Copilot Archives - gettectonic.com
Biggest Mistakes Universities Make When Using Salesforce

Biggest Mistakes Universities Make When Using Salesforce

The Biggest Mistakes Universities Make When Using Salesforce (And How to Fix Them) Many universities invest in Salesforce for higher education to improve student engagement, streamline operations, and boost fundraising—but struggle to see meaningful results. Without the right strategy, institutions face scattered data, low adoption, and inefficiencies, turning Salesforce into just another system to manage rather than a transformative tool. The good news? These challenges are avoidable. In this insight, we’ll explore the most common Salesforce mistakes in higher education and how to fix them—helping your university maximize ROI and create a seamless experience for students, staff, and alumni. Salesforce Education Cloud: A Quick Overview Salesforce Education Cloud is a powerful CRM platform designed for universities, colleges, and K-12 schools. It helps institutions: Yet, many institutions fail to leverage its full potential due to poor implementation, lack of training, or misaligned strategies. 11 Common Salesforce Mistakes in Higher Ed (And How to Solve Them) 1. No Clear Strategy or Goals Problem: Jumping into Salesforce without a plan leads to disconnected teams, wasted resources, and unclear ROI. Solution:✔ Define university-wide objectives (e.g., improving student retention, increasing alumni donations).✔ Establish a governance team to align Salesforce with institutional goals.✔ Prioritize key initiatives and track measurable outcomes. 2. Lack of Stakeholder Buy-In Problem: Without leadership and faculty support, adoption stalls or becomes siloed. Solution:✔ Engage decision-makers early in planning.✔ Assign cross-functional champions to drive adoption.✔ Provide training & clear value propositions for each department. 3. No Clear Ownership Problem: When no one “owns” Salesforce, data decays, processes break, and updates lag. Solution:✔ Form a centralized Salesforce admin team.✔ Assign department leads to oversee usage.✔ Define clear roles & accountability for system maintenance. 4. Siloed Implementation Problem: Departments use Salesforce separately, creating data fragmentation. Solution:✔ Use Education Data Architecture (EDA) for a unified student view.✔ Integrate with Student Information Systems (SIS).✔ Ensure admissions, advising, and alumni teams share data seamlessly. 5. Poor Data Governance Problem: Inconsistent data entry leads to duplicates, errors, and unreliable reports. Solution:✔ Standardize data entry rules across teams.✔ Use Salesforce duplicate management tools.✔ Create real-time dashboards for accurate insights. 6. Underusing Self-Service Portals Problem: Over-reliance on staff for basic tasks (e.g., FAQs, event sign-ups). Solution:✔ Deploy Experience Cloud for student/alumni self-service.✔ Implement AI chatbots (Einstein Copilot) for instant support.✔ Build a knowledge base for common inquiries. 7. Inadequate Training & Support Problem: Staff avoid Salesforce because they don’t know how to use it. Solution:✔ Offer ongoing training programs.✔ Assign in-house Salesforce super-users.✔ Provide resources for new features & updates.✔ Employ a dedicated Salesforce Solutions Provider..✔ Utilize a Salesforce Managed Services Provider. 8. Ignoring Mobile Optimization Problem: Students expect mobile access—but many portals are desktop-only. Solution:✔ Enable the Salesforce Mobile App.✔ Use push notifications for deadlines & events.✔ Ensure responsive design for all student portals. 9. Misaligned Reporting & KPIs Problem: Departments track different metrics, making progress hard to measure. Solution:✔ Standardize university-wide KPIs (e.g., enrollment rates, alumni engagement).✔ Use Salesforce dashboards for real-time insights.✔ Align reports with strategic goals. 10. Not Using AI & Automation Problem: Manual processes slow down admissions, student support, and fundraising. Solution:✔ Use Einstein AI to predict at-risk students.✔ Automate student communications & follow-ups.✔ Deploy AI chatbots for instant responses.✔ Integrate Salesforce Agentforce. 11. Falling Behind on Salesforce Updates Problem: Missing out on new AI features, automations, and best practices. Solution:✔ Follow Salesforce Trailhead & webinars.✔ Attend Education Summit & industry events.✔ Assign a team to evaluate & implement new tools. Maximizing Salesforce ROI in Higher Education By avoiding these mistakes, universities can:✅ Improve student engagement & retention✅ Streamline admissions & operations✅ Boost alumni fundraising✅ Make data-driven decisions The key? Strategy, training, integration, and innovation. Is your university getting the most out of Salesforce? Let’s optimize your approach. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Second Wave of AI Agents

