ERP - gettectonic.com - Page 7
Salesforce ERP Integration

Salesforce ERP Integration

Unlock the Power of Salesforce and ERP Integration Salesforce is known worldwide for its unmatched capabilities as a CRM platform. But when integrated with an ERP system, the potential multiplies. Together, they create a cohesive environment where workflows are streamlined, financial processes are optimized, decision-making is enhanced, and customer relationships are improved—all within one unified system. However, you might have questions like: How does ERP integration with Salesforce work? or What are the benefits of this integration? Let’s jump in and answer all your questions! What is ERP and Its Benefits? ERP (Enterprise Resource Planning) is software that integrates multiple business functions into a single platform. It enables you to manage key processes like human resources, accounting, sales, inventory, compliance, and order management. What makes ERP systems unique is the shared database that gives all employees access to the same real-time information across departments. While different from a CRM platform, ERP can be integrated with Salesforce to further boost business efficiency and productivity. Key benefits of an ERP system include: How Do Salesforce and ERP Work Together? Salesforce focuses on managing customer relationships, sales, marketing, and service operations. In contrast, ERP systems handle core business processes like finance, human resources, and supply chain management. When Salesforce and ERP are integrated, they create a seamless data flow between both systems. This integration synchronizes key data, like transactions and customer information, providing unified visibility across departments. It enhances efficiency and delivers better customer experiences by offering personalized services. Why Integrate Your ERP with Salesforce? While Salesforce helps manage customer relationships, integrating it with an ERP system offers additional advantages: Types of Salesforce – ERP Integrations There are various ways to integrate Salesforce with an ERP, depending on your business needs: Choosing the Right ERP to Integrate with Salesforce Not sure which ERP system is right for your Salesforce integration? Consider the following factors: ERP Systems Compatible with Salesforce Salesforce’s flexibility allows it to integrate with most ERP systems, including Sage Intacct, Sage X3, Sage 300, Sage 100, Sage 50 US, and Acumatica, among others. This flexibility ensures you can find the right ERP for your business operations. Key Functionalities with Salesforce – ERP Integration Here are some essential features you can expect from Salesforce and ERP integration: Best Practices for Seamless Integration To ensure a smooth Salesforce and ERP integration, follow these best practices: Conclusion Integrating an ERP system with Salesforce CRM can transform your business by unlocking new levels of productivity, efficiency, and growth. As your integration partner, Tectonic offers expertise in Salesforce and third-party ERP systems. Ready to streamline your operations and boost performance? Contact us today to start your ERP-Salesforce integration journey! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Exploring Emerging LLM

Exploring Emerging LLM

Exploring Emerging LLM Agent Types and Architectures The Evolution Beyond ReAct AgentsThe shortcomings of first-generation ReAct agents have paved the way for a new era of LLM agents, bringing innovative architectures and possibilities. In 2024, agents have taken center stage in the AI landscape. Companies globally are developing chatbot agents, tools like MultiOn are bridging agents to external websites, and frameworks like LangGraph and LlamaIndex Workflows are helping developers build more structured, capable agents. However, despite their rising popularity within the AI community, agents are yet to see widespread adoption among consumers or enterprises. This leaves businesses wondering: How do we navigate these emerging frameworks and architectures? Which tools should we leverage for our next application? Having recently developed a sophisticated agent as a product copilot, we share key insights to guide you through the evolving agent ecosystem. What Are LLM-Based Agents? At their core, LLM-based agents are software systems designed to execute complex tasks by chaining together multiple processing steps, including LLM calls. These agents: The Rise and Fall of ReAct Agents ReAct (reason, act) agents marked the first wave of LLM-powered tools. Promising broad functionality through abstraction, they fell short due to their limited utility and overgeneralized design. These challenges spurred the emergence of second-generation agents, emphasizing structure and specificity. The Second Generation: Structured, Scalable Agents Modern agents are defined by smaller solution spaces, offering narrower but more reliable capabilities. Instead of open-ended design, these agents map out defined paths for actions, improving precision and performance. Key characteristics of second-gen agents include: Common Agent Architectures Agent Development Frameworks Several frameworks are now available to simplify and streamline agent development: While frameworks can impose best practices and tooling, they may introduce limitations for highly complex applications. Many developers still prefer code-driven solutions for greater control. Should You Build an Agent? Before investing in agent development, consider these criteria: If you answered “yes,” an agent may be a suitable choice. Challenges and Solutions in Agent Development Common Issues: Strategies to Address Challenges: Conclusion The generative AI landscape is brimming with new frameworks and fervent innovation. Before diving into development, evaluate your application needs and consider whether agent frameworks align with your objectives. By thoughtfully assessing the tools and architectures available, you can create agents that deliver measurable value while avoiding unnecessary complexity. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Generative ai energy consumption

