Recast - gettectonic.com
MOIRAI-MoE

MOIRAI-MoE

MOIRAI-MoE represents a groundbreaking advancement in time series forecasting by introducing a flexible, data-driven approach that addresses the limitations of traditional models. Its sparse mixture of experts architecture achieves token-level specialization, offering significant performance improvements and computational efficiency. By dynamically adapting to the unique characteristics of time series data, MOIRAI-MoE sets a new standard for foundation models, paving the way for future innovations and expanding the potential of zero-shot forecasting across diverse industries.

Read More
Power of Historical Data in AI Performance

Power of Historical Data in AI Performance

Salesforce’s Agentforce is brimming with potential, but unlocking its full capabilities requires more than just real-time data—it demands access to rich, historical datasets. Agentforce thrives on robust time-series data to recognize patterns, track trends, and deliver accurate predictions. While Salesforce excels at capturing real-time data, significant gaps exist when it comes to historical insights. Without this essential context, AI initiatives risk falling short, generating outputs that fail to account for long-term trends and evolving customer behavior. The Power of Historical Data in AI Performance Comprehensive historical data provides the depth and context that AI models like Agentforce need to excel. By incorporating this data, businesses can enable smarter predictions, uncover hidden patterns, and drive more meaningful insights—giving them a decisive edge in competitive markets. Introducing Own Discover: Unlocking Historical Data To bridge the historical data gap, Salesforce has introduced Own Discover—a secure, scalable data service designed to make historical Salesforce data readily accessible for AI models. This groundbreaking tool empowers admins to harness the full value of their organization’s historical data, fueling platforms like Agentforce to accelerate AI-driven innovation. Key Benefits of Own Discover Elevating Agentforce with Historical Data For Salesforce admins, historical data has become essential, not optional, for maximizing AI success. By integrating tools like Own Discover, admins can provide Agentforce with the datasets it needs to deliver reliable, actionable insights. This not only improves AI performance but also positions admins as strategic enablers of their company’s AI-driven transformation. With Own Discover, Salesforce makes historical data a strategic asset—unlocking the full potential of Agentforce and empowering businesses to embrace AI with confidence. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agents, Tech's Next Big Bet

Business Intelligence and AI

AI in Business Intelligence: Uses, Benefits, and Challenges AI tools are increasingly becoming integral to Business Intelligence (BI) systems, enhancing analytics capabilities and streamlining tasks. In this article, we explore how AI can bring new value to BI processes and what to consider as this integration continues to evolve. AI’s Role in Business Intelligence Business Intelligence tools, such as dashboards and interactive reports, have traditionally focused on analyzing historical and current data to describe business performance—known as descriptive analytics. While valuable, many business users seek more than just a snapshot of past performance. They also want predictive insights (forecasting future trends) and prescriptive guidance (recommendations for action). Historically, implementing these advanced capabilities was challenging due to their complexity, but AI simplifies this process. By leveraging AI’s analytical power and natural language processing (NLP), businesses can move from descriptive to predictive and prescriptive analytics, enabling proactive decision-making. AI-powered BI systems also offer the advantage of real-time data analysis, providing up-to-date insights that help businesses respond quickly to changing conditions. Additionally, AI can automate routine tasks, boosting efficiency across business operations. Benefits of Using AI in BI Initiatives The integration of AI into BI systems brings several key benefits, including: Examples of AI Applications in BI AI’s role in BI is not limited to internal process improvements. It can significantly enhance customer experience (CX) and support business growth. Here are a few examples: Challenges of Implementing AI in BI While the potential for AI in BI is vast, there are several challenges companies must address: Best Practices for Deploying AI in BI To maximize the benefits of AI in BI, companies should follow these best practices: Future Trends to Watch AI is not poised to replace traditional BI tools but to augment them with new capabilities. In the future, we can expect: In conclusion, AI is transforming business intelligence by turning data analysis from a retrospective activity into a forward-looking, real-time process. While challenges remain, such as data governance, ethical concerns, and skill shortages, AI’s potential to enhance BI systems and drive business success is undeniable. By following best practices and staying abreast of industry developments, businesses can harness AI to unlock new opportunities and deliver better insights. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More

What Are Sales Channels?

Sales channels are the platforms or methods through which a business sells its products or services to customers. These channels can be direct (e.g., e-commerce sites and retail stores) or indirect (e.g., resellers and marketplaces). Some businesses rely on a single channel, while others use a mix of several.

