scalability - gettectonic.com - Page 2
NetSuite Salesforce Collaboration

NetSuite Salesforce Collaboration

NetSuite Bets on Strategic Growth and Embraces Collaboration with Salesforce Growing on All Fronts At SuiteWorld 2024, the theme, “All Systems Grow,” reflected a pivotal moment for NetSuite. While the event lacked groundbreaking announcements, it showcased a fulfillment of past promises and a notable strategic shift toward openness and collaboration. Oracle and NetSuite are now welcoming competitors as partners, signaling a move toward interoperability that could redefine their market positioning. With over 40,000 customers, NetSuite continues its strong growth in the ERP space, particularly among SMBs. The company’s Q3 sales surged 20% year-over-year, underlining its momentum in the mid-market. Beyond traditional ERP capabilities, NetSuite’s expanded suite of solutions positions it as more than just an ERP provider. Delivering on AI Innovations While there were no splashy acquisitions, NetSuite made significant strides by rolling out 170 new modules and features, many leveraging AI. These enhancements blend predictive AI and generative AI to increase accuracy and user productivity. These updates aim to elevate both the platform’s quality and the efficiency of its users. Redwood Design: A Transformative User Experience NetSuite is adopting Oracle’s Redwood design language, promising a more intuitive and user-friendly interface. While Redwood is not new, its phased rollout within NetSuite is a significant step forward. Notable Additions: SuiteProcurement and Salesforce Integration SuiteProcurement: NetSuite’s new procurement automation solution integrates directly with Amazon Business and Staples Business Advantage, automating ordering, invoicing, approvals, and deliveries. Plans are underway to expand vendor support, offering broader applicability in the future. Salesforce Partnership: NetSuite’s most significant announcement was its strategic partnership with Salesforce, enabling real-time data exchange between the platforms. Evan Goldberg, NetSuite’s founder and EVP, explained the rationale:“It’s up to the customer to decide what software they want to use.” The partnership reflects NetSuite’s commitment to addressing customer needs, with more SaaS integrations expected in the future. Expanding Field Service Management (FSM) NetSuite’s Field Service Management (FSM) capabilities, acquired last year, are now better integrated into its platform. While development progress has been slower than anticipated, significant enhancements are expected in the coming year, leveraging Oracle technology to extend FSM’s functionality across industries. And Field Service Management is available in Salesforce, as well. Positioned for Continued SMB Growth NetSuite’s investments are yielding results, as demonstrated by its rapid growth and deeper integration of Oracle technology. The NetSuite Analytics Data Warehouse and Enterprise Performance Management are driving adoption among existing users, showcasing the platform’s scalability. NetSuite’s ability to quickly integrate Oracle updates into its infrastructure gives it a competitive edge, ensuring customers benefit from the latest innovations without delays. With its robust feature set, AI-powered tools, and strategic partnerships like the one with Salesforce, NetSuite has strengthened its position as a go-to ERP platform for SMBs. Its consistent 20% year-over-year growth indicates a bright future, making it an increasingly attractive option for mid-market businesses. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
copilots and agentic ai