Growing Energy Consumption in Generative AI

Growing Energy Consumption in Generative AI, but ROI Impact Remains Unclear The rising energy costs associated with generative AI aren’t always central in enterprise financial considerations, yet experts suggest IT leaders should take note. Building a business case for generative AI involves both obvious and hidden expenses. Licensing fees for large language models (LLMs) and SaaS subscriptions are visible expenses, but less apparent costs include data preparation, cloud infrastructure upgrades, and managing organizational change. Growing Energy Consumption in Generative AI. One under-the-radar cost is the energy required by generative AI. Training LLMs demands vast computing power, and even routine AI tasks like answering user queries or generating images consume energy. These intensive processes require robust cooling systems in data centers, adding to energy use. While energy costs haven’t been a focus for GenAI adopters, growing awareness has prompted the International Energy Agency (IEA) to predict a doubling of data center electricity consumption by 2026, attributing much of the increase to AI. Goldman Sachs echoed these concerns, projecting data center power consumption to more than double by 2030. For now, generative AI’s anticipated benefits outweigh energy cost concerns for most enterprises, with hyperscalers like Google bearing the brunt of these costs. Google recently reported a 13% increase in greenhouse gas emissions, citing AI as a major contributor and suggesting that reducing emissions might become more challenging with AI’s continued growth. Growing Energy Consumption in Generative AI While not a barrier to adoption, energy costs play into generative AI’s long-term viability, noted Scott Likens, global AI engineering leader at PwC, emphasizing that “there’s energy being used — you don’t take it for granted.” Energy Costs and Enterprise Adoption Generative AI users might not see a line item for energy costs, yet these are embedded in fees. Ryan Gross of Caylent points out that the costs are mainly tied to model training and inferencing, with each model query, though individually minor, adding up over time. These expenses are often spread across the customer base, as companies pay for generative AI access through a licensing model. A PwC sustainability study showed that GenAI power costs, particularly from model training, are distributed among licensees. Token-based pricing for LLM usage also reflects inferencing costs, though these charges have decreased. Likens noted that the largest expenses still come from infrastructure and data management rather than energy. Potential Efficiency Gains Though energy isn’t a primary consideration, enterprises could reduce consumption indirectly through technological advancements. Newer, more cost-efficient models like OpenAI’s GPT-4o mini are 60% less expensive per token than prior versions, enabling organizations to deploy GenAI on a larger scale while keeping costs lower. Small, fine-tuned models can be used to address latency and lower energy consumption, part of a “multimodel” approach that can provide different accuracy and latency levels with varying energy demands. Agentic AI also offers opportunities for cost and energy savings. By breaking down tasks and routing them through specialized models, companies can minimize latency and reduce power usage. According to Likens, using agentic architecture could cut costs and consumption, particularly when tasks are routed to more efficient models. Rising Data Center Energy Needs While enterprises may feel shielded from direct energy costs, data centers bear the growing power demand. Cooling solutions are evolving, with liquid cooling systems becoming more prevalent for AI workloads. As data centers face the “AI growth cycle,” the demand for energy-efficient cooling solutions has fueled a resurgence in thermal management investment. Liquid cooling, being more efficient than air cooling, is gaining traction due to the power demands of AI and high-performance computing. IDTechEx projects that data center liquid cooling revenue could exceed $50 billion by 2035. Meanwhile, data centers are exploring nuclear power, with AWS, Google, and Microsoft among those considering nuclear energy as a sustainable solution to meet AI’s power demands. Future ROI Considerations While enterprises remain shielded from the full energy costs of generative AI, careful model selection and architectural choices could help curb consumption. PwC, for instance, factors in the “carbon impact” as part of its GenAI deployment strategy, recognizing that energy considerations are now a part of the generative AI value proposition. As organizations increasingly factor sustainability into their tech decisions, energy efficiency might soon play a larger role in generative AI ROI calculations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Agentforce - AI's New Role in Sales and Service