Read More
How Does Salesforce Use AI

How Does Salesforce Use AI

With all the buzz in the news about AI, it may feel like AI is everywhere. In fact, as of 2023, over 80% of global companies report adopting AI to enhance their business operations. This means if your company isn’t yet leveraging AI to strengthen customer relationships, you risk falling behind. The good news is that Salesforce CRM already comes with a suite of AI tools ready for use. In this insight, we’ll explore how combining quality data, AI, and Salesforce can help you build more meaningful, lasting relationships with your customers. How Does Salesforce Use AI? Salesforce offers various built-in functionalities to create customizable, predictive, and generative AI experiences tailored to your business needs. One standout tool is Agentforce, which enables the creation of autonomous AI agents. If you have numerous routine tasks but limited staff, Agentforce could be the solution. For instance, if you lack an in-house customer support agent, Agentforce can build an AI service agent to handle incoming cases, responding intuitively in real-time. Not enough sales reps? No problem—create an AI sales agent to manage records, interact with leads, answer questions, and schedule meetings. Another significant AI feature is generative AI in Salesforce. According to KPMG, 77% of executives believe generative AI will have a more profound societal impact in the next three to five years than any other emerging technology. So, how can it improve your business? Salesforce’s in-house LLM, xGen, helps you generate human-like text and create original visual content from existing data or user input. This capability can enhance user experiences by automating the generation of dynamic and personalized imagery for applications. Generative AI also transforms how users interact with and consume data. Complex datasets can now be converted into easily understandable formats—visualizations, charts, or graphs—generated from natural language prompts. These insights make data accessible, enabling users to share knowledge and drive informed decisions. How Can You Use AI to Improve Customer Relationships? AI is reshaping business models, workflows, and customer engagement. By harnessing quality data, AI, and Salesforce, you can enhance how you connect with customers. Here are key ways to leverage this combination for a smarter customer strategy: Challenges You May Encounter on Your AI Journey Adopting AI in Salesforce, especially Einstein AI, offers many benefits, but it also comes with challenges. Here are some factors to consider for a successful rollout: Importance of Data Quality When Using AI Analytics Data quality is essential for AI accuracy and reliability. Poor data can skew predictions and erode user trust. Key factors that contribute to high data quality include: AI can also enhance data quality by automating data validation and cleansing. Machine learning algorithms can detect and address anomalies, duplicate records, and incomplete datasets, improving the reliability of your data over time. The Future of CRM: AI-Driven Customer Engagement and Business Growth Integrating AI into Salesforce is revolutionizing CRM by enabling businesses to engage with customers more intelligently. From automating routine tasks to enhancing decision-making and delivering personalized communication, AI-driven innovations are empowering businesses to build stronger relationships with customers. As AI continues to evolve, those who embrace it will gain a competitive edge and drive long-term growth. The future of CRM is here—and it’s smarter, faster, and more customer-focused than ever. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agent Rivalry