Copilots and Agentic AI

Agentic AI vs. Copilots: Defining the Future of Generative AI Artificial Intelligence has rapidly evolved, progressing from simple automation to generative models, to copilots. But now, a new player—Agentic AI—has emerged, promising to redefine the AI landscape. Is Agentic AI the next logical step, or will it coexist alongside copilots, each serving distinct roles? Copilots and Agentic AI. Generative AI: Creativity with a Human Touch Since the launch of ChatGPT, generative AI has dominated tech priorities, offering businesses the ability to generate content—text, images, videos, and more—from pre-defined data. However, while revolutionary, generative AI still relies heavily on human input to guide its output, making it a powerful collaborator rather than an autonomous actor. Enter Agentic AI: Autonomy Redefined Agentic AI represents a leap forward, offering systems that possess autonomy and the ability to act independently to achieve pre-defined goals. Unlike generative AI copilots that respond to human prompts, Agentic AI makes decisions, plans actions, and learns from experience. Think of it as Siri or Alexa—enhanced with autonomy and learning capabilities. Gartner recently spotlighted Agentic AI as its top technology trend for 2025, predicting that by 2028, at least 15% of day-to-day work decisions will be made autonomously, up from virtually none today. Agentforce and the Third Wave of AI Salesforce’s “Agentforce,” unveiled at Dreamforce, is a prime example of Agentic AI’s potential. These autonomous agents are designed to augment employees by handling tasks across sales, service, marketing, and commerce. Salesforce CEO Mark Benioff described it as the “Third Wave of AI,” going beyond copilots to deliver intelligent agents deeply embedded into customer workflows. Salesforce aims to empower one billion AI agents by 2025, integrating Agentforce into every aspect of customer success. Benioff took a swipe at competitors’ bolt-on generative AI solutions, emphasizing that Agentforce is deeply embedded for maximum value. The Role of Copilots: Collaboration First While Agentic AI gains traction, copilots like Microsoft’s Copilot Studio and SAP’s Joule remain critical for businesses focused on intelligent augmentation. Copilots act as productivity boosters, working alongside humans to optimize processes, enhance creativity, and provide decision-making support. SAP’s Joule, for example, integrates seamlessly into existing systems to optimize operations while leaving strategic decision-making in human hands. This collaborative model aligns well with businesses prioritizing agility and human oversight. Agentic AI: Opportunities and Challenges Agentic AI’s autonomy offers significant potential for streamlining complex processes, reducing human intervention, and driving productivity. However, it also comes with risks. Eleanor Watson, AI ethics engineer at Singularity University, warns that Agentic AI systems require careful alignment of values and goals to avoid unintended consequences like dangerous shortcuts or boundary violations. In contrast, copilots retain human agency, making them particularly suited for creative and knowledge-based roles where human oversight remains essential. Copilots and Agentic AI The choice between Agentic AI and copilots hinges on an organization’s priorities and risk tolerance. For simpler, task-specific applications, copilots excel by providing assistance without removing human input. Agentic AI, on the other hand, shines in complex, multi-task scenarios where autonomy is key. Dom Couldwell, head of field engineering EMEA at DataStax, emphasizes the importance of understanding when to deploy each model. “Use a copilot for specific, focused tasks. Use Agentic AI for complex, goal-oriented processes involving multiple tasks. And leverage Retrieval Augmented Generation (RAG) in both to provide context to LLMs.” The Road Ahead: Coexistence or Dominance? As AI evolves, Agentic AI and copilots may coexist, serving complementary roles. Businesses seeking full automation and scalability may gravitate toward Agentic AI, while those prioritizing augmented intelligence and human collaboration will continue to rely on copilots. Ultimately, the future of AI will be defined not by one model overtaking the other, but by how well each aligns with the specific needs, goals, and challenges of the organizations adopting them. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Reasons to Automate Your Sales Commission Process

Reasons to Automate Your Sales Commission Process

Optimizing your sales commission process through automation can create significant efficiencies, reduce errors, and increase team satisfaction across the organization. Sales commission software provides the real-time data and transparency that today’s sales, finance, and revenue operations (RevOps) teams need to keep pace with business growth. Here are four key benefits of implementing automated commission software: 1. Real-Time Visibility into the Commission Process Sales commission software offers instant access to commission data for reps, managers, and executives. This real-time visibility empowers sales reps to stay focused on high-value deals, knowing their commission data is accurate and transparent. Sales managers can use metrics like quota attainment and earned commissions to track team performance and motivate reps effectively. Automating commission tracking also streamlines end-of-month reporting for finance and RevOps, eliminating the need for manual calculations. And with transparent, accessible data, sales reps can trust the accuracy of their earnings without having to double-check formulas or request manual verifications—freeing them to focus on closing more deals. 2. Increased Productivity Across Teams Manually calculating commissions is both time-consuming and prone to errors, which can erode trust and impact productivity across sales, finance, and RevOps. Automating this process reduces human error and saves teams hours of administrative work, allowing them to redirect energy toward business-critical activities. Manual commission management can also limit scalability; each change in team structure or territory often requires a full recalibration in spreadsheets. With automated software, these adjustments are streamlined, allowing for seamless scalability and supporting growth without adding manual overhead. 3. Improved Accuracy in Commission Calculations Replacing unhappy sales reps is costly, and one common cause of dissatisfaction is inaccurate commission calculations. Studies show nearly 90% of spreadsheets contain errors, and in a process as complex as commission calculation, these errors can lead to mistrust and turnover. Automating commissions removes the risk of errors, helping keep reps happy and reducing friction between sales and finance. A reliable, accurate commission process means reps can trust the data, while finance teams can confidently manage compensation without chasing down mistakes. Few things negatively impact employee focus and loyalty than feeling cheated at payday. 4. Enhanced Access to Data and Actionable Insights Sales commission software does more than calculate earnings—it collects and organizes critical data on sales performance. With these insights, organizations can identify areas for improvement, analyze trends, and optimize their sales strategies. Transform Your Organization with Automated Commission Management Automating your sales commission process isn’t just about efficiency—it’s a powerful way to build trust, enable productivity, and make data-driven decisions that drive growth. By leveraging dedicated incentive compensation management tools, you can empower your teams, reduce operational burdens, and maximize the impact of your sales data. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Assistants Using LangGraph

