Cursor Archives - gettectonic.com
Scope of Generative AI

Exploring Generative AI

Like most employees at most companies, I wear a few different hats around Tectonic. Whether I’m building a data model, creating and scheduing an email campaign, standing up a platform generative AI is always at my fingertips. At my very core, I’m a marketer. Have been for so long I do it without eveven thinking. Or at least, everyuthing I do has a hat tip to its future marketing needs. Today I want to share some of the AI content generators I’ve been using, am looking to use, or just heard about. But before we rip into the insight, here’s a primer. Types of AI Content Generators ChatGPT, a powerful AI chatbot, drew significant attention upon its November 2022 release. While the GPT-3 language model behind it had existed for some time, ChatGPT made this technology accessible to nontechnical users, showcasing how AI can generate content. Over two years later, numerous AI content generators have emerged to cater to diverse use cases. This rapid development raises questions about the technology’s impact on work. Schools are grappling with fears of plagiarism, while others are embracing AI. Legal debates about copyright and digital media authenticity continue. President Joe Biden’s October 2023 executive order addressed AI’s risks and opportunities in areas like education, workforce, and consumer privacy, underscoring generative AI’s transformative potential. What is AI-Generated Content? AI-generated content, also known as generative AI, refers to algorithms that automatically create new content across digital media. These algorithms are trained on extensive datasets and require minimal user input to produce novel outputs. For instance, ChatGPT sets a standard for AI-generated content. Based on GPT-4o, it processes text, images, and audio, offering natural language and multimodal capabilities. Many other generative AI tools operate similarly, leveraging large language models (LLMs) and multimodal frameworks to create diverse outputs. What are the Different Types of AI-Generated Content? AI-generated content spans multiple media types: Despite their varied outputs, most generative AI systems are built on advanced LLMs like GPT-4 and Google Gemini. These multimodal models process and generate content across multiple formats, with enhanced capabilities evolving over time. How Generative AI is Used Generative AI applications span industries: These tools often combine outputs from various media for complex, multifaceted projects. AI Content Generators AI content generators exist across various media. Below are good examples organized by gen ai type: Written Content Generators Image Content Generators Music Content Generators Code Content Generators Other AI Content Generators These tools showcase how AI-powered content generation is revolutionizing industries, making content creation faster and more accessible. I do hope you will comment below on your favorites, other AI tools not showcased above, or anything else AI-related that is on your mind. Written by Tectonic’s Marketing Operations Director, Shannan Hearne. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agents and Digital Transformation

Inventing the Future of Agents

“The best way to predict the future is to invent it.” – Alan Kay, Computer Science PioneerOr, to channel Buzz Lightyear: “To infinity and beyond.” Inventing the Future of Agents The history of computing has always advanced in fits and starts, a pattern biologists call punctuated equilibrium. Revolutionary technologies emerge slowly—nurtured in research labs, garages, and the minds of visionaries—until the moment comes when a breakthrough shifts the axis of possibility. From there, a new paradigm takes shape, unleashing waves of innovation. Think of the Apple Macintosh, the iPhone, and Salesforce’s own Platform, which pioneered enterprise software-as-a-service (SaaS) and sparked an entirely new industry. Each of these milestones reshaped the way we live and work, setting the stage for even greater advances to come. Alan Kay: A Visionary for Computing’s Future One such paradigm-shifter was Alan Kay. In 1971, while working at Xerox PARC, Kay was immersed in an era when computers were room-sized behemoths. At the time, only four of these machines were connected to the fledgling ARPAnet, a precursor to today’s internet. Kay, a skilled musician with a deep appreciation for human-centered design, brought an empathetic and humanistic approach to innovation. In 1972, he introduced the Dynabook—a radical vision for personal computing that was decades ahead of its time. The Dynabook concept featured a battery-powered laptop with a touchscreen, wireless access to global information, and an interface so simple even children could use it. Kay and his team at PARC went on to develop many of the foundational elements of modern personal computing: overlapping windows, graphical user interfaces, and object-oriented programming. Later, while at Apple, Kay helped shape the vision for the groundbreaking 1987 Apple Knowledge Navigator video, which anticipated today’s iPad and iPhone. Agents and Humans: Driving Success Together Fast-forward to today, and we are on the cusp of another technological leap forward: AI agents. Much like Kay’s vision of personal computing, the emergence of intelligent, autonomous agents signals a new chapter in how humans and technology work together. Agentforce: Bringing the Future to the Present This interplay between visionary ideas and emerging technologies was on full display with the launch of Agentforce at Dreamforce 2024. A year earlier, at Dreamforce 2023, Salesforce Futures debuted its Salesforce 2030 film, drawing inspiration from Apple’s Knowledge Navigator. The film offered a glimpse into a world where humans collaborate seamlessly with autonomous AI agents—an aspirational vision of business transformed. Since then, the imagination gap between fiction and reality has narrowed. Salesforce’s work in Agentforce and publications like Personal AI Agents and Agents at Work have explored how agents are already changing business as we know it. These tools are bringing science fiction to life, enabling businesses to achieve unprecedented levels of efficiency, creativity, and success. A New Paradigm in Progress Like the Macintosh, the iPhone, or the Salesforce Platform, the rise of AI agents represents another transformative moment in computing history. By combining vision with technological breakthroughs, we are witnessing the dawn of a new era—one where humans and AI agents work together to push the boundaries of what’s possible. Alan Kay’s timeless wisdom rings true: the future isn’t something we wait for—it’s something we invent. With Agentforce, that future is already here. Inventing the Future of Agents. Are you ready to start Inventing the Future of Agents? Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agents and Digital Transformation