Agentforce – AI’s New Role in Sales and Service

From Science Fiction to Reality: AI’s Game-Changing Role in Service and Sales AI for service and sales has reached a critical tipping point, driving rapid innovation. At Dreamforce in San Francisco, hosted by Salesforce we explored how Salesforce clients are leveraging CRM, Data Cloud, and AI to extract real business value from their Salesforce investments. In previous years, AI features branded under “Einstein” had been met with skepticism. These features, such as lead scoring, next-best-action suggestions for service agents, and cross-sell/upsell recommendations, often required substantial quality data in the CRM and knowledge base to be effective. However, customer data was frequently unreliable, with duplicate records and missing information, and the Salesforce knowledge base was underused. Building self-service capabilities with chatbots was also challenging, requiring accurate predictions of customer queries and well-structured decision trees. This year’s Dreamforce revealed a transformative shift. The advancements in AI, especially for customer service and sales, have become exceptionally powerful. Companies now need to take notice of Salesforce’s capabilities, which have expanded significantly. Agentforce – AI’s New Role in Sales and Service Some standout Salesforce features include: At Dreamforce, we participated in a workshop where they built an AI agent capable of responding to customer cases using product sheets and company knowledge within 90 minutes. This experience demonstrated how accessible AI solutions have become, no longer requiring developers or LLM experts to set up. The key challenge lies in mapping external data sources to a unified data model in Data Cloud, but once achieved, the potential for customer service and sales is immense. How AI and Data Integrate to Transform Service and Sales Businesses can harness the following integrated components to build a comprehensive solution: Real-World Success and AI Implementation OpenTable shared a successful example of building an AI agent for its app in just two months, using a small team of four. This was a marked improvement from the company’s previous chatbot projects, highlighting the efficiency of the latest AI tools. Most CEOs of large enterprises are exploring AI strategies, whether by developing their own LLMs or using pre-existing models. However, many of these efforts are siloed, and engineering costs are high, leading to clunky transitions between AI and human agents. Tectonic is well-positioned to help our clients quickly deploy AI-powered solutions that integrate seamlessly with their existing CRM and ERP systems. By leveraging AI agents to streamline customer interactions, enhance sales opportunities, and provide smooth handoffs to human agents, businesses can significantly improve customer experiences and drive growth. Tectonic is ready to help businesses achieve similar success with AI-driven innovation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Large Action Models and AI Agents

Large Action Models and AI Agents

The introduction of LAMs marks a significant advancement in AI, focusing on actionable intelligence. By enabling robust, dynamic interactions through function calling and structured output generation, LAMs are set to redefine the capabilities of AI agents across industries.

Read More
Data Governance Frameworks

Data Governance Frameworks

Examples of Data Governance Frameworks Data governance is not a one-size-fits-all approach. Organizations must carefully choose a framework that aligns with their unique goals, structure, and culture. Data is one of an organization’s most valuable assets, and proper governance is key to unlocking its potential. Without a well-designed framework, companies risk poor data quality, privacy breaches, regulatory noncompliance, and missed insights. A data governance framework provides a structured way to manage data throughout its lifecycle, including policies, processes, and standards to ensure data is accurate, accessible, and secure. By putting clear guidelines in place, organizations can increase trust in their data and improve decision-making. Key Pillars of a Data Governance Frameworks A robust data governance framework typically rests on four key pillars: 1. Center-Out Model The center-out model places a centralized team, such as a data governance council, at the core of the governance process. This group establishes policies and oversees data management across the organization, balancing consistency with flexibility for different departments. The Data Governance Institute’s framework is an example of this model. It focuses on creating a Data Governance Office responsible for managing key governance functions such as setting data policies, assigning data stewards, and monitoring compliance. The framework provides a clear structure while allowing business units some leeway in adapting governance practices to their needs. PwC’s model also adopts a center-out approach, with an emphasis on using data governance to monetize data assets. It highlights the importance of maintaining consistency while minimizing the risk of data silos. 2. Top-Down Model In the top-down model, data governance is driven by executive leadership, ensuring alignment with strategic goals. This model provides authority for enforcing governance standards but may face challenges if business units feel disconnected from the central governance team. McKinsey’s framework exemplifies this approach, focusing on integrating data governance with broader business transformation efforts. Executive leadership plays a key role in ensuring that governance initiatives receive the necessary attention and resources. 3. Hybrid Model The hybrid model combines centralized governance with flexibility for individual business units. It establishes an enterprise-wide framework while allowing departments to adapt governance practices to their specific needs. The Eckerson Group’s Modern Data Governance Framework represents a hybrid approach. It emphasizes the importance of people and culture, alongside technology and processes, and encourages organizations to create a roadmap for governance that evolves as needs change. This model provides a balance between centralized control and decentralized flexibility. 4. Bottom-Up Model In the bottom-up model, data governance is driven by subject matter experts and data stakeholders across the organization. This approach promotes collaboration and buy-in from the people closest to the data, ensuring that governance policies are practical and effective. The DAMA-DMBOK framework, developed by the Data Management Association, is a prime example. Although flexible, it often starts as a bottom-up initiative, driven by IT departments and data experts who later gain executive support. 5. Silo-In Model The silo-in model allows individual business units or departments to create their own governance practices. While this approach addresses localized data issues, it often leads to inconsistencies and challenges when the organization needs to integrate data across the enterprise. Though not widely recommended, the silo-in approach may emerge when specific business units take the initiative to establish governance due to regulatory requirements or data management needs within their domains. However, as organizations mature, they often transition to more holistic frameworks to support cross-functional collaboration and data integration. Choosing the Right Framework Selecting the right data governance framework involves evaluating the organization’s needs, structure, and culture. Whether an organization adopts a center-out, top-down, hybrid, bottom-up, or silo-in approach, success depends on involving key stakeholders, securing executive buy-in, and committing to continuous improvement. By treating data as a critical asset and implementing a governance framework that aligns with its business strategy, an organization can ensure that its data management practices support growth, innovation, and regulatory compliance. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Collaborative Business Intelligence

