform?If your agency is ready to embrace digital transformation, streamline operations, and enhance citizen services, Salesforce can help you get there. Let’s discuss how Salesforce solutions, supported by expert implementation, can drive meaningful change for your organization and your citizens. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Energy Solution

AI Energy Solution

Could the AI Energy Solution Make AI Unstoppable? The Rise of Brain-Based AI In 2002, Jason Padgett, a furniture salesman from Tacoma, Washington, experienced a life-altering transformation after a traumatic brain injury. Following a violent assault, Padgett began to perceive the world through intricate patterns of geometry and fractals, developing a profound, intuitive grasp of advanced mathematical concepts—despite no formal education in the subject. His extraordinary abilities, emerging from the brain’s adaptation to injury, revealed an essential truth: the human brain’s remarkable capacity for resilience and reorganization. This phenomenon underscores the brain’s reliance on inhibition, a critical mechanism that silences or separates neural processes to conserve energy, clarify signals, and enable complex cognition. Researcher Iain McGilchrist highlights that this ability to step back from immediate stimuli fosters reflection and thoughtful action. Yet this foundational trait—key to the brain’s efficiency and adaptability—is absent from today’s dominant AI models. Current AI systems, like Transformers powering tools such as ChatGPT, lack inhibition. These models rely on probabilistic predictions derived from massive datasets, resulting in inefficiencies and an inability to learn independently. However, the rise of brain-based AI seeks to emulate aspects of inhibition, creating systems that are not only more energy-efficient but also capable of learning from real-world, primary data without constant retraining. The AI Energy Problem Today’s AI landscape is dominated by Transformer models, known for their ability to process vast amounts of secondary data, such as scraped text, images, and videos. While these models have propelled significant advancements, their insatiable demand for computational power has exposed critical flaws. As energy costs rise and infrastructure investment balloons, the industry is beginning to reevaluate its reliance on Transformer models. This shift has sparked interest in brain-inspired AI, which promises sustainable solutions through decentralized, self-learning systems that mimic human cognitive efficiency. What Brain-Based AI Solves Brain-inspired models aim to address three fundamental challenges with current AI systems: The human brain’s ability to build cohesive perceptions from fragmented inputs—like stitching together a clear visual image from saccades and peripheral signals—serves as a blueprint for these models, demonstrating how advanced functionality can emerge from minimal energy expenditure. The Secret to Brain Efficiency: A Thousand Brains Jeff Hawkins, the creator of the Palm Pilot, has dedicated decades to understanding the brain’s neocortex and its potential for AI design. His Thousand Brains Theory of Intelligence posits that the neocortex operates through a universal algorithm, with approximately 150,000 cortical columns functioning as independent processors. These columns identify patterns, sequences, and spatial representations, collaborating to form a cohesive perception of the world. Hawkins’ brain-inspired approach challenges traditional AI paradigms by emphasizing predictive coding and distributed processing, reducing energy demands while enabling real-time learning. Unlike Transformers, which centralize control, brain-based AI uses localized decision-making, creating a more scalable and adaptive system. Is AI in a Bubble? Despite immense investment in AI, the market’s focus remains heavily skewed toward infrastructure rather than applications. NVIDIA’s data centers alone generate 5 billion in annualized revenue, while major AI applications collectively bring in just billion. This imbalance has led to concerns about an AI bubble, reminiscent of the early 2000s dot-com and telecom busts, where overinvestment in infrastructure outpaced actual demand. The sustainability of current AI investments hinges on the viability of new models like brain-based AI. If these systems gain widespread adoption within the next decade, today’s energy-intensive Transformer models may become obsolete, signaling a profound market correction. Controlling Brain-Based AI: A Philosophical Divide The rise of brain-based AI introduces not only technical challenges but also philosophical ones. Scholars like Joscha Bach argue for a reductionist approach, constructing intelligence through mathematical models that approximate complex phenomena. Others advocate for holistic designs, warning that purely rational systems may lack the broader perspective needed to navigate ethical and unpredictable scenarios. This philosophical debate mirrors the physical divide in the human brain: one hemisphere excels in reductionist analysis, while the other integrates holistic perspectives. As AI systems grow increasingly complex, the philosophical framework guiding their development will profoundly shape their behavior—and their impact on society. The future of AI lies in balancing efficiency, adaptability, and ethical design. Whether brain-based models succeed in replacing Transformers will depend not only on their technical advantages but also on our ability to guide their evolution responsibly. As AI inches closer to mimicking human intelligence, the stakes have never been higher. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
DHS Introduces AI Framework to Protect Critical Infrastructure

DHS Introduces AI Framework to Protect Critical Infrastructure

The Department of Homeland Security (DHS) has unveiled the Roles and Responsibilities Framework for Artificial Intelligence in Critical Infrastructure, a voluntary set of guidelines designed to ensure the safe and secure deployment of AI across the systems that power daily life. From energy grids to water systems, transportation, and communications, critical infrastructure increasingly relies on AI for enhanced efficiency and resilience. While AI offers transformative potential—such as detecting earthquakes, optimizing energy usage, and streamlining logistics—it also introduces new vulnerabilities. Framework Overview The framework, developed with input from cloud providers, AI developers, critical infrastructure operators, civil society, and public sector organizations, builds on DHS’s broader policies from 2023, which align with White House directives. It aims to provide a shared roadmap for balancing AI’s benefits with its risks. AI Vulnerabilities in Critical Infrastructure The DHS framework categorizes vulnerabilities into three key areas: The guidelines also address sector-specific vulnerabilities and offer strategies to ensure AI strengthens resilience while minimizing misuse risks. Industry and Government Support Arvind Krishna, Chairman and CEO of IBM, lauded the framework as a “powerful tool” for fostering responsible AI development. “We look forward to working with DHS to promote shared and individual responsibilities in advancing trusted AI systems.” Marc Benioff, CEO of Salesforce, emphasized the framework’s role in fostering collaboration among stakeholders while prioritizing trust and accountability. “Salesforce is committed to humans and AI working together to advance critical infrastructure industries in the U.S. We support this framework as a vital step toward shaping the future of AI in a safe and sustainable manner.” DHS Secretary Alejandro N. Mayorkas highlighted the urgency of proactive action. “AI offers a once-in-a-generation opportunity to improve the strength and resilience of U.S. critical infrastructure, and we must seize it while minimizing its potential harms. The framework, if widely adopted, will help ensure the safety and security of critical services.” DHS Recommendations for Stakeholders A Call to Action DHS encourages widespread adoption of the framework to build safer, more resilient critical infrastructure. By prioritizing trust, transparency, and collaboration, this initiative aims to guide the responsible integration of AI into essential systems, ensuring they remain secure and effective as technology continues to evolve. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com