AI Agent Rivalry

Microsoft and Salesforce’s AI Agent Rivalry Heats Up The battle for dominance in the AI agent space has escalated, with Salesforce CEO Marc Benioff intensifying his criticism of Microsoft’s AI solutions. Following remarks at Dreamforce 2024, Benioff took to X (formerly Twitter) to call out Microsoft for what he called “rebranding Copilot as ‘agents’ in panic mode.” The AI Agent rivalry winner may be determined not by flashy features but by delivering tangible, transformative outcomes for businesses navigating the complexities of AI adoption. AI Agent Rivalry. Benioff didn’t hold back, labeling Microsoft’s Copilot as “a flop”, citing issues like data leaks, inaccuracies, and requiring customers to build their own large language models (LLMs). In contrast, he touted Salesforce’s Agentforce as a solution that autonomously drives sales, service, marketing, analytics, and commerce without the complications he attributes to Microsoft’s offerings. Microsoft’s Copilot: A New UI for AI Microsoft recently unveiled new autonomous agent capabilities for Copilot Studio and Dynamics 365, positioning these agents as tools to enhance productivity across teams and functions. CEO Satya Nadella described Copilot as “the UI for AI” and emphasized its flexibility, allowing businesses to create, manage, and integrate agents seamlessly. Despite the fanfare, Benioff dismissed Copilot’s updates, likening it to “Clippy 2.0” and claiming it fails to deliver accuracy or transformational impact. Salesforce Expands Agentforce with Strategic Partnerships At Dreamforce 2024, Salesforce unveiled its Agentforce Partner Network, a global ecosystem featuring collaborators like AWS, Google Cloud, IBM, and Workday. The move aims to bolster the capabilities of Agentforce, Salesforce’s AI-driven platform that delivers tailored, autonomous business solutions. Agentforce allows businesses to deploy customizable agents without complex coding. With features like the Agent Builder, users can craft workflows and instructions in natural language, making the platform accessible to both technical and non-technical teams. Flexibility and Customization: Salesforce vs. Microsoft Both Salesforce and Microsoft emphasize AI’s transformative potential, but their approaches differ: Generative AI vs. Predictive AI Salesforce has doubled down on generative AI, with Einstein GPT producing personalized content using CRM data while also providing predictive analytics to forecast customer behavior and sales outcomes. Microsoft, on the other hand, combines generative and predictive AI across its ecosystem. Copilot not only generates content but also performs autonomous decision-making in Dynamics 365 and Azure, positioning itself as a comprehensive enterprise solution. The Rise of Multi-Agent AI Systems The competition between Microsoft and Salesforce reflects a broader trend in AI-driven automation. Companies like OpenAI are experimenting with frameworks like Swarm, which simplifies the creation of interconnected AI agents for tasks such as lead generation and marketing campaign development. Similarly, startups like DevRev are introducing conversational AI builders to design custom agents, offering enterprises up to 95% task accuracy without the need for coding. What Lies Ahead in the AI Agent Landscape? As Salesforce and Microsoft push the boundaries of AI integration, businesses are evaluating these tools for their flexibility, customization, and impact on operations. While Salesforce leads in CRM-focused AI, Microsoft’s integrated approach appeals to enterprises seeking cross-functional AI solutions. In the end, the winner may be determined not by flashy features but by delivering tangible, transformative outcomes for businesses navigating the complexities of AI adoption. AI Agent Rivalry. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Enterprises are Adopting AI-powered Automation Platforms