Second Wave of AI Agents

The “second wave” of AI agents refers to the evolution of AI beyond simple chatbots and into more sophisticated, autonomous systems that can plan, execute, and deliver results independently, often leveraging large language models (LLMs). These agents are characterized by their ability to interact with other applications, interpret the screen, fill out forms, and coordinate with other AI systems to achieve a desired outcome. They are also seen as a significant step beyond the first wave of AI, which primarily focused on predictive models and statistical learning.  Key Characteristics of the Second Wave of AI Agents: Examples and Applications: In 2023 Bill Gates prophesized AI Agents would be here in 5 years. His timing was off. But not his prediction. The Future of Computing: Your AI Agent, Your Digital Sidekick Imagine this: No more juggling apps. No more digging through menus. No more searching for a document or a spreadsheet. Just tell your device—in plain English—what you need, and it handles the rest. Whether it’s planning a tour, managing your schedule, or helping with work, your AI assistant will understand you personally, adapting to your life based on what you choose to share. This isn’t science fiction. Today, everyone online has access to an AI-powered personal assistant far more advanced than anything available in 2023. Meet the Agent: The Next Era of Computing This next-generation software—called an agent—responds to natural language and accomplishes tasks using deep knowledge of you and your needs. Bill Gates first wrote about agents in his 1995 book The Road Ahead, but only now, with recent AI breakthroughs, have they become truly possible. Agents won’t just change how we interact with technology. They’ll reshape the entire software industry, marking the biggest shift in computing since we moved from command lines to touchscreens. Consider Salesforce’s AgentForce. A platform driven by automated AI agents that can be trained to do virtually anything. Freeing staff up from mundane data entry and administrative work to really set them loose. Marketers can once again create content, but with the insights provided by AI. Sales teams can close deals, but with the lead rating details provided by AI. Developers can devote more time to writing code but letting AI do the repetitive pieces that take time away from awe inspiring development. Why This Changes Everything We’re on the brink of a revolution—one where technology doesn’t just respond to commands but anticipates your needs and acts on your behalf. The age of the AI agent is here, and it’s going to redefine how we live and work. By Tectonic’s Marketing Operations Manager, Shannan Hearne Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
How AI is Transforming Self-Appraisals

How AI is Transforming Self-Appraisals

How AI is Transforming Self-Appraisals—Making Them Easier and Fairer for Employees and Managers Performance reviews are often dreaded—evaluating a year’s worth of your hard work can feel overwhelming, and many struggle to articulate their achievements objectively. But AI is changing that, making self-assessments more efficient, balanced, and even empowering—especially for groups like women, who often face biases in traditional reviews. The Rise of AI in Performance Reviews AI-powered tools are increasingly being used to streamline self-appraisals, helping employees structure their evaluations and align them with company goals. According to Microsoft’s 2024 Work Trend Index, 75% of knowledge workers—including engineers, scientists, and lawyers—already use AI in some capacity. The demand is clear: When Oracle introduced an AI-driven performance review system in 2023, 89% of employees said they were willing to be early adopters. “That shows how much people believe in this technology and how much they need it,” said Triparna de Vreede, a professor at the University of South Florida who studies AI and workplace well-being. Why Traditional Reviews Fall Short Conventional performance evaluations are often subjective, influenced by recency bias (where recent mistakes overshadow past successes) and workplace power dynamics. Employees may not always understand how their work contributes to broader business goals, while managers can struggle to provide unbiased feedback. “If you did great things all year but made one mistake last month, that can overshadow everything,” de Vreede explained. “AI helps standardize feedback so employees don’t feel like favoritism is at play.” How AI Improves the Process The Gender Gap in Self-Assessments Women frequently face challenges in performance reviews. A Textio study found that 38% of feedback for high-performing women contained exaggerated or clichéd language, and 75% were called “emotional”—compared to just 11% of men. Additionally, women tend to undersell their achievements. A 2022 National Bureau of Economic Research study found that women rated their performance at 46 out of 100, while men gave themselves 61. “AI can help women confidently showcase their impact without imposter syndrome getting in the way,” said de Vreede. The Human Touch Still Matters Despite AI’s benefits, human oversight remains crucial. Privacy concerns, transparency about data usage, and ensuring softer skills (like communication and teamwork) are evaluated fairly all require human judgment. “AI can’t fully understand human nuances, but it can prompt employees to reflect on them,” de Vreede noted. “The best reviews come from a collaboration between AI and the employee—not just AI doing all the work.” The Future of AI in Performance Reviews Companies like Oracle and Textio (used by 25% of Fortune 500 firms) are already refining AI-powered evaluations. However, de Vreede cautions against over-reliance: employees must still self-refect rather than letting AI do all the thinking. “AI can draft your review, but you need to refine it,” she said. “Otherwise, the evaluation loses its meaning.” As AI continues to evolve, it promises to make performance reviews less stressful, more accurate, and fairer for everyone—finally turning a dreaded process into one that actually helps employees grow. Salesforce AI can significantly enhance performance reviews by automating tasks, analyzing data, and providing actionable insights. AI tools can help streamline the review process, generate clearer and more unbiased feedback, and even predict future performance trends. Salesforce Einstein, for example, can analyze vast amounts of employee data to identify patterns and generate insights that inform performance reviews.  Here’s how Salesforce AI can be used in performance reviews: 1. Automating and Streamlining the Process: 2. Enhancing Accuracy and Objectivity: 3. Providing Actionable Insights: Examples of Salesforce AI Tools for Performance Reviews: Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Get a Grip on Agentforce

