Machine Learning Archives - gettectonic.com - Page 11
public sector and tribal governent

What is BI in Salesforce?

Salesforce BI helps to create fast, digestible reports to help you make informed decisions at the right time. Salesforce Einstein is a leading business intelligence software solution that will help streamline your operations. Read on in this insight to learn how Salesforce BI capabilities including Tableau rank in the Gartner Magic Quadrant. Make the right decision every time using analytics that go beyond business intelligence software. See why Gartner named Salesforce (Tableau) a Leader in the Gartner® Magic Quadrant™ for Analytics and Business Intelligence Platforms for the 11th consecutive year. Data and analytics leaders must use analytics and BI platforms to support the needs of IT, analysts, consumers and data scientists. While integration with cloud ecosystems and business applications is a key selection requirement, buyers also need platforms to support openness and interoperability. Analytics and business intelligence (ABI) platforms enable less technical users, including business people, to model, analyze, explore, share and manage data, and collaborate and share findings, enabled by IT and augmented by artificial intelligence (AI). For several years, the Magic Quadrant for Analytic and Business Intelligence Platforms has emphasized visual self-service for end users augmented by AI to deliver automated insights. While this remains a significant use case, the ABI platform market will increasingly need to focus on the needs of the analytic content consumer and business decision makers. To achieve this, automated insights must be relevant in context of a user’s goals, actions and workflow. Many platforms are adding capabilities for users to easily compose low-code or no-code automation workflows and applications. This blend of capabilities is helping to expand the vision for analytics beyond simply delivering datasets and presenting dashboards. Today’s ABI platforms can deliver enriched contextualized insights, refocus attention on decision-making processes and ultimately take actions that will deliver business value. In addition to the increasing consumer design focus trend, we see other key market trends, including the need for improved governance of analytic content creation and dissemination, and the demand for a headless, open architecture. For example, a headless ABI platform would decouple the metrics store from the front-end presentation layer, enabling more interoperability with competitive products. ABI platform functionality includes the following 12 critical capabilities, which have been updated to reflect areas of market change, differentiation and customer demand: Gartner added three new critical capabilities as part of our metrics store evaluation criteria this year:  ABI platforms have always been about measurement. For decades, the slicing and dicing of measures by their dimensional attributes was synonymous with the act of performing business intelligence. However, over the last decade, the focus on metrics and measurement was overshadowed by data visualization. As data visualization became the most conspicuous capability, some business executives began to conflate ABI platforms with data visualization — as if ABI platforms are glorified chart wizards. This misconception minimizes much of the work performed and the business value delivered by ABI platforms. Establishing metrics stores as a critical capability to execute makes it clear that defining and communicating performance measures throughout an organization is one of the key purposes of an ABI platform. Analytics collaboration is a combination of many features (such as Slack/Teams integration, action frameworks) that collectively improve an organization’s ability to make decisions with consensus. Data science integration reflects the increasing likelihood that a business analyst may want to use data science to test certain hypotheses, and that data scientists will need to leverage features such as data prep and data visualization. In addition, Gartner is changing “catalogs” to “analytic catalogs” to emphasize a set of requirements that are not being met by ABI platform vendors today. Most large enterprises have thousands of reports built across multiple ABI platforms, but consumers in these organizations have no easy way to access these reports. The name change to analytic catalogs reflects the need for ABI platform vendors to deliver analytic content with the consumer in mind. Three critical capabilities were removed from our evaluation criteria: security, natural language generation (NLG; rolled into data storytelling) and cloud analytics (which will no longer be considered a platform capability, but instead a go-to-market strategy covered in the Magic Quadrant). And one of the security sub-criteria, about the granularity of authorization (e.g., row-based security) has been moved to the enterprise reporting capability. Salesforce (Tableau) Tableau, a Salesforce company, is a Leader in this Magic Quadrant. Its products are mainly focused on visual-based exploration that enables business users to access, prepare, analyze and present findings in their data. CRM Analytics, formerly Tableau CRM, provides augmented analytics capabilities for analysts and citizen data scientists. Tableau has global operations and serves clients of all sizes. In 2022, Tableau reinforced its augmented consumer vision to provide contextualized insights with deeper integration with Salesforce Data Cloud. IT also improved decision intelligence by bringing domain-aware insights into action with Revenue Intelligence and other Salesforce-native apps. The extensible design and x-platform integrations (Salesforce Flow, MuleSoft, UiPath and Looker) further enable composable analytics to bring insights into workflow with agility. Strengths Cautions Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Einstein Discovery