Enterprises are Adopting AI-powered Automation Platforms

The rapid pace of AI technological advancement is placing immense pressure on teams, often leading to disagreements due to the unrealistic expectations businesses have for the speed and agility of new technology implementation. A staggering 88% of IT professionals report that they are unable to keep up with the flood of AI-related requests within their organizations. Executives from UiPath, Salesforce, ServiceNow, and ManageEngine offer insights into how enterprises can navigate these challenges. Leading enterprises are adopting AI-powered automation platforms that understand, automate, and manage end-to-end processes. These platforms integrate seamlessly with existing enterprise technologies, using AI to reduce friction, eliminate inefficiencies, and enable teams to achieve business goals faster, with greater accuracy and efficiency. This year’s innovation drivers include tools such as Intelligent Document Processing, Communications Mining, Process and Task Mining, and Automated Testing. “Automation is the best path to deliver on AI’s potential, seamlessly integrating intelligence into daily operations, automating backend processes, upskilling employees, and revolutionizing industries,” says Mark Gibbs, EMEA President, UiPath. Jessica Constantinidis, Innovation Officer EMEA at ServiceNow, explains, “Intelligent Automation blends Robotic Process Automation (RPA), Artificial Intelligence (AI), and Machine Learning (ML) with well-defined processes to automate decision-making outcomes.” “Hyperautomation provides a business-driven, disciplined approach that enterprises can use to make informed decisions quickly by analyzing process and data feedback within the organization,” adds Constantinidis. Thierry Nicault, AVP and General Manager at Salesforce Middle East, emphasizes that while companies are eager to embrace AI, the pace of change often leads to confusion and stifles innovation. He notes, “By deploying AI and Hyperintelligent Automation tools, organizations can enhance productivity, visibility, and operational transformation.” Automation is driving growth and innovation across industries. AI-powered tools are simplifying processes, improving business revenues, and contributing to economic diversification. Ramprakash Ramamoorthy, Director of AI Research at ManageEngine, highlights how Hyperintelligent Automation, powered by AI, uses tools like Natural Language Processing (NLP) and Intelligent Document Processing to detect anomalies, forecast business trends, and empower decision-making. The IT Pushback Despite enthusiasm for AI, IT professionals are raising concerns. A Salesforce survey revealed that 88% of IT professionals feel overwhelmed by the influx of AI-related requests, with many citing resource constraints, data security concerns, and data quality issues. Business stakeholders often have unrealistic expectations about how quickly new technologies can be implemented, creating friction. According to Constantinidis of ServiceNow, many organizations lack transparency across their business units, making it difficult to fully understand their processes. As a result, automating processes becomes challenging. She adds, “Before full hyperautomation is possible, issues like data validation, classification, and privacy must be prioritized.” Automation platforms need accurate data, and governance is crucial in managing what data is used for AI models. “You need AI skills to teach and feed the data, and you also need a data specialist to clean up your data lake,” Constantinidis explains. Gibbs from UiPath stresses that automation must be designed in collaboration with the business users who understand the processes and systems. Once deployed, a feedback loop ensures continuous improvement and refinement of automated workflows. Ramamoorthy from ManageEngine notes that adopting Hyperintelligent Automation alongside existing workflows poses challenges. Enterprises must evaluate their technology stack, considering the costs, skills required, and the potential benefits. Strategic Integration of AI and Automation To successfully implement Hyperintelligent Automation tools, enterprises need a blend of IT and business skills. Mark Gibbs of UiPath points out, “These skills ensure organizations can effectively implement, manage, and optimize hyperintelligent technologies, aligning them with organizational goals.” Salesforce’s Nicault adds, “Enterprises must empower both IT and business teams to embrace AI, fostering innovation while ensuring the technology delivers real value.” Business skills are equally crucial, including strategic planning, process analysis, and change management. Ramamoorthy emphasizes that these competencies help identify automation opportunities and align them with business goals. According to Bassel Khachfeh, Digital Solutions Manager at Omnix, automation must be implemented with a focus on regulatory and compliance needs specific to the industry. This approach ensures the technology supports future growth and innovation. Transforming Customer Experiences and Business Operations As automation evolves, it’s transforming not only back-end processes but also customer experiences and decision-making at every level. Constantinidis from ServiceNow explains that hyperintelligence enables enterprises to predict outcomes and avert crises by trusting AI’s data accuracy. Gibbs from UiPath adds that automation allows enterprises to unlock untapped opportunities, speeding up the transformation of manual processes and enhancing business efficiency. AI is already making an impact in areas like supply chain management, regulatory compliance, and customer-facing processes. Ramamoorthy of ManageEngine notes that AI-powered NLP is revolutionizing enterprise chatbots and document processing, enabling businesses to automate complex workflows like invoice handling and sentiment analysis. Khachfeh from Omnix highlights how Cognitive Automation platforms elevate RPA by integrating AI-driven capabilities, such as NLP and Optical Character Recognition (OCR), to further streamline operations. Looking Ahead Hyperintelligent Automation, driven by AI, is set to revolutionize industries by enhancing efficiency, driving innovation, and enabling smarter decision-making. Enterprises that strategically adopt these tools—by integrating IT and business expertise, prioritizing data governance, and continuously refining their automated workflows—will be best positioned to navigate the complexities of AI and achieve sustainable growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
More AI Tools to Use

More AI Tools to Use

Additionally, Arc’s collaboration with Perplexity elevates browsing by transforming search experiences. Perplexity functions as a personal AI research assistant, fetching and summarizing information along with sources, visuals, and follow-up questions. Premium users even have access to advanced large language models like GPT-4 and Claude. Together, Arc and Perplexity revolutionize how users navigate the web. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Salesforce Connected Assets