Salesforce Agentforce: The Next Evolution in AI Automation Salesforce is a powerhouse for sales, customer support, and marketing. While automations and integrations already help streamline workflows, Salesforce Agentforce takes efficiency to a whole new level. This guide breaks down what Agentforce is, how it works, and five impactful ways to use it in your organization. What is Salesforce Agentforce? Agentforce is Salesforce’s AI-driven automation tool that enables businesses to deploy autonomous AI agents for tasks like managing customer requests, scheduling meetings, and optimizing sales pipelines. Unlike basic chatbots, these AI agents operate independently—analyzing data, making decisions, and executing actions without constant user input. How AI Agents Work Traditional AI tools like ChatGPT and Jasper assist with tasks when prompted, but AI agents go further. They: With Agentforce, Salesforce users can automate more than ever before—including delegating routine decisions to AI. 5 Ways to Use Salesforce Agentforce 1. Enhancing Customer Support with AI Agents AI agents go beyond standard chatbots by dynamically searching company data in real time to provide personalized support. They can: 2. Automating Routine Support Tasks Many customer requests are too complex for basic automation but still repetitive for human agents. AI agents can independently process requests like: ✔ Updating reservations (restaurants, hotels, events)✔ Redeeming loyalty points (e-commerce, retail)✔ Processing refunds (subscriptions, software)✔ Rescheduling appointments (professional services, healthcare) 3. Delivering Smarter, Data-Driven Sales Engagement AI agents can identify opportunities for engagement based on real-time customer data. Instead of waiting for reps to manually review accounts, AI agents can: 4. Launching Workflows Directly from Chat Apps Sales and project teams often brainstorm in chat apps like Slack. Instead of manually transferring ideas into Salesforce, Agentforce can: 5. Scaling Sales Training with AI Sales training is essential but resource-intensive. AI agents can roleplay as prospects, allowing reps to: Take Your AI Automation to the Next Level With Salesforce Agentforce, businesses can go beyond basic automation and deploy intelligent AI agents that handle repetitive tasks, optimize workflows, and drive better customer experiences. FAQ: Salesforce Agentforce What makes Agentforce different from regular automation?Unlike traditional automation, Agentforce AI agents can act independently—analyzing data, making decisions, and executing workflows without human intervention. Is Agentforce the same as Microsoft Copilot?No. While both use AI, Agentforce deploys autonomous AI agents that complete tasks, while Copilot assists users in real time with insights and recommendations. Who should use Agentforce?Salesforce admins, sales teams, and customer support leaders who want to automate complex workflows and free up their teams for high-value tasks. Looking to supercharge your Salesforce automation? Start with Agentforce today. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Is AI Replacing Developers

Is AI Replacing Developers? The Truth About AI-Generated Code Anthropic’s CEO predicts AI will write 90% of code within 3 to 6 years. Google already reports 25% of its code is AI-generated. With numbers like these, it’s tempting to wonder: Are developers becoming obsolete? The short answer? No. Here’s why—and what AI-generated code actually means for software development. 1. AI Isn’t Replacing Developer Work—It’s Changing It Just because AI writes code doesn’t mean developers do less. AI doesn’t eliminate developer effort—it shifts it. 2. AI Writes More Code Than Necessary (And That’s a Problem) AI doesn’t know when to stop. More AI-generated code ≠ better software. In fact, poorly managed AI code can make apps harder to maintain. 3. Developers Have Always Relied on External Code Before AI, developers used: AI is just another tool—like a smarter Stack Overflow. The Worst Mistakes Companies Can Make with AI Code ❌ Setting Arbitrary “AI Code %” Targets ❌ Assuming AI Reduces the Need for Developers ❌ Ignoring AI’s Blind Spots The Future: AI as a Developer’s Co-Pilot The bottom line? AI is changing coding—not eliminating it. Developers who embrace AI as a tool will stay ahead. Those who fear it will fall behind. Key Takeaways:✔ AI generates code, but developers still design, debug, and refine it.✔ Blindly trusting AI leads to bloated, buggy software.✔ The best developers use AI to augment—not replace—their skills.✔ Companies should encourage AI adoption—not mandate arbitrary AI code quotas. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents and Consumer Trust

AI and the Future of Software Development

Beyond Coding: Why Agency Matters More in the AI Era For years, “learn to code” was the go-to advice for breaking into tech. But Jayesh Govindarajan, EVP and Head of AI Engineering at Salesforce, believes there’s now a more valuable skill: agency. “I may be in the minority here, but I think something that’s far more essential than learning how to code is having agency,” Govindarajan shared in a recent Business Insider interview. The Shift from Coding to Problem-Solving Govindarajan’s perspective reflects how AI is reshaping software development. He explains that while AI-powered systems can solve complex problems, they still need humans to define the problems worth solving. “We’re building a system that can pretty much solve anything for you—but it just doesn’t know what to solve.” This is where agency becomes critical. Instead of focusing solely on coding, the real skill lies in identifying problems, leveraging AI tools, and iterating solutions. No-Code AI: A New Way to Build Solutions To illustrate this, Govindarajan offered a real-world example involving College Possible, a nonprofit helping students prepare for college. “No code. You’d give it instructions in English. That’s very possible,” Govindarajan explained. The Two Skills That Matter Most Through this process, the individual demonstrates two key abilities: In this model, experienced coders still play a role—fine-tuning the final product once a solution proves viable. But the initial value comes from problem-solving and iteration, not traditional coding expertise. AI and the Future of Software Development The rise of AI-powered coding tools like GitHub Copilot and Amazon CodeWhisperer has automated many programming tasks, reshaping the industry. With AI handling much of the technical heavy lifting, the demand for critical thinking, adaptability, and problem identification is increasing. Soft Skills: The New Differentiator? Industry leaders are recognizing that technical skills alone aren’t enough. Mark Zuckerberg emphasized this in a July Bloomberg interview: “The most important skill is learning how to think critically and learning values when you’re young.” He argued that those who can go deep, master a skill, and apply that knowledge to new areas will thrive—regardless of their coding expertise. The Takeaway: Get Stuff Done Govindarajan’s message is clear: The future belongs to those who take initiative, leverage AI effectively, and focus on solving real-world problems—not just those who can code. Or, as he might put it: use the tools at your disposal to get stuff done. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
ai model race