Collaborative Business Intelligence

Collaborative Business Intelligence: Connecting Data and Teams In today’s data-driven world, the ability to interact with business intelligence (BI) tools is essential for making informed decisions. Collaborative business intelligence (BI), also known as social BI, allows users to engage with their organization’s data and communicate with data experts through the same platforms where they already collaborate. While self-service BI empowers users to generate insights, understanding the data’s context is critical to avoid misunderstandings that can derail decision-making. Collaborative BI integrates BI tools with collaboration platforms to bridge the gap between data analysis and communication, reducing the risks of misinterpretation. Traditional Business Intelligence Traditional BI involves the use of technology to analyze data and present insights clearly. Before BI platforms became widespread, data scientists and statisticians handled data analysis, making it challenging for non-technical professionals to digest the insights. BI evolved to automate visualizations, such as charts and dashboards, making data more accessible to business users. Previously, BI reports were typically available only to high-level executives. However, modern self-service BI tools democratize access, enabling more users—regardless of technical expertise—to create reports and visualize data, fostering better decision-making across the organization. The Emergence of Collaborative BI Collaborative BI is a growing trend, combining BI applications with collaboration tools. This approach allows users to work together synchronously or asynchronously within a shared platform, making it easier to discuss data reports in real time or leave comments for others to review. Whether it’s through Slack, Microsoft Teams, or social media apps, users can receive and discuss BI insights within their usual communication channels. This seamless integration of BI and collaboration tools offers a competitive edge, simplifying the process of sharing knowledge and clarifying data without switching between applications. Key Benefits of Collaborative Business Intelligence Leading Collaborative BI Platforms Here’s a look at some of the top collaborative BI platforms driving innovation in the market: Conclusion Collaborative BI empowers organizations by improving decision-making, democratizing data access, optimizing data quality, and ensuring data security. By integrating BI tools with collaboration platforms, businesses can streamline their operations, foster a culture of data-driven decision-making, and enhance overall efficiency. Choosing the right platform is key to maximizing the benefits of collaborative BI. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce and Qatalog

Salesforce and Qatalog

Conversational AI for Salesforce Supercharge your Salesforce workflows with the power of AI. Whether you’re tracking deals, reviewing pipeline performance, or uncovering insights, Qatalog’s AI assistant simplifies it all with natural language queries. Designed to understand the intent behind your questions, it delivers accurate, context-rich answers—no manual reporting required. Whether you’re a Salesforce novice or a seasoned pro, Salesforce and Qatalog redefine how you engage with your CRM data. Key Features Salesforce and Qatalog Conversational Search Say goodbye to navigating complex dashboards and reports. Just ask straightforward questions like: Get instant, actionable answers powered by AI, saving time and effort. No Technical Expertise Needed Qatalog’s intuitive AI chat interface is designed for everyone. Non-technical users can quickly access insights without needing Salesforce expertise, freeing up technical teams to focus on higher-value tasks. Seamless Integrations Connect Salesforce with your favorite business tools, including Outlook, Google Drive, Slack, and more. Access Salesforce CRM data in context across your apps, streamlining workflows and collaboration. Enterprise-Grade Data Security Your data’s privacy is paramount. Qatalog processes Salesforce data securely in real-time and discards it immediately after use, ensuring sensitive information stays protected. Transform the way you work with Salesforce—ask, explore, and act with confidence using Qatalog’s Conversational AI. Salesforce and Qatalog. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Data Snowflake and You