Salesforce Connected Assets

Salesforce has unveiled Connected Assets, a robust suite of capabilities in Manufacturing Cloud, designed to offer manufacturers a comprehensive, real-time perspective on connected asset data. This includes data on service history, asset status, customer records, and telematics, allowing manufacturers to monitor asset health and performance while proactively addressing maintenance needs to reduce downtime and boost customer satisfaction. Enhanced AI Capabilities for Connected AssetsConnected Assets integrates Salesforce’s advanced AI to empower teams with actionable insights. Sales, customer service, and field teams can now receive real-time alerts and quickly access asset history and health, enabling faster, data-driven support and the delivery of more personalized offers. AI-driven insights and recommendations based on asset condition, service history, and performance data enhance the ability of manufacturers to predict maintenance needs and provide proactive support, including on-site recommendations to field technicians. Innovative Features for Optimized Asset Management Salesforce PerspectiveAchyut Jajoo, SVP and GM of Manufacturing and Automotive, states, “The manufacturing industry is embracing a historic transformation toward AI-enabled modernization. Connected Assets and our sector-specific AI tools in Manufacturing Cloud empower our customers to lead with improved customer experiences, optimized asset performance, and new revenue-generating services. With Agentforce, our customers will soon be able to leverage autonomous agents to monitor connected asset data at scale, enabling them to focus on strategic, high-value initiatives.” Real-World ApplicationKawasaki Engines exemplifies Connected Assets in action, using Manufacturing Cloud to enhance customer relationships by offering proactive support and minimizing equipment downtime. “Salesforce’s Connected Assets will enable us to deliver exceptional service, keeping our customers satisfied and our products operating efficiently,” says Tony Gondick, Senior Manager of IT Business Strategy at Kawasaki Engines. Extending Across IndustriesBeyond Manufacturing Cloud, Connected Assets is also being introduced to Salesforce’s other industry clouds, such as Energy & Utilities, Communications, and Media, allowing a wide range of sectors to tap into the benefits of connected asset management, minimize downtime, and generate new value. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Market Insights and Forecast for Quote Generation Software

Market Insights and Forecast for Quote Generation Software

Market Insights and Forecast for Quote Generation Software for Salesforce (2024-2031): Key Players, Technology Advancements, and Growth Opportunities A recent research report by WMR delves into the Quote Generation Software for Salesforce Market, offering over 150 pages of in-depth analysis on business strategies employed by both leading and emerging industry players. The study provides insights into market developments, technological advancements, drivers, opportunities, and overall market status. Understanding market segments is essential to identify key factors driving growth. Comprehensive Market Insights The report provides an extensive analysis of the global market landscape, including business expansion strategies designed to increase revenue. It compiles critical data about target customers, evaluating the potential success of products and services prior to launch. The research offers valuable insights for stakeholders, including detailed updates on the impact of COVID-19 on business operations and the broader market. The report assesses whether a target market aligns with an enterprise’s goals, emphasizing that market success hinges on understanding the target audience. Key Players Featured: Market Segmentation By Types: By Applications: Geographical Overview The Quote Generation Software for Salesforce Market varies significantly across regions, driven by factors such as economic development, technical advancements, and cultural differences. Businesses looking to expand globally must account for these variations to leverage local opportunities effectively. Key regions include: Competitive Landscape The report offers a detailed competitive analysis, highlighting: Highlights from the Report Key Market Questions Addressed: Reasons to Purchase this Report: This report provides a valuable roadmap for businesses aiming to navigate the evolving Quote Generation Software for Salesforce Market, helping them make informed decisions and strategically position themselves for growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Flows and LeanData

Salesforce Flows and LeanData

Mastering Opportunity Routing in Salesforce Flows While leads are essential at the top of the funnel, opportunities take center stage as the sales process advances. In Salesforce, the opportunity object acts as a container that can hold multiple contacts tied to a specific deal, making accurate opportunity routing crucial. Misrouting or delays at this stage can significantly impact revenue and forecasting, while manual processing risks incorrect assignments and uneven distribution. Leveraging Salesforce Flows for opportunity routing can help avoid these issues. Salesforce Flows and LeanData. What Is Opportunity Routing? Opportunity routing is the process of assigning open opportunities to the right sales rep based on specific criteria like territory, deal size, industry, or product type. The goal is to ensure every opportunity reaches the right person quickly, maximizing the chance to close the deal. Opportunity routing also helps prioritize high-potential deals, improving pipeline efficiency. Challenges of Manual Routing Manual opportunity routing can lead to several challenges: Benefits of Automating Routing with Salesforce Flows Using Salesforce Flows for opportunity routing offers many benefits: Setting Up Opportunity Routing in Salesforce Flows Here’s an outline for setting up opportunity routing in Salesforce: Managing Complex Salesforce Flows Opportunity routing in Salesforce Flows is powerful, but managing complex sales environments can be challenging: How LeanData Enhances Opportunity Routing LeanData extends Salesforce routing capabilities with advanced, no-code automation and auditing features: Salesforce Flows and LeanData Whether using Salesforce Flows or LeanData, the goal is to optimize time to revenue. While Salesforce Flows offer a robust foundation, organizations without dedicated admins or developers may face challenges in making frequent updates. LeanData provides greater flexibility and real-time automation, helping to streamline the routing process and drive revenue growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Generative AI Energy Consumption Rises