AI Model Race Intensifies

AI Model Race Intensifies as OpenAI, Google, and DeepSeek Roll Out New Releases The generative AI competition is heating up as major players like OpenAI, Google, and DeepSeek rapidly release upgraded models. However, enterprises are shifting focus from incremental model improvements to agentic AI—systems that autonomously perform complex tasks. Three Major Releases in 24 Hours This week saw a flurry of AI advancements: Competition Over Innovation? While the rapid releases highlight the breakneck pace of AI development, some analysts see diminishing differentiation between models. The Future: Agentic AI & Real-World Use Cases As model fatigue sets in, businesses are focusing on domain-specific AI applications that deliver measurable ROI. The AI race continues, but the real winners will be those who translate cutting-edge models into practical, agent-driven solutions. Key Takeaways:✔ DeepSeek’s open-source V3 pressures rivals to embrace transparency.✔ GPT-4o’s hyper-realistic images raise deepfake concerns.✔ Gemini 2.5 focuses on structured reasoning for complex tasks.✔ Agentic AI, not just model upgrades, is the next enterprise priority. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
How Salesforce’s 5-Level Framework for AI Agents Cuts Through the Hype

How Salesforce’s 5-Level Framework for AI Agents Cuts Through the Hype

The tech industry is abuzz with talk of AI agents, but what can they actually accomplish? Amid the noise, Salesforce has introduced a practical five-level framework—the Agentic Maturity Model—that clarifies the real capabilities and limitations of today’s AI agents. The Problem with AI Agent Hype AI agents are often overpromised, vaguely defined, and limited by ecosystem barriers. Major players like Microsoft and Google tout AI agents for everything from enterprise workflows to personal computing, yet many of these tools remain constrained by data silos and interoperability issues. Salesforce’s framework provides a structured way to assess AI agent maturity, helping businesses distinguish between basic automation and truly intelligent, cross-platform AI systems. The 5 Levels of AI Agent Maturity Level 0: Fixed Rules & Repetitive Tasks Level 1: Information Retrieval Agents Level 2: Simple Orchestration, Single Domain Level 3: Complex Orchestration, Multiple Domains Level 4: Multi-Agent Orchestration Why This Framework Matters Salesforce’s model demystifies AI agent capabilities, helping businesses:✅ Evaluate vendor claims (Is it Level 2 or Level 4?).✅ Plan AI adoption (Start with Level 0 automation, then scale up).✅ Avoid ecosystem lock-in by understanding data interoperability challenges. Final Verdict: A Much-Needed Reality Check While AI agents hold immense potential, most current implementations are far from autonomous. Salesforce’s framework provides a clear, honest roadmap—helping businesses cut through the hype and adopt AI agents strategically. For now, Levels 0-2 are widely achievable, while Levels 3-4 remain aspirational for most organizations. The key takeaway? AI agents are evolving, but true cross-platform intelligence is still a work in progress. What’s Next?Businesses should: Salesforce’s framework is a wake-up call: AI agents are powerful, but not magic. The future lies in practical, phased adoption—not blind hype. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
itsm

Salesforce Move Into IT Service Management

Salesforce CEO Marc Benioff Signals Bold Move into IT Service Management (ITSM)Salesforce CEO Marc Benioff has once again made headlines, this time with a bold announcement about the company’s expansion into IT Service Management (ITSM). During a recent appearance on the Motley Fool podcast, Benioff revealed that Salesforce is “building new apps, like ITSM.” This follows a subtle hint he dropped during an earnings call, where he teased, “At our TrailheadDX event… You might get a glimpse of the new ITSM product that’s coming if you look hard.” While the ITSM product didn’t take center stage at the event, Salesforce’s intentions to make significant strides in the ITSM space are clear. This move is particularly intriguing given the evolving dynamics between the ITSM and CRM markets, where Salesforce and ServiceNow are increasingly encroaching on each other’s territories. ServiceNow’s CRM Ambitions: A Challenge to Salesforce ServiceNow, the dominant player in the ITSM market, has been making bold moves into CRM, a domain where Salesforce has long been the leader. In fact, Salesforce outsells its closest competitor, Microsoft, by nearly four-to-one in the CRM space. However, ServiceNow is determined to carve out a significant share of the CRM market. Earlier this week, ServiceNow announced its agreement to acquire Moveworks for $2.8 billion. In an interview with CNBC, ServiceNow CEO Bill McDermott emphasized that this acquisition would strengthen the company’s front-office capabilities and bolster its ambition to become “the market leader” in CRM. Unlike traditional CRM competitors who often compete on price, ServiceNow offers a unique value proposition. Its CRM solution integrates with middle- and back-office workflows, encompassing order management, inventory, invoicing, and more. This end-to-end approach provides a more data-rich CRM experience, setting ServiceNow apart from Salesforce. While Salesforce still holds an edge in ease-of-implementation and core CRM functionality—particularly as ServiceNow relies on partners for marketing CRM capabilities—ServiceNow’s differentiated approach poses a long-term threat. Its strong foothold among IT teams, who are increasingly influencing customer-facing technology decisions, adds to its competitive advantage. Salesforce’s ITSM Push: A Strategic Countermove? Benioff’s announcement about Salesforce’s ITSM ambitions could be seen as a strategic countermeasure to ServiceNow’s CRM expansion. Over the years, the two tech giants have steadily encroached on each other’s markets, leveraging their respective strengths to diversify their offerings. As the lines between enterprise technologies continue to blur, the competition between Salesforce and ServiceNow is heating up. With the rise of AI and data platforms, businesses are seeking more integrated and innovative solutions, setting the stage for a fascinating battle of innovation and market dominance. Benioff Takes Aim at Microsoft—Again Adding another layer to this competitive narrative, Benioff didn’t miss the opportunity to critique Microsoft during the podcast. While he expressed amazement at the rapid advancements in AI over the past two years, he also took a jab at Microsoft’s offerings. “I think a lot of our customers have been very disappointed with a lot of the solutions that have been given to them—or even shoved at them,” Benioff said. “Even Microsoft has really disappointed so many of our customers. Copilot has a dozen copilots across its product lines, none of which are connected. It’s not one source of data or one piece of enterprise code.” This isn’t the first time Benioff has targeted Microsoft. He has previously expressed skepticism about its approach to AI, even comparing its Copilot feature to the infamous “Clippy” assistant from the past. A High-Stakes Battle of Innovation As the tech industry continues to evolve, the competition between Salesforce, ServiceNow, and Microsoft is intensifying. With Salesforce venturing into ITSM, ServiceNow pushing into CRM, and Benioff’s recurring critiques of Microsoft, the coming months promise to bring even more innovation—and perhaps a few more pointed remarks. The battle lines are drawn, and the stakes are high. As these tech giants vie for dominance, businesses stand to benefit from the wave of innovation and competition driving the industry forward. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
agents and copilots