Ready for AI Agents

Brands that can effectively integrate agentic AI into their operations stand to gain a significant competitive edge. But as with any innovation, success will depend on balancing the promise of automation with the complexities of trust, privacy, and user experience.

Read More
AI in Programming

AI in Programming

Since the launch of ChatGPT in 2022, developers have been split into two camps: those who ban AI in coding and those who embrace it. Many seasoned programmers not only avoid AI-generated code but also prohibit their teams from using it. Their reasoning is simple: “AI-generated code is unreliable.” Even if one doesn’t agree with this anti-AI stance, they’ve likely faced challenges, hurdles, or frustrations when using AI for programming. The key is finding the right strategies to use AI to your advantage. Many are still using outdated AI strategies from two years ago, likened to cutting down a tree with kitchen knives. Two Major Issues with AI for Developers The Wrong Way to Use AI… …can be broken down into two parts: When ChatGPT first launched, the typical way to work with AI was to visit the website and chat with GPT-3.5 in a browser. The process was straightforward: copy code from the IDE, paste it into ChatGPT with a basic prompt like “add comments,” get the revised code, check for errors, and paste it back into the IDE. Many developers, especially beginners and students, are still using this same method. However, the AI landscape has changed significantly over the last two years, and many have not adjusted their approach to fully leverage AI’s potential. Another common pitfall is how developers use AI. They ask the LLM to generate code, test it, and go back and forth to fix any issues. Often, they fall into an endless loop of AI hallucinations when trying to get the LLM to understand what’s wrong. This can be frustrating and unproductive. Four Tools to Boost Programming Productivity with AI 1. Cursor: AI-First IDE Cursor is an AI-first IDE built on VScode but enhanced with AI features. It allows developers to integrate a chatbot API and use AI as an assistant. Some of Cursor’s standout features include: Cursor integrates seamlessly with VScode, making it easy for existing users to transition. It supports various models, including GPT-4, Claude 3.5 Sonnet, and its built-in free cursor-small model. The combination of Cursor and Sonnet 3.5 has been particularly praised for producing reliable coding results. This tool is a significant improvement over copy-pasting code between ChatGPT and an IDE. 2. Micro Agent: Code + Test Case Micro Agent takes a different approach to AI-generated code by focusing on test cases. Instead of generating large chunks of code, it begins by creating test cases based on the prompt, then writes code that passes those tests. This method results in more grounded and reliable output, especially for functions that are tricky but not overly complex. 3. SWE-agent: AI for GitHub Issues Developed by Princeton Language and Intelligence, SWE-agent specializes in resolving real-world GitHub repository issues and submitting pull requests. It’s a powerful tool for managing large repositories, as it reviews codebases, identifies issues, and makes necessary changes. SWE-agent is open-source and has gained considerable popularity on GitHub. 4. AI Commits: git commit -m AI Commits generates meaningful commit messages based on your git diff. This simple tool eliminates the need for vague or repetitive commit messages like “minor changes.” It’s easy to install and uses GPT-3.5 for efficient, AI-generated commit messages. The Path Forward To stay productive and achieve goals in the rapidly evolving AI landscape, developers need the right tools. The limitations of AI, such as hallucinations, can’t be eliminated, but using the appropriate tools can help mitigate them. Simple, manual interactions like generating code or comments through ChatGPT can be frustrating. By adopting the right strategies and tools, developers can avoid these pitfalls and confidently enhance their coding practices. AI is evolving fast, and keeping up with its changes is crucial. The right tools can make all the difference in your programming workflow. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Where Will AI Take Us?

Where Will AI Take Us?