AI Assistants Using LangGraph

In the evolving world of AI, retrieval-augmented generation (RAG) systems have become standard for handling straightforward queries and generating contextually relevant responses. However, as demand grows for more sophisticated AI applications, there is a need for systems that move beyond simple retrieval tasks. Enter AI agents—autonomous entities capable of executing complex, multi-step processes, maintaining state across interactions, and dynamically adapting to new information. LangGraph, a powerful extension of the LangChain library, is designed to help developers build these advanced AI agents, enabling stateful, multi-actor applications with cyclic computation capabilities. AI Assistants Using LangGraph. In this insight, we’ll explore how LangGraph revolutionizes AI development and provide a step-by-step guide to building your own AI agent using an example that computes energy savings for solar panels. This example will demonstrate how LangGraph’s unique features enable the creation of intelligent, adaptable, and practical AI systems. What is LangGraph? LangGraph is an advanced library built on top of LangChain, designed to extend Large Language Model (LLM) applications by introducing cyclic computational capabilities. While LangChain allows for the creation of Directed Acyclic Graphs (DAGs) for linear workflows, LangGraph enhances this by enabling the addition of cycles—essential for developing agent-like behaviors. These cycles allow LLMs to continuously loop through processes, making decisions dynamically based on evolving inputs. LangGraph: Nodes, States, and Edges The core of LangGraph lies in its stateful graph structure: LangGraph redefines AI development by managing the graph structure, state, and coordination, allowing for the creation of sophisticated, multi-actor applications. With automatic state management and precise agent coordination, LangGraph facilitates innovative workflows while minimizing technical complexity. Its flexibility enables the development of high-performance applications, and its scalability ensures robust and reliable systems, even at the enterprise level. Step-by-step Guide Now that we understand LangGraph’s capabilities, let’s dive into a practical example. We’ll build an AI agent that calculates potential energy savings for solar panels based on user input. This agent can function as a lead generation tool on a solar panel seller’s website, providing personalized savings estimates based on key data like monthly electricity costs. This example highlights how LangGraph can automate complex tasks and deliver business value. Step 1: Import Necessary Libraries We start by importing the essential Python libraries and modules for the project. pythonCopy codefrom langchain_core.tools import tool from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import Runnable from langchain_aws import ChatBedrock import boto3 from typing import Annotated from typing_extensions import TypedDict from langgraph.graph.message import AnyMessage, add_messages from langchain_core.messages import ToolMessage from langchain_core.runnables import RunnableLambda from langgraph.prebuilt import ToolNode Step 2: Define the Tool for Calculating Solar Savings Next, we define a tool to calculate potential energy savings based on the user’s monthly electricity cost. pythonCopy code@tool def compute_savings(monthly_cost: float) -> float: “”” Tool to compute the potential savings when switching to solar energy based on the user’s monthly electricity cost. Args: monthly_cost (float): The user’s current monthly electricity cost. Returns: dict: A dictionary containing: – ‘number_of_panels’: The estimated number of solar panels required. – ‘installation_cost’: The estimated installation cost. – ‘net_savings_10_years’: The net savings over 10 years after installation costs. “”” def calculate_solar_savings(monthly_cost): cost_per_kWh = 0.28 cost_per_watt = 1.50 sunlight_hours_per_day = 3.5 panel_wattage = 350 system_lifetime_years = 10 monthly_consumption_kWh = monthly_cost / cost_per_kWh daily_energy_production = monthly_consumption_kWh / 30 system_size_kW = daily_energy_production / sunlight_hours_per_day number_of_panels = system_size_kW * 1000 / panel_wattage installation_cost = system_size_kW * 1000 * cost_per_watt annual_savings = monthly_cost * 12 total_savings_10_years = annual_savings * system_lifetime_years net_savings = total_savings_10_years – installation_cost return { “number_of_panels”: round(number_of_panels), “installation_cost”: round(installation_cost, 2), “net_savings_10_years”: round(net_savings, 2) } return calculate_solar_savings(monthly_cost) Step 3: Set Up State Management and Error Handling We define utilities to manage state and handle errors during tool execution. pythonCopy codedef handle_tool_error(state) -> dict: error = state.get(“error”) tool_calls = state[“messages”][-1].tool_calls return { “messages”: [ ToolMessage( content=f”Error: {repr(error)}n please fix your mistakes.”, tool_call_id=tc[“id”], ) for tc in tool_calls ] } def create_tool_node_with_fallback(tools: list) -> dict: return ToolNode(tools).with_fallbacks( [RunnableLambda(handle_tool_error)], exception_key=”error” ) Step 4: Define the State and Assistant Class We create the state management class and the assistant responsible for interacting with users. pythonCopy codeclass State(TypedDict): messages: Annotated[list[AnyMessage], add_messages] class Assistant: def __init__(self, runnable: Runnable): self.runnable = runnable def __call__(self, state: State): while True: result = self.runnable.invoke(state) if not result.tool_calls and ( not result.content or isinstance(result.content, list) and not result.content[0].get(“text”) ): messages = state[“messages”] + [(“user”, “Respond with a real output.”)] state = {**state, “messages”: messages} else: break return {“messages”: result} Step 5: Set Up the LLM with AWS Bedrock We configure AWS Bedrock to enable advanced LLM capabilities. pythonCopy codedef get_bedrock_client(region): return boto3.client(“bedrock-runtime”, region_name=region) def create_bedrock_llm(client): return ChatBedrock(model_id=’anthropic.claude-3-sonnet-20240229-v1:0′, client=client, model_kwargs={‘temperature’: 0}, region_name=’us-east-1′) llm = create_bedrock_llm(get_bedrock_client(region=’us-east-1′)) Step 6: Define the Assistant’s Workflow We create a template and bind the tools to the assistant’s workflow. pythonCopy codeprimary_assistant_prompt = ChatPromptTemplate.from_messages( [ ( “system”, ”’You are a helpful customer support assistant for Solar Panels Belgium. Get the following information from the user: – monthly electricity cost Ask for clarification if necessary. ”’, ), (“placeholder”, “{messages}”), ] ) part_1_tools = [compute_savings] part_1_assistant_runnable = primary_assistant_prompt | llm.bind_tools(part_1_tools) Step 7: Build the Graph Structure We define nodes and edges for managing the AI assistant’s conversation flow. pythonCopy codebuilder = StateGraph(State) builder.add_node(“assistant”, Assistant(part_1_assistant_runnable)) builder.add_node(“tools”, create_tool_node_with_fallback(part_1_tools)) builder.add_edge(START, “assistant”) builder.add_conditional_edges(“assistant”, tools_condition) builder.add_edge(“tools”, “assistant”) memory = MemorySaver() graph = builder.compile(checkpointer=memory) Step 8: Running the Assistant The assistant can now be run through its graph structure to interact with users. python import uuidtutorial_questions = [ ‘hey’, ‘can you calculate my energy saving’, “my montly cost is $100, what will I save”]thread_id = str(uuid.uuid4())config = {“configurable”: {“thread_id”: thread_id}}_printed = set()for question in tutorial_questions: events = graph.stream({“messages”: (“user”, question)}, config, stream_mode=”values”) for event in events: _print_event(event, _printed) Conclusion By following these steps, you can create AI Assistants Using LangGraph to calculate solar panel savings based on user input. This tutorial demonstrates how LangGraph empowers developers to create intelligent, adaptable systems capable of handling complex tasks efficiently. Whether your application is in customer support, energy management, or other domains, LangGraph provides the Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched

Read More
How Skechers Solved Its Ecommerce Challenges

How Skechers Solved Its Ecommerce Challenges

Skechers Boosts Direct-to-Consumer Sales with Ecommerce Platform Upgrades Skechers, now a global brand in 2024, credits its recent ecommerce platform upgrades for saving time and increasing direct-to-consumer sales. However, it wasn’t always equipped with the right technology to support its massive growth. During Salesforce’s Dreamforce conference in San Francisco, Eric Cheng, Skechers USA Inc.’s director of ecommerce architecture, shared insights into how key technology decisions helped the brand expand and enhance its website and content capabilities. “Today, we’re present in over 180 countries worldwide,” Cheng said, speaking on stage at the Moscone Center. Skechers’ journey began in 1992, and its expansion has taken the brand across borders, reaching millions of customers worldwide. “We connect hundreds of millions of customers through our retail stores and ecommerce platform to deliver a unique experience,” Cheng noted, emphasizing the need to meet the diverse demands of each market. Skechers ranks No. 273 in the Top 1000, Digital Commerce 360’s ranking of the largest North American e-retailers by online sales, where it is categorized as an Apparel & Accessories retailer. Digital Commerce 360 projects that Skechers will reach 0.65 million in online sales by 2024. Ecommerce Platform Challenges Cheng acknowledged that Skechers’ digital transformation wasn’t immediate: “The journey did not just happen overnight; it took time and effort.” Skechers faced challenges in three key areas: content management, scalability, and customer experience. The legacy system was inadequate, lacking robust tools for efficient content delivery, previewing scheduled content, and handling localization. As Cheng described, launching a marketing page often required the content team to be on standby at midnight—an unsustainable approach for 17 countries. How Skechers Solved Its Ecommerce Challenges To overcome these hurdles, Skechers partnered with Astound Digital. Together, they implemented Salesforce Service Cloud and Manhattan Active Omni for order management. Kyle Montgomery, senior vice president of commerce at Astound Digital, joined Cheng on stage and highlighted the goal: “Their vision was to unify, supply, and scale.” This transformation enabled Skechers to bring 17 countries in Europe, Japan, and North America onto a single platform. Jennifer Lane, Salesforce’s director of success guides, also emphasized the flexibility achieved using Salesforce’s Page Designer and localization solutions from Salesforce’s AppExchange. Integrations with Thomson Reuters for tax, CyberSource for payments, and Salesforce Marketing Cloud for personalization further enhanced Skechers’ capabilities. The Results Cheng highlighted three key improvements after the ecommerce overhaul. First, content creation and localization tools improved operational efficiency by over 500%. The time to launch in new markets was dramatically reduced from five months to just a few weeks. Additionally, Skechers saw a notable sales boost, with a 24.5% increase in its direct-to-consumer segment during Q1 2023. Skechers’ success demonstrates the significant impact of a well-executed ecommerce platform upgrade, allowing the brand to scale globally while improving customer experience and operational efficiency. Contact Tectonic to learn what Salesforce can do for you. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Customer Service Agents Explained

AI Customer Service Agents Explained

AI customer service agents are advanced technologies designed to understand and respond to customer inquiries within defined guidelines. These agents can handle both simple and complex issues, such as answering frequently asked questions or managing product returns, all while offering a personalized, conversational experience. Research shows that 82% of service representatives report that customers ask for more than they used to. As a customer service leader, you’re likely facing increasing pressure to meet these growing expectations while simultaneously reducing costs, speeding up service, and providing personalized, round-the-clock support. This is where AI customer service agents can make a significant impact. Here’s a closer look at how AI agents can enhance your organization’s service operations, improve customer experience, and boost overall productivity and efficiency. What Are AI Customer Service Agents? AI customer service agents are virtual assistants designed to interact with customers and support service operations. Utilizing machine learning and natural language processing (NLP), these agents are capable of handling a broad range of tasks, from answering basic inquiries to resolving complex issues — even managing multiple tasks at once. Importantly, AI agents continuously improve through self-learning. Why Are AI-Powered Customer Service Agents Important? AI-powered customer service technology is becoming essential for several reasons: Benefits of AI Customer Service Agents AI customer service agents help service teams manage growing service demands by taking on routine tasks and providing essential support. Key benefits include: Why Choose Agentforce Service Agent? If you’re considering adding AI customer service agents to your strategy, Agentforce Service Agent offers a comprehensive solution: By embracing AI customer service agents like Agentforce Service Agent, businesses can reduce costs, meet growing customer demands, and stay competitive in an ever-evolving global market. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Flows and LeanData

Salesforce Flows and LeanData

Mastering Opportunity Routing in Salesforce Flows While leads are essential at the top of the funnel, opportunities take center stage as the sales process advances. In Salesforce, the opportunity object acts as a container that can hold multiple contacts tied to a specific deal, making accurate opportunity routing crucial. Misrouting or delays at this stage can significantly impact revenue and forecasting, while manual processing risks incorrect assignments and uneven distribution. Leveraging Salesforce Flows for opportunity routing can help avoid these issues. Salesforce Flows and LeanData. What Is Opportunity Routing? Opportunity routing is the process of assigning open opportunities to the right sales rep based on specific criteria like territory, deal size, industry, or product type. The goal is to ensure every opportunity reaches the right person quickly, maximizing the chance to close the deal. Opportunity routing also helps prioritize high-potential deals, improving pipeline efficiency. Challenges of Manual Routing Manual opportunity routing can lead to several challenges: Benefits of Automating Routing with Salesforce Flows Using Salesforce Flows for opportunity routing offers many benefits: Setting Up Opportunity Routing in Salesforce Flows Here’s an outline for setting up opportunity routing in Salesforce: Managing Complex Salesforce Flows Opportunity routing in Salesforce Flows is powerful, but managing complex sales environments can be challenging: How LeanData Enhances Opportunity Routing LeanData extends Salesforce routing capabilities with advanced, no-code automation and auditing features: Salesforce Flows and LeanData Whether using Salesforce Flows or LeanData, the goal is to optimize time to revenue. While Salesforce Flows offer a robust foundation, organizations without dedicated admins or developers may face challenges in making frequent updates. LeanData provides greater flexibility and real-time automation, helping to streamline the routing process and drive revenue growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Multi AI Agent Systems