When to Use AI Agents and Copilots

Do Organizations Need AI Agents or Copilots for These Use Cases? Organizations often explore AI solutions for specific operational needs. Three primary AI use cases include: The question arises: Which AI tools best suit these needs? Should an organization invest in a high-end AI subscription, such as ChatGPT Pro with the Operator agent ($200/month), or opt for ChatGPT Plus with the o3-mini reasoning model and copilot features, such as memory and custom GPTs? AI Tool Selection Criteria When evaluating AI agents versus AI copilots, key considerations include: A. The time and effort required to articulate the problem for the AI. B. The level of control preferred in the problem-solving process. C. The importance of achieving the most optimal outcome. Use Case 1: Shopping AI Agents Many existing AI shopping solutions are labeled as agents, but they do not exhibit true autonomy. Instead, they serve as assistants with limited capabilities. For instance, Perplexity’s “Shop Like a Pro” assists with selecting products but depends on vendor integration for completing purchases, rather than executing transactions autonomously. Despite current limitations, some users create their own AI shopping agents by integrating browser-based AI tools with no-code automation platforms like n8n, Zapier, or Make.com. These custom-built agents offer greater autonomy and versatility than off-the-shelf solutions. However, the need for AI agents in shopping remains debatable. The act of shopping often provides a sense of anticipation and engagement, which a fully autonomous AI agent could eliminate. In contrast, AI copilots can enhance the experience by reducing time investment while preserving user involvement. The same applies to vacation planning—while an AI agent could book optimal flights and accommodations, many users prefer a guided approach to maintain a sense of anticipation and control. Moreover, financial transactions should not be fully entrusted to AI agents due to potential risks. AI-powered form-filling can be beneficial, but human oversight remains essential. The decision to use an AI agent for shopping depends on how much involvement users wish to retain in the process. Use Case 2: Executive AI Assistant Many professionals seek AI-driven solutions to handle routine tasks such as scheduling, reminders, and email management. However, current AI assistants lack full autonomy in managing these activities comprehensively. For instance, Google’s Gemini Advanced provides AI-powered features in Google Calendar and Gmail, but its integration remains limited—requiring manual activation and lacking full interconnectivity between tasks. Similarly, Apple Intelligence offers fragmented AI functionalities rather than a seamless assistant experience. Some technically inclined users have developed custom executive assistants using automation tools. However, for the broader market, fully functional, user-friendly AI executive assistants are still in development by major tech companies. When evaluating the necessity of AI agents in routine tasks, the key factors include: Use Case 3: AI Research Deep research AI agents have significantly outperformed traditional search methods in both speed and accuracy, provided sufficient relevant data is available. Advanced AI-driven research tools, such as Perplexity Deep Research and Grok 3 DeepSearch, have demonstrated superior efficiency compared to manual search. Despite their capabilities, these agents often require refinement in their responses. AI-generated reports may focus on irrelevant details without proper guidance. However, many researchers find that leveraging AI significantly enhances the efficiency and breadth of their work. For organizations, the decision to utilize AI agents for research depends on their need for: While AI agents remain imperfect, they are rapidly evolving, particularly in deep research applications. As technology advances, their ability to support decision-making processes will likely continue to expand. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents

AI Agents in Action: Real-World Applications

The true potential of AI agents lies in their practical use across industries. Let’s explore how different sectors are leveraging AI agents to solve real challenges. Software Development The shift from simple code completion to autonomous software development highlights AI’s expanding role in engineering. While GitHub Copilot introduced real-time coding assistance in 2021, today’s AI agents—like Devin—can manage end-to-end development, from setting up environments to deployment. Multi-agent frameworks, such as MetaGPT, showcase how specialized AI agents collaborate effectively: While AI agents lack human limitations, this shift raises fundamental questions about development practices shaped over decades. AI excels at tasks like prototyping and automated testing, but the true opportunity lies in rethinking software development itself—not just making existing processes faster. This transformation is already affecting hiring trends. Salesforce, for example, announced it will not hire new software engineers in 2025, citing a 30% productivity increase from AI-driven development. Meanwhile, Meta CEO Mark Zuckerberg predicts that by 2025, AI will reach the level of mid-level software engineers, capable of generating production-ready code. However, real-world tests highlight limitations. While Devin performs well on isolated tasks like API integrations, it struggles with complex development projects. In one evaluation, Devin successfully completed only 3 out of 20 full-stack tasks. In contrast, developer-driven workflows using tools like Cursor have proven more reliable, suggesting that AI agents are best used as collaborators rather than full replacements. Customer Service The evolution from basic chatbots to sophisticated AI service agents marks one of the most successful AI deployments to date. Research by Sierra shows that modern AI agents can handle complex tasks—such as flight rebookings and multi-step refunds—previously requiring multiple human agents, all while maintaining natural conversation flow. Key capabilities include: However, challenges remain, particularly in handling policy exceptions and emotionally sensitive situations. Many companies address this by limiting AI agents to approved knowledge sources and implementing clear escalation protocols. The most effective approach in production environments has been a hybrid model, where AI agents handle routine tasks and escalate complex cases to human staff. Sales & Marketing AI agents are now playing a critical role in structured sales and marketing workflows, such as lead qualification, meeting scheduling, and campaign analytics. These agents integrate seamlessly with CRM platforms and communication tools while adhering to business rules. For example, Salesforce’s Agentforce processes customer interactions, maintains conversation history, and escalates complex inquiries when necessary. 1. Sales Development 2. Marketing Operations Core capabilities: However, implementing AI in sales and marketing presents challenges: A hybrid approach—where AI manages routine tasks and data-driven decisions while humans focus on relationship-building and strategy—has proven most effective. Legal Services AI agents are also transforming the legal industry by processing complex documents and maintaining compliance across jurisdictions. Systems like Harvey can break down multi-month projects, such as S-1 filings, into structured workflows while ensuring regulatory compliance. Key capabilities: However, AI-assisted legal work faces significant challenges. Validation and liability remain critical concerns—AI-generated outputs require human review, and the legal responsibility for AI-assisted decisions is still unresolved. While AI excels at document processing and legal research, strategic decisions remain firmly in human hands. Final Thoughts Across industries, AI agents are proving their value in automation, efficiency, and data-driven decision-making. However, fully autonomous systems are not yet replacing human expertise—instead, the most successful implementations involve AI-human collaboration, where agents handle repetitive tasks while humans oversee complex decision-making. As AI technology continues to evolve, businesses must strike the right balance between automation, control, and human oversight to maximize its potential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentforce to the Team

Salesforce Unveils AI-Powered Agentforce for Health

Salesforce Unveils AI-Powered Agentforce for Health to Streamline Healthcare Operations Salesforce is expanding its AI capabilities in healthcare with the launch of Agentforce for Health, a library of ready-made, autonomous AI tools designed to tackle time-consuming administrative tasks for providers, payers, and public health organizations. Unlike traditional AI assistants that require constant human input, Agentforce for Health leverages agentic AI, which can make independent decisions and operate with minimal intervention. This shift could be a game-changer for an industry grappling with labor shortages, burnout, and rising administrative costs—which McKinsey estimates at $1 trillion annually in the U.S. alone. How Agentforce for Health Works The new solution offers a range of AI-powered capabilities, including: By automating these processes, healthcare teams estimate they could save up to 10 hours per week, according to a Salesforce survey released alongside the product announcement. Salesforce’s AI Edge in Healthcare While tech giants like Google (Agentspace) and Microsoft are also investing in AI-driven healthcare solutions, Salesforce differentiates itself through its deep integration with its CRM platform. This allows Agentforce for Health to not only automate tasks but also seamlessly enhance patient engagement and care coordination. Additionally, Salesforce’s Einstein Copilot Health Actions, a conversational AI assistant launched in April, complements Agentforce by enabling interactive AI-driven decision-making for healthcare teams. Availability & Future Rollout Salesforce is rolling out Agentforce for Health’s AI skills through September for clients using its cloud platform. As AI adoption accelerates in healthcare, Salesforce is positioning itself as a key player in helping the industry reduce administrative burdens, improve efficiency, and enhance patient outcomes. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Shift From AI Agents to AI Agent Tool Use