Einstein Discovery Analysis

Elevate Your Business Outcomes with Einstein Discovery Analysis Einstein Discovery revolutionizes your approach to predictive analytics, allowing you to effortlessly build reliable machine learning models without any coding. Reduce reliance on data science teams with an intuitive model-building wizard and streamlined monitoring process. Transition swiftly from data to actionable insights, ensuring every decision is guided by intelligence. Enhance Your Business Intelligence with Einstein Discovery Incorporate statistical modeling and machine learning into your business intelligence with Einstein Discovery. Seamlessly integrated into your Salesforce environment, operationalize data analysis, predictions, and enhancements with clicks, not code. Developers can utilize the Einstein Prediction Service to access predictions programmatically, while data specialists can predict outcomes within recipes and dataflows. Tableau users can also leverage Einstein Discovery predictions and improvements directly within Tableau. Advanced Analytics Made Simple with Einstein Discovery Einstein Discovery offers a comprehensive suite of business analytics tailored to your specific data needs. Licensing and Permission Requirements for Einstein Discovery To utilize Einstein Discovery, your organization needs the appropriate license, with user accounts assigned relevant permissions. Supported Use Cases and Implementation Tasks Einstein Discovery solutions effectively address common business use cases, typically involving a series of defined implementation tasks. Key Differentiation: Einstein Analytics vs. Einstein Discovery While Einstein Analytics integrates predictive and analytical capabilities within Sales, Service, and Marketing clouds, Einstein Discovery is specifically focused on providing actionable insights and data-driven stories. Key Benefits of Einstein Discovery Supported Data Integration and Functionality Einstein Discovery enables direct integration and import of data from external sources like Hadoop, Oracle, and Microsoft SQL Server. It extracts data from diverse sources, leveraging AI, ML, and statistical intelligence to identify patterns and generate informed predictions. Enhanced Features Einstein Discovery seamlessly integrates insights into Tableau workflows, unlocks insights from unstructured data, fine-tunes prediction accuracy with trending data, handles missing values in datasets, accelerates prediction processing with high-volume writeback, and offers enhanced settings panels for efficient prediction management. Partner with Tectonic for Expert Guidance Collaborate with experienced Salesforce services providers like Tectonic to maximize the benefits of Einstein Discovery, ensuring a seamless implementation process and ongoing support. Empower Your Business with Einstein Discovery Einstein Discovery delivers automated data analysis, interactive visualizations, and predictive insights to elevate decision-making and optimize business operations. Unlock the power of AI-driven analytics within your Salesforce ecosystem to accelerate growth and gain a competitive edge. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI-driven propensity scores