Generative AI Energy Consumption Rises

Generative AI Energy Consumption Rises, but Impact on ROI Unclear The energy costs associated with generative AI (GenAI) are often overlooked in enterprise financial planning. However, industry experts suggest that IT leaders should account for the power consumption that comes with adopting this technology. When building a business case for generative AI, some costs are evident, like large language model (LLM) fees and SaaS subscriptions. Other costs, such as preparing data, upgrading cloud infrastructure, and managing organizational changes, are less visible but significant. Generative AI Energy Consumption Rises One often overlooked cost is the energy consumption of generative AI. Training LLMs and responding to user requests—whether answering questions or generating images—demands considerable computing power. These tasks generate heat and necessitate sophisticated cooling systems in data centers, which, in turn, consume additional energy. Despite this, most enterprises have not focused on the energy requirements of GenAI. However, the issue is gaining more attention at a broader level. The International Energy Agency (IEA), for instance, has forecasted that electricity consumption from data centers, AI, and cryptocurrency could double by 2026. By that time, data centers’ electricity use could exceed 1,000 terawatt-hours, equivalent to Japan’s total electricity consumption. Goldman Sachs also flagged the growing energy demand, attributing it partly to AI. The firm projects that global data center electricity use could more than double by 2030, fueled by AI and other factors. ROI Implications of Energy Costs The extent to which rising energy consumption will affect GenAI’s return on investment (ROI) remains unclear. For now, the perceived benefits of GenAI seem to outweigh concerns about energy costs. Most businesses have not been directly impacted, as these costs tend to affect hyperscalers more. For instance, Google reported a 13% increase in greenhouse gas emissions in 2023, largely due to AI-related energy demands in its data centers. Scott Likens, PwC’s global chief AI engineering officer, noted that while energy consumption isn’t a barrier to adoption, it should still be factored into long-term strategies. “You don’t take it for granted. There’s a cost somewhere for the enterprise,” he said. Energy Costs: Hidden but Present Although energy expenses may not appear on an enterprise’s invoice, they are still present. Generative AI’s energy consumption is tied to both model training and inference—each time a user makes a query, the system expends energy to generate a response. While the energy used for individual queries is minor, the cumulative effect across millions of users can add up. How these costs are passed to customers is somewhat opaque. Licensing fees for enterprise versions of GenAI products likely include energy costs, spread across the user base. According to PwC’s Likens, the costs associated with training models are shared among many users, reducing the burden on individual enterprises. On the inference side, GenAI vendors charge for tokens, which correspond to computational power. Although increased token usage signals higher energy consumption, the financial impact on enterprises has so far been minimal, especially as token costs have decreased. This may be similar to buying an EV to save on gas but spending hundreds and losing hours at charging stations. Energy as an Indirect Concern While energy costs haven’t been top-of-mind for GenAI adopters, they could indirectly address the issue by focusing on other deployment challenges, such as reducing latency and improving cost efficiency. Newer models, such as OpenAI’s GPT-4o mini, are more economical and have helped organizations scale GenAI without prohibitive costs. Organizations may also use smaller, fine-tuned models to decrease latency and energy consumption. By adopting multimodel approaches, enterprises can choose models based on the complexity of a task, optimizing for both speed and energy efficiency. The Data Center Dilemma As enterprises consider GenAI’s energy demands, data centers face the challenge head-on, investing in more sophisticated cooling systems to handle the heat generated by AI workloads. According to the Dell’Oro Group, the data center physical infrastructure market grew in the second quarter of 2024, signaling the start of the “AI growth cycle” for infrastructure sales, particularly thermal management systems. Liquid cooling, more efficient than air cooling, is gaining traction as a way to manage the heat from high-performance computing. This method is expected to see rapid growth in the coming years as demand for AI workloads continues to increase. Nuclear Power and AI Energy Demands To meet AI’s growing energy demands, some hyperscalers are exploring nuclear energy for their data centers. AWS, Google, and Microsoft are among the companies exploring this option, with AWS acquiring a nuclear-powered data center campus earlier this year. Nuclear power could help these tech giants keep pace with AI’s energy requirements while also meeting sustainability goals. I don’t know. It seems like if you akin AI accessibility to more nuclear power plants you would lose a lot of fans. As GenAI continues to evolve, both energy costs and efficiency are likely to play a greater role in decision-making. PwC has already begun including carbon impact as part of its GenAI value framework, which assesses the full scope of generative AI deployments. “The cost of carbon is in there, so we shouldn’t ignore it,” Likens said. Generative AI Energy Consumption Rises Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
New Salesforce Maps Experience Auto-Enabled in Winter ‘25 (October) Release