AI Agent Dilemma

The AI Agent Dilemma: Hype, Confusion, and Competing Definitions Silicon Valley is all in on AI agents. OpenAI CEO Sam Altman predicts they will “join the workforce” this year. Microsoft CEO Satya Nadella envisions them replacing certain knowledge work. Meanwhile, Salesforce CEO Marc Benioff has set an ambitious goal: making Salesforce the “number one provider of digital labor in the world” through its suite of AI-driven agentic services. But despite the enthusiasm, there’s little consensus on what an AI agent actually is. In recent years, tech leaders have hailed AI agents as transformative—just as AI chatbots like OpenAI’s ChatGPT redefined information retrieval, agents, they claim, will revolutionize work. That may be true. But the problem lies in defining what an “agent” really is. Much like AI buzzwords such as “multimodal,” “AGI,” or even “AI” itself, the term “agent” is becoming so broad that it risks losing all meaning. This ambiguity puts companies like OpenAI, Microsoft, Salesforce, Amazon, and Google in a tricky spot. Each is investing heavily in AI agents, but their definitions—and implementations—differ wildly. An Amazon agent is not the same as a Google agent, leading to confusion and, increasingly, customer frustration. Even industry insiders are growing weary of the term. Ryan Salva, senior director of product at Google and former GitHub Copilot leader, openly criticizes the overuse of “agents.” “I think our industry has stretched the term ‘agent’ to the point where it’s almost nonsensical,” Salva told TechCrunch. “[It is] one of my pet peeves.” A Definition in Flux The struggle to define AI agents isn’t new. Former TechCrunch reporter Ron Miller raised the question last year: What exactly is an AI agent? The challenge is that every company building them has a different answer. That confusion only deepened this past week. OpenAI published a blog post defining agents as “automated systems that can independently accomplish tasks on behalf of users.” Yet in its developer documentation, it described agents as “LLMs equipped with instructions and tools.” Adding to the inconsistency, OpenAI’s API product marketing lead, Leher Pathak, stated on X (formerly Twitter) that she sees “assistants” and “agents” as interchangeable—further muddying the waters. Microsoft attempts to make a distinction, describing agents as “the new apps” for an AI-powered world, while reserving “assistant” for more general task helpers like email drafting tools. Anthropic takes a broader approach, stating that agents can be “fully autonomous systems that operate independently over extended periods” or simply “prescriptive implementations that follow predefined workflows.” Salesforce, meanwhile, has perhaps the widest-ranging definition, describing agents as AI-driven systems that can “understand and respond to customer inquiries without human intervention.” It categorizes them into six types, from “simple reflex agents” to “utility-based agents.” Why the Confusion? The nebulous nature of AI agents is part of the problem. These systems are still evolving, and major players like OpenAI, Google, and Perplexity have only just begun rolling out their first versions—each with vastly different capabilities. But history also plays a role. Rich Villars, GVP of worldwide research at IDC, points out that tech companies have “a long history” of using flexible definitions for emerging technologies. “They care more about what they are trying to accomplish on a technical level,” Villars told TechCrunch, “especially in fast-evolving markets.” Marketing is another culprit. Andrew Ng, founder of DeepLearning.ai, argues that the term “agent” once had a clear technical meaning—until marketers and a few major companies co-opted it. The Double-Edged Sword of Ambiguity The lack of a standardized definition presents both opportunities and challenges. Jim Rowan, head of AI at Deloitte, notes that while the ambiguity allows companies to tailor agents to specific needs, it also leads to “misaligned expectations” and difficulty in measuring value and ROI. “Without a standardized definition, at least within an organization, it becomes challenging to benchmark performance and ensure consistent outcomes,” Rowan explains. “This can result in varied interpretations of what AI agents should deliver, potentially complicating project goals and results.” While a clearer framework for AI agents would help businesses maximize their investments, history suggests that the industry is unlikely to agree on a single definition—just as it never fully defined “AI” itself. For now, AI agents remain both a promising innovation and a marketing-driven enigma. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Generative AI in Marketing