Multi AI Agent Systems

Building Multi-AI Agent Systems: A Comprehensive Guide As technology advances at an unprecedented pace, Multi-AI Agent systems are emerging as a transformative approach to creating more intelligent and efficient applications. This guide delves into the significance of Multi-AI Agent systems and provides a step-by-step tutorial on building them using advanced frameworks like LlamaIndex and CrewAI. What Are Multi-AI Agent Systems? Multi-AI Agent systems are a groundbreaking development in artificial intelligence. Unlike single AI agents that operate independently, these systems consist of multiple autonomous agents that collaborate to tackle complex tasks or solve intricate problems. Key Features of Multi-AI Agent Systems: Applications of Multi-AI Agent Systems: Multi-agent systems are versatile and impactful across industries, including: The Workflow of a Multi-AI Agent System Building an effective Multi-AI Agent system requires a structured approach. Here’s how it works: Building Multi-AI Agent Systems with LlamaIndex and CrewAI Step 1: Define Agent Roles Clearly define the roles, goals, and specializations of each agent. For example: Step 2: Initiate the Workflow Establish a seamless workflow for agents to perform their tasks: Step 3: Leverage CrewAI for Collaboration CrewAI enhances collaboration by enabling autonomous agents to work together effectively: Step 4: Integrate LlamaIndex for Data Handling Efficient data management is crucial for agent performance: Understanding AI Inference and Training Multi-AI Agent systems rely on both AI inference and training: Key Differences: Aspect AI Training AI Inference Purpose Builds the model. Uses the model for tasks. Process Data-driven learning. Real-time decision-making. Compute Needs Resource-intensive. Optimized for efficiency. Both processes are essential: training builds the agents’ capabilities, while inference ensures swift, actionable results. Tools for Multi-AI Agent Systems LlamaIndex An advanced framework for efficient data handling: CrewAI A collaborative platform for building autonomous agents: Practical Example: Multi-AI Agent Workflow Conclusion Building Multi-AI Agent systems offers unparalleled opportunities to create intelligent, responsive, and efficient applications. By defining clear agent roles, leveraging tools like CrewAI and LlamaIndex, and integrating robust workflows, developers can unlock the full potential of these systems. As industries continue to embrace this technology, Multi-AI Agent systems are set to revolutionize how we approach problem-solving and task execution. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Revolution Customer Service with Agentforce