Author Jeremy Wagstaff wrote a very thought provoking article on the future of AI, and how much of it we could predict based on the past. This insight expands on that article. Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think and learn. These machines can perform tasks that typically require human intelligence, such as visual perception, speech recognition, decision-making, and language translation. Many people think of artificial intelligence in the vein of how they personally use it. Some people don’t even realize when they are using it. Artificial intelligence has long been a concept in human mythology and literature. Our imaginations have been grabbed by the thought of sentient machines constructed by humans, from Talos, the enormous bronze automaton (self-operating machine) that safeguarded the island of Crete in Greek mythology, to the spacecraft-controlling HAL in 2001: A Space Odyssey. Artificial Intelligence comes in a variety of flavors, if you will. Artificial intelligence can be categorized in several ways, including by capability and functionality: You likely weren’t even aware of all of the above categorizations of artificial intelligence. Most of us still would sub set into generative ai, a subset of narrow AI, predictive ai, and reactive ai. Reflect on the AI journey through the Three C’s – Computation, Cognition, and Communication – as the guiding pillars for understanding the transformative potential of AI. Gain insights into how these concepts converge to shape the future of technology. Beyond a definition, what really is artificial intelligence, who makes it, who uses it, what does it do and how. Artificial Intelligence Companies – A Sampling AI and Its Challenges Artificial intelligence (AI) presents a novel and significant challenge to the fundamental ideas underpinning the modern state, affecting governance, social and mental health, the balance between capitalism and individual protection, and international cooperation and commerce. Addressing this amorphous technology, which lacks a clear definition yet pervades increasing facets of life, is complex and daunting. It is essential to recognize what should not be done, drawing lessons from past mistakes that may not be reversible this time. In the 1920s, the concept of a street was fluid. People viewed city streets as public spaces open to anyone not endangering or obstructing others. However, conflicts between ‘joy riders’ and ‘jay walkers’ began to emerge, with judges often siding with pedestrians in lawsuits. Motorist associations and the car industry lobbied to prioritize vehicles, leading to the construction of vehicle-only thoroughfares. The dominance of cars prevailed for a century, but recent efforts have sought to reverse this trend with ‘complete streets,’ bicycle and pedestrian infrastructure, and traffic calming measures. Technology, such as electric micro-mobility and improved VR/AR for street design, plays a role in this transformation. The guy digging out a road bed for chariots and Roman armies likely considered none of this. Addressing new technology is not easy to do, and it’s taken changes to our planet’s climate, a pandemic, and the deaths of tens of millions of people in traffic accidents (3.6 million in the U.S. since 1899). If we had better understood the implications of the first automobile technology, perhaps we could have made better decisions. Similarly, society should avoid repeating past mistakes with AI. The market has driven AI’s development, often prioritizing those who stand to profit over consumers. You know, capitalism. The rapid adoption and expansion of AI, driven by commercial and nationalist competition, have created significant distortions. Companies like Nvidia have soared in value due to AI chip sales, and governments are heavily investing in AI technology to gain competitive advantages. Listening to AI experts highlights the enormity of the commitment being made and reveals that these experts, despite their knowledge, may not be the best sources for AI guidance. The size and impact of AI are already redirecting massive resources and creating new challenges. For example, AI’s demand for energy, chips, memory, and talent is immense, and the future of AI-driven applications depends on the availability of computing resources. The rise in demand for AI has already led to significant industry changes. Data centers are transforming into ‘AI data centers,’ and the demand for specialized AI chips and memory is skyrocketing. The U.S. government is investing billions to boost its position in AI, and countries like China are rapidly advancing in AI expertise. China may be behind in physical assets, but it is moving fast on expertise, generating almost half of the world’s top AI researchers (Source: New York Times). The U.S. has just announced it will provide chip maker Intel with $20 billion in grants and loans to boost the country’s position in AI. Nvidia is now the third largest company in the world, entirely because its specialized chips account for more than 70 percent of AI chip sales. Memory-maker Micro has mostly run out of high-bandwidth memory (HBM) stocks because of the chips’ usage in AI—one customer paid $600 million up-front to lock in supply, according to a story by Stack. Back in January, the International Energy Agency forecast that data centers may more than double their electrical consumption by 2026 (Source: Sandra MacGregor, Data Center Knowledge). AI is sucking up all the payroll: Those tech workers who don’t have AI skills are finding fewer roles and lower salaries—or their jobs disappearing entirely to automation and AI (Source: Belle Lin at WSJ). Sam Altman of OpenAI sees a future where demand for AI-driven apps is limited only by the amount of computing available at a price the consumer is willing o pay. “Compute is going to be the currency of the future. I think it will be maybe the most precious commodity in the world, and I think we should be investing heavily to make a lot more compute.” Sam Altman, OpenAI CEO This AI buildup is reminiscent of past technological transformations, where powerful interests shaped outcomes, often at the expense of broader societal considerations. Consider early car manufacturers. They focused on a need for factories, components, and roads.

Read More
gettectonic.com