AI-Driven Propensity Scores

AI plays a crucial role in propensity score estimation as it can discern underlying patterns between treatments and confounding variables through machine learning, without explicit programming. This insight has gone through numerous updates as the information and use of AI-driven propensity scores evolved. In many cases, writers give a brief overview of the what of a tool. Today, we are going way beyond “what the sausage tastes like” to “how the sausage is made” Tectonic hopes you will enjoy learning how propensity models and AI driven propensity scores improve your data. Propensity Model in Artificial Intelligence: Propensity modeling generates a propensity score, representing the probability that a visitor, lead, or customer will take a specific action. For instance, a propensity model, using data science or machine learning, can help predict the likelihood of a lead converting to a customer. AI-driven propensity scores take an existing data model and improve its predictions, speed, and analysis with AI. Propensity Score in CRM: In CRM, a propensity score is the model’s probabilistic estimate of a customer performing a specific action. Grouping customers by score ranges allows for effective comparison and analysis within each bucket. Enhancing Propensity Modeling with AI: Traditional statistical propensity models might lack accuracy, but integrating machine learning technologies, as demonstrated by Alphonso, can significantly optimize ad spend and increase prediction accuracy from 8% to 80%. That’s a whopping 72% improvement. Propensity Modeling Overview: Propensity modeling involves predictive models analyzing past behaviors to forecast the future actions of a target audience. It identifies the likelihood of specific actions, aiding in personalized marketing. Role of Machine Learning in Propensity Models: Propensity models rely on machine learning algorithms, acting as binary classifiers predicting whether a certain event or behavior will occur. Logistic regression and Classification and Regression Tree Analysis are common methods for calculating propensity scores. Characteristics of Effective Propensity Models: For robust predictions, propensity models should be dynamic, scalable, and adaptive. Dynamic models adapt to trends, scalable for diverse predictions, and adaptive with regular data updates. Propensity Modeling Applications: Propensity models find applications in predicting customer behavior, such as purchasing, converting, churning, or engaging. Real-time predictions, data analysis, and AI integration contribute to successful implementations. AI-driven propensity scores are extremely useful in that they can be coupled with many other models to give additional insights to your data. Types of Propensity Score Models: Various models include propensity to purchase/convert, customer lifetime value (CLV), propensity to churn, and propensity to engage. Combining models can enhance the effectiveness of marketing campaigns. When to Use Propensity Scores: Propensity scores are beneficial when random assignment of treatments is impractical. They help estimate treatment effects in observational studies, providing an alternative to traditional model-building methods. Limitations of Propensity Score Methods: While propensity scores help achieve exchangeability between exposed and unexposed groups, they do not claim to eliminate confounding due to unmeasured covariates. Findings from observational studies must be interpreted cautiously due to potential residual confounding. Content updated October 2021. Content updated February 2024. Like3 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Data Collection

Collecting Customer Data and Acting On It

Salesforce Data Collection and Customer Journey Mapping for Better Outcomes At the forefront of customer engagement, sales revenue leaders have a pivotal role in shaping a company’s overarching strategy and enhancing customer experience (CX). Through the extraction of valuable insights from Salesforce data collection, they illuminate areas for improvement, fostering long-term revenue growth.  This is all driven by customer data. Customer Journey Mapping A powerful method to gain a comprehensive understanding of the customer journey involves creating a customer journey map. This is based on your Salesforce data collection. This map traces customers’ experiences, unveiling pain points and moments of truth within the sales process. Utilizing this information, companies can enhance CX, predict revenue more accurately, and make data-driven decisions. For instance, if sales revenue executives observe that only a limited number of customers are transitioning from a free service to a paid one, they can experiment with innovative approaches to prompt purchases. Employing digital nudges, such as reminding customers of the limited time remaining to avail the free service, revenue leaders can iterate and refine their strategies until they resonate with customers. Salesforce Next Best Action can notify sales representatives of customers most likely to be ready to convert. Salesforce automations can move likely to convert customers to next best action campaigns and make intuitive decisions based upon predetermined criteria. Thanks to technological advancements in Salesforce, tracking and analyzing customer behavior is now more accessible than ever. Leveraging data analytics, AI, and machine learning, companies can delve deeper into every digital touchpoint, assessing its impact on CX. This empowers revenue leaders to evaluate the success of diverse initiatives, compare the effectiveness of multiple communication channels, and make decisions grounded in data. Decision Based on Salesforce Data Collection One consequential decision involves identifying high-value customers in the sales pipeline. Through data analytics, revenue leaders can ascertain which customers are most likely to complete a purchase, allowing for resource allocation optimization. This approach prevents the squandering of time and resources on low-value prospects and facilitates an accurate prediction of future revenue. Sales revenue leaders emerge as key drivers of growth and CX enhancement. By harnessing technology and data-driven insights, they can make informed decisions, fine-tune customer journeys, and ultimately propel revenue growth. Let Tectonic craft a tailored program for data collection and customer journey mapping today. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Roles in AI