Salesforce Data Snowflake and You

Unlock the Full Potential of Your Salesforce Data with Snowflake At Tectonic, we’ve dedicated years to helping businesses maximize their Salesforce investment, driving growth and enhancing customer experiences. Now, we’re expanding those capabilities by integrating with Snowflake.Imagine the power of merging Salesforce data with other sources, gaining deeper insights, and making smarter decisions—without the hassle of complex infrastructure. Snowflake brings this to life with a flexible, scalable solution for unifying your data ecosystem.In this insight, we’ll cover why Snowflake is essential for Salesforce users, how seamlessly it integrates, and why Tectonic is the ideal partner to help you leverage its full potential. Why Snowflake Matters for Salesforce Users Salesforce excels at managing customer relationships, but businesses today need data from multiple sources—e-commerce, marketing platforms, ERP systems, and more. That’s where Snowflake shines. With Snowflake, you can unify these data sources, enrich your Salesforce data, and turn it into actionable insights. Say goodbye to silos and blind spots. Snowflake is easy to set up, scales effortlessly, and integrates seamlessly with Salesforce, making it ideal for enhancing CRM data across various business functions.The Power of Snowflake for Salesforce Users Seamless Data IntegrationSnowflake’s cloud-native architecture lets you combine structured, semi-structured, and unstructured data effortlessly. Salesforce users can extend their data capabilities by integrating insights from external sources, such as web analytics, other CRMs, or real-time IoT data, all while keeping the setup simple. This provides a comprehensive view of each customer and enables faster, data-driven decisions. Scalability without ComplexitySnowflake is a fully managed, cloud-native platform that scales to meet your growing data needs without heavy infrastructure demands. This allows Salesforce users to expand their data strategy without altering their CRM setup or adding IT resources. Advanced Analytics and AI/ML ReadinessFrom predictive lead scoring to customer churn analysis, Snowflake supports AI and machine learning workloads, enabling Salesforce users to develop models that deliver actionable insights. By unifying data across platforms, Snowflake allows for more accurate and robust AI/ML models, driving smarter decisions across areas like customer support and product recommendations. Enterprise-Grade Security & GovernanceSnowflake ensures that your data is secure and compliant. With top-tier security and data governance tools, your customer data remains protected and meets regulatory requirements across platforms, seamlessly integrating with Salesforce. Cross-Cloud Data SharingSnowflake’s Snowgrid feature makes it easy for Salesforce users to share and collaborate on data across clouds. Teams across marketing, sales, and operations can access the same up-to-date information, leading to better collaboration and faster, more informed decisions. Real-Time Data ActivationCombine Snowflake’s data platform with Salesforce Data Cloud to activate insights in real-time, enabling enriched customer experiences through dynamic insights from web interactions, purchase history, and service touchpoints. Tectonic + Snowflake: Elevating Your Salesforce Experience Snowflake offers powerful data capabilities, but effective integration is key to realizing its full potential—and that’s where Tectonic excels. Our expertise in Salesforce, now combined with Snowflake, ensures that businesses can maximize their data strategies. How Tectonic Helps: Strategic Integration Planning: We assess your current data ecosystem and design a seamless integration between Salesforce and Snowflake to unify data without disrupting operations. Custom Data Solutions: From real-time dashboards to data enrichment workflows, we create solutions tailored to your business needs. Ongoing Support and Optimization: Tectonic provides continuous support, adapting your Snowflake integration to meet evolving data needs and business strategies. Real-World Applications Retail: Integrate in-store and e-commerce sales data with Salesforce for real-time customer insights. Healthcare: Unify patient data from wearables, EMRs, and support interactions for a holistic customer care experience. Financial Services: Enhance Salesforce data with third-party risk assessments, enabling quicker, more accurate underwriting. Looking Ahead: The Tectonic Advantage Snowflake opens up new possibilities for Salesforce-powered businesses. Effective integration, however, requires strategic planning and hands-on expertise. Tectonic has a long-standing track record of helping clients get the most out of Salesforce, and now, Snowflake adds an extra dimension to our toolkit. Whether you want to better manage data, unlock insights, or enhance AI initiatives, Tectonic’s combined Salesforce and Snowflake expertise ensures you’ll harness the best of both worlds. Stay tuned as we dive deeper into Snowflake’s features, such as Interoperable Storage, Elastic Compute, and Cortex AI with Arctic, and explore how Tectonic is helping businesses unlock the future of data and AI. Ready to talk about how Snowflake and Salesforce can transform your business? Contact Tectonic today! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Thematic Personalization