Christmas 2024

With artificial Christmas trees and holiday inflatables already appearing alongside Halloween decorations at big-box retailers, (and in neighbors’ yards before the first drop of pumpkin spice has been sipped) it’s clear that the holiday season is beginning earlier than ever this year. However, according to a new forecast from Salesforce, the expected holiday sales boost may be somewhat modest. Salesforce projects a 2 percent increase in overall sales for November and December, a slight drop from the 3 percent increase seen in 2023. The forecast highlights that consumers are facing higher debt due to elevated interest rates and inflation, which is likely to diminish their purchasing power compared to recent years. About 40 percent of shoppers plan to cut back on spending this year, while just under half intend to maintain their current spending levels. Adding to the challenge is the brief holiday shopping window between Thanksgiving and Christmas this year—only 27 days, the shortest since 2019. This data comes from Salesforce’s analysis of over 1.5 billion global shoppers across 64 countries, with a focus on 12 key markets including the U.S., Canada, U.K., Germany, and France. Shopping Trends and Strategies In terms of shopping habits, bargain hunters are expected to turn to platforms like Temu, Shein, and other Chinese-owned apps, with nearly one in five holiday purchases anticipated from these sources. TikTok is seeing rapid growth as a sales platform, with a 24 percent increase in shoppers making purchases through the app since April. For businesses, the focus on price is likely to intensify. Two-thirds of global shoppers will let cost dictate their shopping decisions this year, compared to 46 percent in 2020. Less than a third will prioritize product quality over price when selecting gifts. This trend suggests a busy Black Friday and Cyber Monday, with two-thirds of shoppers planning to delay major purchases until Cyber Week to seek out bargains. Salesforce forecasts an average discount of 30 percent in the U.S. during this period. Caila Schwartz, director of strategy and consumer insights at Salesforce, notes, “This season will be competitive, intense, and focused heavily on pricing and discounting strategies.” Shipping and Technology Challenges The shipping industry also poses a potential challenge, with container shipping costs becoming increasingly unstable. Brands and retailers are expected to incur an additional $197 billion in middle-mile expenses—a 97 percent increase from last year. To counter the threat from discount online retailers, stores with online capabilities should enhance their in-store pickup options. Salesforce predicts that buy online, pick up in store (BOPIS) will account for up to one-third of online orders globally in the week leading up to Christmas. Additionally, while still emerging, artificial intelligence (AI) is expected to play a role in holiday sales, with 18 percent of global orders influenced by predictive and generative AI, according to Salesforce. As retailers navigate these complexities, strategic pricing and efficient logistics will be key to capturing consumer attention and driving holiday sales. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Revolution Customer Service with Agentforce