Generative AI in Marketing

Generative Artificial Intelligence (GenAI) continues to reshape industries, providing product managers (PMs) across domains with opportunities to embrace AI-focused innovation and enhance their technical expertise. Over the past few years, GenAI has gained immense popularity. AI-enabled products have proliferated across industries like a rapidly expanding field of dandelions, fueled by abundant venture capital investment. From a product management perspective, AI offers numerous ways to improve productivity and deepen strategic domain knowledge. However, the fundamentals of product management remain paramount. This discussion underscores why foundational PM practices continue to be indispensable, even in the evolving landscape of GenAI, and how these core skills can elevate PMs navigating this dynamic field. Why PM Fundamentals Matter, AI or Not Three core reasons highlight the enduring importance of PM fundamentals and actionable methods for excelling in the rapidly expanding GenAI space. 1. Product Development is Inherently Complex While novice PMs might assume product development is straightforward, the reality reveals a web of interconnected and dynamic elements. These may include team dependencies, sales and marketing coordination, internal tooling managed by global teams, data telemetry updates, and countless other tasks influencing outcomes. A skilled product manager identifies and orchestrates these moving pieces, ensuring product growth and delivery. This ability is often more impactful than deep technical AI expertise (though having both is advantageous). The complexity of modern product development is further amplified by the rapid pace of technological change. Incorporating AI tools such as GitHub Copilot can accelerate workflows but demands a strong product culture to ensure smooth integration. PMs must focus on fundamentals like understanding user needs, defining clear problems, and delivering value to avoid chasing fleeting AI trends instead of solving customer problems. While AI can automate certain tasks, it is limited by costs, specificity, and nuance. A PM with strong foundational knowledge can effectively manage these limitations and identify areas for automation or improvement, such as: 2. Interpersonal Skills Are Irreplaceable As AI product development grows more complex, interpersonal skills become increasingly critical. PMs work with diverse teams, including developers, designers, data scientists, marketing professionals, and executives. While AI can assist in specific tasks, strong human connections are essential for success. Key interpersonal abilities for PMs include: Stakeholder management remains a cornerstone of effective product management. PMs must build trust and tailor their communication to various audiences—a skill AI cannot replicate. 3. Understanding Vertical Use Cases is Essential Vertical use cases focus on niche, specific tasks within a broader context. In the GenAI ecosystem, this specificity is exemplified by AI agents designed for narrow applications. For instance, Microsoft Copilot includes a summarization agent that excels at analyzing Word documents. The vertical AI market has experienced explosive growth, valued at .1 billion in 2024 and projected to reach .1 billion by 2030. PMs are crucial in identifying and validating these vertical use cases. For example, the team at Planview developed the AI Assistant “Planview Copilot” by hypothesizing specific use cases and iteratively validating them through customer feedback and data analysis. This approach required continuous application of fundamental PM practices, including discovery, prioritization, and feedback internalization. PMs must be adept at discovering vertical use cases and crafting strategies to deliver meaningful solutions. Key steps include: Conclusion Foundational product management practices remain critical, even as AI transforms industries. These core skills ensure that PMs can navigate the challenges of GenAI, enabling organizations to accelerate customer value in work efficiency, time savings, and quality of life. By maintaining strong fundamentals, PMs can lead their teams to thrive in an AI-driven future. AI Agents on Madison Avenue: The New Frontier in Advertising AI agents, hailed as the next big advancement in artificial intelligence, are making their presence felt in the world of advertising. Startups like Adaly and Anthrologic are introducing personalized AI tools designed to boost productivity for advertisers, offering automation for tasks that are often time-consuming and tedious. Retail brands such as Anthropologie are already adopting this technology to streamline their operations. How AI Agents WorkIn simple terms, AI agents operate like advanced AI chatbots. They can handle tasks such as generating reports, optimizing media budgets, or analyzing data. According to Tyler Pietz, CEO and founder of Anthrologic, “They can basically do anything that a human can do on a computer.” Big players like Salesforce, Microsoft, Anthropic, Google, and Perplexity are also championing AI agents. Perplexity’s CEO, Aravind Srinivas, recently suggested that businesses will soon compete for the attention of AI agents rather than human customers. “Brands need to get comfortable doing this,” he remarked to The Economic Times. AI Agents Tailored for Advertisers Both Adaly and Anthrologic have developed AI software specifically trained for advertising tasks. Built on large language models like ChatGPT, these platforms respond to voice and text prompts. Advertisers can train these AI systems on internal data to automate tasks like identifying data discrepancies or analyzing economic impacts on regional ad budgets. Pietz noted that an AI agent can be set up in about a month and take on grunt work like scouring spreadsheets for specific figures. “Marketers still log into 15 different platforms daily,” said Kyle Csik, co-founder of Adaly. “When brands in-house talent, they often hire people to manage systems rather than think strategically. AI agents can take on repetitive tasks, leaving room for higher-level work.” Both Pietz and Csik bring agency experience to their ventures, having crossed paths at MediaMonks. Industry Response: Collaboration, Not Replacement The targets for these tools differ: Adaly focuses on independent agencies and brands, while Anthrologic is honing in on larger brands. Meanwhile, major holding companies like Omnicom and Dentsu are building their own AI agents. Omnicom, on the verge of merging with IPG, has developed internal AI solutions, while Dentsu has partnered with Microsoft to create tools like Dentsu DALL-E and Dentsu-GPT. Havas is also developing its own AI agent, according to Chief Activation Officer Mike Bregman. Bregman believes AI tools won’t immediately threaten agency jobs. “Agencies have a lot of specialization that machines can’t replace today,” he said. “They can streamline processes, but

Read More
The Future of AI in Salesforce

The Future of AI in Salesforce

The Future of AI in Salesforce: Smarter, Predictive, and Deeply Integrated Artificial Intelligence (AI) is revolutionizing the Salesforce ecosystem, reshaping customer interactions, automating workflows, and driving revenue growth. As we move into 2025 and beyond, AI within Salesforce will become even more intelligent, predictive, and seamlessly embedded across the platform. Let’s explore the key advancements defining the next era of AI in Salesforce. 1. Next-Gen Einstein AI: A Smarter CRM Assistant Salesforce Einstein continues to evolve, equipping businesses with powerful AI-driven capabilities: 2. AI-Powered Revenue Intelligence & Forecasting AI is transforming revenue intelligence, helping sales teams make data-driven decisions: 3. AI-Driven Sales & Service Automation AI-powered automation will streamline workflows and improve efficiency: 4. Hyper-Personalization with AI & Data Cloud Salesforce Data Cloud and AI will power personalized customer experiences at scale: 5. AI-Optimized Lead Generation & Marketing Automation AI will continue to enhance lead generation and marketing strategies: 6. AI & Low-Code/No-Code Innovation Salesforce is democratizing AI with accessible low-code and no-code tools: 7. Ethical AI & Governance: Building Trust in AI Salesforce remains committed to ethical, transparent, and bias-free AI: Conclusion As AI becomes deeply embedded in every Salesforce cloud, businesses will experience faster automation, smarter decision-making, and hyper-personalized customer engagement. From AI-powered sales forecasting to generative AI-driven content, the future of Salesforce AI is set to redefine CRM strategies in 2025 and beyond. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com