Salesforce Thematic Personalization

Thematic Personalization Made Simple with Salesforce Leverage the power of thematic personalization to tailor your messaging and creative assets for each target audience directly within Salesforce. If you’re a Faraday user, integrating thematic personalization predictions into your CRM is a seamless way to elevate your outreach. With predictions accessible in Salesforce, you can shape your content to better resonate with your leads and contacts. This integration helps you understand what appeals to your audience, ensuring your communications are more relevant and impactful—all while working within the tools you already know. It’s an effortless way to enhance personalization and make the most of your data. Step-by-Step Integration Guide Step 1: Connect Your Data SourcesUse the link below to connect Salesforce to Faraday. Alternatively, you can skip this step and upload your data using CSV files to get started.👉 Connect to Salesforce Step 2: Ingest Data into Event StreamsStream your data into Faraday to enable the platform to interpret its meaning. Follow the link below for guidance on setting up event streams to power this template.👉 Ingest Data Step 3: Organize Your Customer DataGroup your data into cohorts—key building blocks in Faraday. These cohorts enable you to predict customer behavior with precision.👉 Define Cohorts Step 4: Declare Your Prediction ObjectivesOnce your cohorts are ready, instruct Faraday to predict the behaviors you care about. Follow the documentation using the link below.👉 Set Prediction Goals Step 5: Build and Deploy Your Personalization PipelineCreate a content personalization pipeline and deploy it to Salesforce to use predictions for shaping creative and messaging.👉 Deploy Content Personalization Step 6: Finalize Deployment to SalesforceComplete your setup by creating a deployment target within Salesforce or, if preferred, export your results as a CSV file.👉 Deploy to Salesforce Why Integrate Thematic Personalization?This integration empowers you to seamlessly incorporate predictive insights into your CRM workflow, enabling more personalized, effective communications. With minimal effort, you can connect with your audience on a deeper level, enhance engagement, and achieve better results. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Strategy and Tectonic

AI Strategy and Tectonic

AI Strategy and Tectonic Recent advancements in artificial intelligence (AI) have showcased the immense potential of this technology to transform both business and society. However, as organizations scale AI systems, they must ensure these systems are structured and governed responsibly to prevent bias and errors. The widespread use of AI can have significant implications, and without proper safeguards, businesses risk costly outcomes. As your organization leverages diverse datasets to apply machine learning and automate workflows, it’s critical to implement strong guardrails to maintain data quality, ensure compliance, and promote transparency within AI systems. Tectonic is here to help you implement AI responsibly, focusing on areas where it can quickly and ethically deliver real business benefits. Our comprehensive portfolio of enterprise-grade AI products and analytics solutions is designed to minimize the challenges of AI adoption, establish a solid data foundation, and optimize for positive outcomes while ensuring responsible AI use. Global enterprises turn to Tectonic as a trusted partner in their AI transformation journeys. As a leading AI consulting firm, we enhance the value of AI and cloud technologies in driving business transformation. By working with our own advanced AI technologies and an open ecosystem of partners, we deliver AI models on any cloud, all guided by the principles of ethics and trust. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Perplexity has launched an upgraded version of Pro Search