Revolution Customer Service with Agentforce

Agentforce stole the spotlight at Dreamforce, but it’s not just about replacing human workers. Equally significant for Service Cloud was the focus on how AI can be leveraged to make agents, dispatchers, and field service technicians more productive and proactive. Join a conversation to unpack the latest Sales Cloud innovations, with a spotlight on Agentforce for sales followed by a Q&A with Salesblazers. During the Dreamforce Service Cloud keynote, GM Kishan Chetan emphasized the dramatic shift over the past year, with AI moving from theoretical to practical applications. He challenged customer service leaders to embrace AI agents, highlighting that AI-driven solutions can transform customer service from delivering “good” benefits to achieving exponential growth. He noted that AI agents are capable of handling common customer requests like tech support, scheduling, and general inquiries, as well as more complex tasks such as de-escalation, billing inquiries, and even cross-selling and upselling. In practice, research by Valoir shows that most Service Cloud customers are still in the early stages of AI adoption, particularly with generative AI. While progress has accelerated recently, most companies are only seeing incremental gains in individual productivity rather than the exponential improvements highlighted at Dreamforce. To achieve those higher-level returns, customers must move beyond simple automation and summarization to AI-driven transformation, powered by Agentforce. Chetan and his team outlined four key steps to make this transition. “Agentforce represents the Third Wave of AI—advancing beyond copilots to a new era of highly accurate, low-hallucination intelligent agents that actively drive customer success. Unlike other platforms, Agentforce is a revolutionary and trusted solution that seamlessly integrates AI across every workflow, embedding itself deeply into the heart of the customer journey. This means anticipating needs, strengthening relationships, driving growth, and taking proactive action at every touchpoint,” said Marc Benioff, Chair and CEO, Salesforce. “While others require you to DIY your AI, Agentforce offers a fully tailored, enterprise-ready platform designed for immediate impact and scalability. With advanced security features, compliance with industry standards, and unmatched flexibility. Our vision is bold: to empower one billion agents with Agentforce by the end of 2025. This is what AI is meant to be.” In contrast to now-outdated copilots and chatbots that rely on human requests and strugglewith complex or multi-step tasks, Agentforce offers a new level of sophistication by operating autonomously, retrieving the right data on demand, building action plans for any task, and executing these plans without requiring human intervention. Like a self-driving car, Agentforce uses real-time data to adapt to changing conditions and operates independently within an organizations’ customized guardrails, ensuring every customer interaction is informed, relevant, and valuable. And when desired, Agentforce seamlessly hands off to human employees with a summary of the interaction, an overview of the customer’s details, and recommendations for what to do next. Deploy AI agents across channelsAgentforce Service Agent is more than a chatbot—it’s an autonomous AI agent capable of handling both simple and complex requests, understanding text, video, and audio. Customers were invited to build their own Service Agents during Dreamforce, and many took up the challenge. Service-related agents are a natural fit, as research shows Service Cloud customers are generally more prepared for AI adoption due to the volume and quality of customer data available in their CRM systems. Turn insights into actionLaunching in October 2024, Customer Experience Intelligence provides an omnichannel supervisor Wall Board that allows supervisors to monitor conversations in real time, complete with sentiment scores and organized metrics by topics and regions. Supervisors can then instruct Service Agent to dive into root causes, suggest proactive messaging, or even offer discounts. This development represents the next stage of Service Intelligence, combining Data Cloud, Tableau, and Einstein Conversation Mining to give supervisors real-time insights. It mirrors capabilities offered by traditional contact center vendors like Verint, which also blend interaction, sentiment, and other data in real time—highlighting the convergence of contact centers and Service Cloud service operations. Empower teams to become trusted advisorsSalesforce continues to navigate the delicate balance between digital and human agents, especially within Service Cloud. The key lies in the intelligent handoff of customer data when escalating from a digital agent to a human agent. Service Planner guides agents step-by-step through issue resolution, powered by Unified Knowledge. The demo also showcased how Service Agent can merge Commerce and Service by suggesting agents offer complimentary items from a customer’s shopping cart. Enable field teams to be proactiveSalesforce also announced improvements in field service, designed to help dispatchers and field service agents operate more proactively and efficiently. Agentforce for Dispatchers enhances the ability to address urgent appointments quickly. Asset Service Prediction leverages AI to forecast asset failures and upcoming service needs, while AI-generated prework briefs provide field techs with asset health scores and critical information before they arrive on site. Setting a clear roadmap for adopting Agentforce across these four areas is an essential step toward helping customers realize more than just incremental gains in their service operations. Equally important will be helping customers develop a data strategy that harnesses the power of Data Cloud and Salesforce’s partner ecosystem, enabling a truly data-driven service experience. Investments in capabilities like My Service Journeys will also be critical in guiding customers through the process of identifying which AI features will deliver the greatest returns for their specific needs. Agentforce leverages Salesforce’s generative AI, like Einstein GPT, to automate routine tasks, provide real-time insights, and offer personalized recommendations, enhancing efficiency and enabling agents to deliver exceptional customer experiences. Agentforce is not just another traditional chatbot; it is a next-generation, AI-powered solution that understands complex queries and acts autonomously to enhance operational efficiency. Unlike conventional chatbots, Agentforce is intelligent and adaptive, capable of managing a wide range of customer issues with precision. It offers 24/7 support, responds in a natural, human-like manner, and seamlessly escalates to human agents when needed and redefining customer service by delivering faster, smarter, and more effective support experiences. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM

Read More
gettectonic.com