Salesforce’s Quest for AI for the Masses

The software engine, Optimus Prime (not to be confused with the Autobot leader), originated in a basement beneath a West Elm furniture store on University Avenue in Palo Alto. A group of artificial intelligence enthusiasts within Salesforce, seeking to enhance the impact of machine learning models, embarked on this mission two years ago. While shoppers checked out furniture above, they developed a system to automate the creation of machine learning models. Thus Salesforce’s Quest for AI for the Masses started. Despite being initially named after the Transformers leader, the tie-in was abandoned, and Salesforce named its AI program Einstein. This move reflects the ambitious yet practical approach Salesforce takes in the AI domain. In March, a significant portion of Einstein became available to all Salesforce users, aligning with the company’s tradition of making advanced software accessible via the cloud. Salesforce, although now an industry giant, retains its scrappy upstart identity. When the AI trend gained momentum, the company aimed to create “AI for everyone,” focusing on making machine learning affordable and accessible to businesses. This populist mission emphasizes practical applications over revolutionary or apocalyptic visions. Einstein’s first widely available tool is the Einstein Intelligence module, designed to assist salespeople in managing leads effectively. It ranks opportunities based on factors like the likelihood to close, offering a practical application of artificial intelligence. While other tech giants boast significant research muscle, Salesforce focuses on providing immediate market advantages to its customers. Einstein Intelligence The Einstein Intelligence module employs machine learning to study historical data, identifying factors that predict future outcomes and adjusting its model over time. This dynamic approach allows for subtler and more powerful answers, making use of various data sources beyond basic Salesforce columns. Salesforce’s AI team strives to democratize AI by offering ready-made tools, ensuring businesses can benefit from machine learning without the need for extensive customization by data scientists. The company’s multi-tenant approach, serving 150,000 customers, keeps each company’s data separate and secure. Salesforce’s Quest for AI for the Masses To scale AI implementation across its vast customer base, Salesforce developed Optimus Prime. This system automates the creation of machine learning models for each customer, eliminating the need for extensive manual involvement. Optimus Prime, the AI that builds AIs, streamlines the process and accelerates model creation from weeks to just a couple of hours. Salesforce plans to expand Einstein’s capabilities, allowing users to apply it to more customized data and enabling non-programmers to build custom apps. The company’s long-term vision includes exposing more of its machine learning system to external developers, competing directly with AI heavyweights like Google and Microsoft in the business market. Originally published in WIRED magazine on August 2, 2017 and rewritten for this insight. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce CRM for AI driven transformation

Salesforce Artificial Intelligence

Is artificial intelligence integrated into Salesforce? Salesforce Einstein stands as an intelligent layer embedded within the Lightning Platform, bringing robust AI technologies directly into users’ workspaces. The Einstein Platform offers administrators and developers a comprehensive suite of platform services, empowering them to create smarter applications and tailor AI solutions for their enterprises. What is the designated name for Salesforce’s AI? Salesforce Einstein represents an integrated array of CRM AI technologies designed to facilitate personalized and predictive experiences, enhancing the professionalism and attractiveness of businesses. Since its introduction in 2016, it has consistently been a leading force in AI technology within the CRM realm. Is Salesforce Einstein a current feature? “Einstein is now every customer’s data scientist, simplifying the utilization of best-in-class AI capabilities within the context of their business.” Is Salesforce Einstein genuinely AI? Salesforce Einstein for Service functions as a generative AI tool, contributing to the enhancement of customer service and field service operations. Its capabilities extend to improving customer satisfaction, cost reduction, increased productivity, and informed decision-making. Salesforce Artificial Intelligence AI is just the starting point; real-time access to customer data, robust analytics, and business-wide automation are essential for AI effectiveness. Einstein serves as a comprehensive solution for businesses to initiate AI implementation with a trusted architecture that prioritizes data security. Einstein is constructed on an open platform, allowing the safe utilization of any large language model (LLM), whether developed by Salesforce Research or external sources. It offers flexibility in working with various models within a leading ecosystem of LLM platforms. Salesforce’s commitment to AI is evident through substantial investments in researching diverse AI areas, including Conversational AI, Natural Language Processing (NLP), Multimodal Data Intelligence and Generation, Time Series Intelligence, Software Intelligence, Fundamentals of Machine Learning, Science, Economics, and Environment. These endeavors aim to advance technology, improve productivity, and contribute to fields such as science, economics, and environmental sustainability. Content updated April 2023. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com