Perplexity has launched an upgraded version of Pro Search

Key Enhancements 1. Multi-step ReasoningPro Search now handles complex questions requiring planning and multiple steps to achieve a goal. Unlike standard search, it comprehensively analyzes results and performs smart follow-up actions based on its findings. It can conduct successive searches that build upon previous answers, enabling a more structured approach to complex queries. 2. Advanced Math and Programming CapabilitiesPro Search integrates with the Wolfram|Alpha engine, enhancing its proficiency in advanced math, programming, and data analysis for high-precision tasks. Quick Search vs. Pro Search While Quick Search provides fast, straightforward answers for quick queries, Pro Search caters to in-depth research needs, offering detailed analysis, comprehensive reporting, and access to a broad range of credible sources. Features: Usage and Subscription Options Pro Search is available with limited free access or through a subscription: Application Areas The new Pro Search upgrade is designed not just for general searches but also to support specific professional fields: Summary of Key Benefits Pro Search elevates research capabilities across various fields by providing smarter search solutions, a more structured approach to complex problems, and advanced computational support. Perplexity has launched an upgraded version of Pro Search, an advanced tool tailored for solving complex problems and streamlining research. This enhanced Pro Search features multi-step reasoning, advanced math, programming capabilities, and delivers more in-depth research insights. Key Enhancements 1. Multi-step ReasoningPro Search now handles complex questions requiring planning and multiple steps to achieve a goal. Unlike standard search, it comprehensively analyzes results and performs smart follow-up actions based on its findings. It can conduct successive searches that build upon previous answers, enabling a more structured approach to complex queries. 2. Advanced Math and Programming CapabilitiesPro Search integrates with the Wolfram|Alpha engine, enhancing its proficiency in advanced math, programming, and data analysis for high-precision tasks. Quick Search vs. Pro Search While Quick Search provides fast, straightforward answers for quick queries, Pro Search caters to in-depth research needs, offering detailed analysis, comprehensive reporting, and access to a broad range of credible sources. Features: Usage and Subscription Options Pro Search is available with limited free access or through a subscription: Application Areas The new Pro Search upgrade is designed not just for general searches but also to support specific professional fields: Summary of Key Benefits Pro Search elevates research capabilities across various fields by providing smarter search solutions, a more structured approach to complex problems, and advanced computational support. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce with SharpLaunch

Salesforce with SharpLaunch

Supercharge Your Salesforce with SharpLaunch Streamline Your Sales ProcessIntegrate Salesforce with SharpLaunch to simplify and automate your commercial real estate (CRE) operations. Key Features Push Leads Directly to SalesforceSay goodbye to manual data entry. Automatically transfer valuable leads from SharpLaunch to Salesforce and focus on closing deals. Continuously Sync DataKeep your CRM updated effortlessly. Lead data captured in SharpLaunch syncs automatically to your Salesforce fields, ensuring accuracy and up-to-date information. Boost ProductivityBy connecting SharpLaunch with Salesforce, you can streamline workflows, reduce administrative tasks, and accelerate your sales cycle. Why SharpLaunch Stands Out Fully Customizable Designs Tailor every digital asset to match your brand.From property websites to interactive maps, SharpLaunch delivers personalized, client-facing solutions that elevate your brokerage’s presence. Enterprise-Level Integrations Unify your tech stack seamlessly.SharpLaunch integrates with any tools you’re already using, fitting into your workflows to maximize efficiency with minimal effort. World-Class Service Enjoy dedicated, personalized support.Skip the chatbots and ticket queues. Work directly with your Customer Success Manager from setup to success. Complete Data Ownership Keep control of your information.With SharpLaunch, you retain full ownership of your data, ensuring sensitive client and property information stays secure and private. Ready to Transform Your Salesforce Experience? Connect SharpLaunch to Salesforce today and empower your sales team to close deals faster while maintaining full control over your data and brand identity. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Gen AI and Test Automation

Gen AI and Test Automation

Generative AI has brought transformative advancements across industries, and test automation is no exception. By generating code, test scenarios, and even entire suites, Generative AI enables Software Development Engineers in Test (SDETs) to boost efficiency, expand test coverage, and improve reliability. 1. Enhanced Test Case Generation One of the biggest hurdles in test automation is generating diverse, comprehensive test cases. Traditional methods often miss edge cases or diverse scenarios. Generative AI, however, can analyze existing data and automatically generate extensive test cases, including potential edge cases that may not be apparent to human testers. Example: An SDET can use Generative AI to create test cases for a web application by feeding it requirements and user data. This enables the AI to produce hundreds of test cases, capturing diverse user behaviors and interactions that manual testers may overlook. pythonCopy codeimport openai openai.api_key = ‘YOUR_API_KEY’ def generate_test_cases(application_description): response = openai.Completion.create( engine=”text-davinci-003″, prompt=f”Generate comprehensive test cases for the following application: {application_description}”, max_tokens=500 ) return response.choices[0].text app_description = “An e-commerce platform for browsing products, adding to cart, and checking out.” test_cases = generate_test_cases(app_description) print(test_cases) Sample Output: 2. Intelligent Test Script Creation Writing test scripts manually can be labor-intensive and error-prone. Generative AI can simplify this by generating test scripts based on an application’s flow, ensuring consistency and precision. Example: If an SDET needs to automate tests for a mobile app, they can use Generative AI to generate scripts for various scenarios, significantly reducing manual work. pythonCopy codeimport hypothetical_ai_test_tool ui_description = “”” Login Page: – Username field – Password field – Login button Home Page: – Search bar – Product listings – Add to cart buttons “”” test_scripts = hypothetical_ai_test_tool.generate_selenium_scripts(ui_description) Sample Output for test_login.py: pythonCopy codefrom selenium import webdriver from selenium.webdriver.common.keys import Keys def test_login(): driver = webdriver.Chrome() driver.get(“http://example.com/login”) username_field = driver.find_element_by_name(“username”) password_field = driver.find_element_by_name(“password”) login_button = driver.find_element_by_name(“login”) username_field.send_keys(“testuser”) password_field.send_keys(“password”) login_button.click() assert “Home” in driver.title driver.quit() 3. Automated Maintenance of Test Suites As applications evolve, maintaining test suites is critical. Generative AI can monitor app changes and update test cases automatically, keeping test suites accurate and relevant. Example: In a CI/CD pipeline, an SDET can deploy Generative AI to track code changes and update affected test scripts. This minimizes downtime and ensures tests stay aligned with application updates. pythonCopy codeimport hypothetical_ai_maintenance_tool def maintain_test_suite(): changes = hypothetical_ai_maintenance_tool.analyze_code_changes() updated_scripts = hypothetical_ai_maintenance_tool.update_test_scripts(changes) for script_name, script_content in updated_scripts.items(): with open(script_name, ‘w’) as file: file.write(script_content) maintain_test_suite() Sample Output:“Updating test_login.py with new login flow changes… Test scripts updated successfully.” 4. Natural Language Processing for Test Case Design Generative AI with NLP can interpret human language, enabling SDETs to create test cases from plain-language descriptions, enhancing collaboration across technical and non-technical teams. Example: An SDET can use an NLP-powered tool to translate a feature description from a product manager into test cases. This speeds up the process and ensures that test cases reflect intended functionality. pythonCopy codeimport openai openai.api_key = ‘YOUR_API_KEY’ def create_test_cases(description): response = openai.Completion.create( engine=”text-davinci-003″, prompt=f”Create test cases based on this feature description: {description}”, max_tokens=500 ) return response.choices[0].text feature_description = “Allow users to reset passwords via email to regain account access.” test_cases = create_test_cases(feature_description) print(test_cases) Sample Output: 5. Predictive Analytics for Test Prioritization Generative AI can analyze historical data to prioritize high-risk areas, allowing SDETs to focus testing on critical functionalities. Example: An SDET can use predictive analytics to identify areas with frequent bugs, allocating resources more effectively and ensuring robust testing of high-risk components. pythonCopy codeimport hypothetical_ai_predictive_tool def prioritize_tests(): risk_areas = hypothetical_ai_predictive_tool.predict_risk_areas() prioritized_tests = hypothetical_ai_predictive_tool.prioritize_test_cases(risk_areas) return prioritized_tests prioritized_test_cases = prioritize_tests() print(“Prioritized Test Cases:”) for test in prioritized_test_cases: print(test) Sample Output: Gen AI and Test Automation Generative AI has the potential to revolutionize test automation, offering SDETs tools to enhance efficiency, coverage, and reliability. By embracing Generative AI for tasks like test case generation, script creation, suite maintenance, NLP-based design, and predictive prioritization, SDETs can reduce manual effort and focus on strategic tasks, accelerating testing processes and ensuring robust, reliable software systems. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Bot Planning

Salesforce Bot Planning

Careful Planning: Key to an Effective Bot and Happy Customers When building your bot, thoughtful planning is essential to ensure it efficiently serves customers and meets their needs. Supported Editions Technical Planning Voice and Tone Planning Careful planning in these areas will help ensure your Einstein Bot delivers a smooth, efficient experience for your customers. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com