Revolution Customer Service with Agentforce

Agentforce stole the spotlight at Dreamforce, but it’s not just about replacing human workers. Equally significant for Service Cloud was the focus on how AI can be leveraged to make agents, dispatchers, and field service technicians more productive and proactive. Join a conversation to unpack the latest Sales Cloud innovations, with a spotlight on Agentforce for sales followed by a Q&A with Salesblazers. During the Dreamforce Service Cloud keynote, GM Kishan Chetan emphasized the dramatic shift over the past year, with AI moving from theoretical to practical applications. He challenged customer service leaders to embrace AI agents, highlighting that AI-driven solutions can transform customer service from delivering “good” benefits to achieving exponential growth. He noted that AI agents are capable of handling common customer requests like tech support, scheduling, and general inquiries, as well as more complex tasks such as de-escalation, billing inquiries, and even cross-selling and upselling. In practice, research by Valoir shows that most Service Cloud customers are still in the early stages of AI adoption, particularly with generative AI. While progress has accelerated recently, most companies are only seeing incremental gains in individual productivity rather than the exponential improvements highlighted at Dreamforce. To achieve those higher-level returns, customers must move beyond simple automation and summarization to AI-driven transformation, powered by Agentforce. Chetan and his team outlined four key steps to make this transition. “Agentforce represents the Third Wave of AI—advancing beyond copilots to a new era of highly accurate, low-hallucination intelligent agents that actively drive customer success. Unlike other platforms, Agentforce is a revolutionary and trusted solution that seamlessly integrates AI across every workflow, embedding itself deeply into the heart of the customer journey. This means anticipating needs, strengthening relationships, driving growth, and taking proactive action at every touchpoint,” said Marc Benioff, Chair and CEO, Salesforce. “While others require you to DIY your AI, Agentforce offers a fully tailored, enterprise-ready platform designed for immediate impact and scalability. With advanced security features, compliance with industry standards, and unmatched flexibility. Our vision is bold: to empower one billion agents with Agentforce by the end of 2025. This is what AI is meant to be.” In contrast to now-outdated copilots and chatbots that rely on human requests and strugglewith complex or multi-step tasks, Agentforce offers a new level of sophistication by operating autonomously, retrieving the right data on demand, building action plans for any task, and executing these plans without requiring human intervention. Like a self-driving car, Agentforce uses real-time data to adapt to changing conditions and operates independently within an organizations’ customized guardrails, ensuring every customer interaction is informed, relevant, and valuable. And when desired, Agentforce seamlessly hands off to human employees with a summary of the interaction, an overview of the customer’s details, and recommendations for what to do next. Deploy AI agents across channelsAgentforce Service Agent is more than a chatbot—it’s an autonomous AI agent capable of handling both simple and complex requests, understanding text, video, and audio. Customers were invited to build their own Service Agents during Dreamforce, and many took up the challenge. Service-related agents are a natural fit, as research shows Service Cloud customers are generally more prepared for AI adoption due to the volume and quality of customer data available in their CRM systems. Turn insights into actionLaunching in October 2024, Customer Experience Intelligence provides an omnichannel supervisor Wall Board that allows supervisors to monitor conversations in real time, complete with sentiment scores and organized metrics by topics and regions. Supervisors can then instruct Service Agent to dive into root causes, suggest proactive messaging, or even offer discounts. This development represents the next stage of Service Intelligence, combining Data Cloud, Tableau, and Einstein Conversation Mining to give supervisors real-time insights. It mirrors capabilities offered by traditional contact center vendors like Verint, which also blend interaction, sentiment, and other data in real time—highlighting the convergence of contact centers and Service Cloud service operations. Empower teams to become trusted advisorsSalesforce continues to navigate the delicate balance between digital and human agents, especially within Service Cloud. The key lies in the intelligent handoff of customer data when escalating from a digital agent to a human agent. Service Planner guides agents step-by-step through issue resolution, powered by Unified Knowledge. The demo also showcased how Service Agent can merge Commerce and Service by suggesting agents offer complimentary items from a customer’s shopping cart. Enable field teams to be proactiveSalesforce also announced improvements in field service, designed to help dispatchers and field service agents operate more proactively and efficiently. Agentforce for Dispatchers enhances the ability to address urgent appointments quickly. Asset Service Prediction leverages AI to forecast asset failures and upcoming service needs, while AI-generated prework briefs provide field techs with asset health scores and critical information before they arrive on site. Setting a clear roadmap for adopting Agentforce across these four areas is an essential step toward helping customers realize more than just incremental gains in their service operations. Equally important will be helping customers develop a data strategy that harnesses the power of Data Cloud and Salesforce’s partner ecosystem, enabling a truly data-driven service experience. Investments in capabilities like My Service Journeys will also be critical in guiding customers through the process of identifying which AI features will deliver the greatest returns for their specific needs. Agentforce leverages Salesforce’s generative AI, like Einstein GPT, to automate routine tasks, provide real-time insights, and offer personalized recommendations, enhancing efficiency and enabling agents to deliver exceptional customer experiences. Agentforce is not just another traditional chatbot; it is a next-generation, AI-powered solution that understands complex queries and acts autonomously to enhance operational efficiency. Unlike conventional chatbots, Agentforce is intelligent and adaptive, capable of managing a wide range of customer issues with precision. It offers 24/7 support, responds in a natural, human-like manner, and seamlessly escalates to human agents when needed and redefining customer service by delivering faster, smarter, and more effective support experiences. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM

Read More
AI All Grown Up

AI All Grown Up

If you thought Salesforce had fully embraced AI, think again. The company has much more in store. AI All Grown Up and Salesforce is the educator! Alongside the announcement of the new Agentforce platform, Salesforce has teased plans to offer free premium instructor-led courses and AI certifications throughout 2025, reflecting a bold commitment to fostering AI skills and expertise. We’ve talked quite a bit over the last year about the need for AI education, and lo and behold here comes Salesforce to the rescue! AI All Grown Up Ah, they grow up so fast. Once just a baby cradeled in our arms with endless possibilities and potential. It was just like a year or so ago we heard of ChatGPT. Prior to that most people’s main exposure to artificial intelligence was their smart phones, which today we realize weren’t reall that smart. Generative, predictive and agentic AI have barreled down the pipeline increasing our vocabulary, and understanding, of what artificial intelligence can do. From generative content to sounds and images, AI continued to amaze us. Then predictive AI did our calculations faster than we could have imagined. Then agentic AI did nearly everything imaginable. AI All Grown Up. Like a very proud mentor of the process, I want to talk about Salesforce’s major contribution. Addressing the AI Skills Gap: Salesforce’s $50 Million Investment As the veritable plethora of AI tools rapidly expands, Salesforce is taking proactive steps to address the growing AI skills gap by investing $50 million into workforce upskilling initiatives. The company aims to ensure that businesses and individuals are prepared to utilize their new wave of AI tools effectively. While the full details have yet to be released, Salesforce has revealed that its premium AI courses and certifications will be made available for free via Trailhead by the end of 2025. This could mean certifications such as AI Associate and AI Specialist, which currently cost $75 and $200 respectively, may soon be offered at no cost. Gratis. Free, Salesforce has also mentioned “premium instructor-led training,” sparking speculation that AI-focused, instructor-led Trailhead Academy courses could become accessible to everyone in the Salesforce ecosystem. Expanding AI Education with Global AI Centers Salesforce’s AI upskilling push is part of a broader initiative to establish “AI Centers” across the globe. Following the opening of its first center in London in June, Salesforce is planning to launch additional AI hubs in cities like Chicago, Tokyo, Sydney, and even a pop-up center in San Francisco. These centers will host in-person premium courses and serve as gathering spaces for industry experts, partners, and customers. This initiative benefits not only the Salesforce ecosystem by increasing AI knowledge where expertise is scarce, but also aligns with Salesforce’s strategy of bringing AI-driven solutions to market through new products like Copilot Studio, Data Cloud, and the newly launched Agentforce platform. Agentforce: Salesforce’s Third Wave of AI On August 28, 2024, Salesforce introduced Agentforce, a suite of autonomous AI agents that marks a significant leap in how businesses engage with customers. Described as the “Third Wave of AI,” Agentforce goes beyond traditional chatbots, providing intelligent agents capable of driving customer success with minimal human intervention. What is Agentforce? Agentforce is a comprehensive platform designed for organizations to build, customize, and deploy autonomous AI agents across various business functions, such as customer service, sales, marketing, and commerce. These agents operate independently, accessing data, crafting action plans, and executing tasks without needing constant human oversight. It is like Artificial Intelligence just graduated highschool and is off to a world of new adventures and growth opportunities at college or university! Key Features of Agentforce: The Technology Behind Agentforce At the core of Agentforce is the Atlas Reasoning Engine, a system designed to mimic human reasoning. Here’s how it works: Customization Tools: Agent Builder Agentforce provides tools like Agent Builder, a low-code platform for customizing out-of-the-box agents or creating new ones for specific business needs. With this tool, users can: The Agentforce Partner Network Salesforce’s partner ecosystem plays a key role in Agentforce’s versatility, with contributions from companies like AWS, Google, IBM, and Workday. Together, they’ve developed over 20 agent actions available through the Salesforce AppExchange. As proud parents we watch our Artificial Intelligence child venture into the world making friends along the way. Learning social skills. Benefits and Impact of Agentforce Early Adopters and Success Stories Several companies are already benefiting from Agentforce: Availability and Pricing of Salesforce’s AI All Grown Up Agentforce for Service and Sales will be generally available on October 25, 2024, with some components of the Atlas Reasoning Engine launching in February 2025. Pricing starts at $2 per conversation, with volume discounts available. The Future of AI and Work Salesforce’s ambitious vision is to empower one billion AI agents with Agentforce by the end of 2025. This reflects their belief that the future of work will involve a hybrid workforce, where humans and AI agents collaborate to drive customer success. AI All Grown Up and We Couldn’t Be Prouder Our amazing AI child has graduated college and ventured out into the workforce. Agentforce vs. Einstein Bots: What’s the Difference? Conclusion Agentforce represents a major leap forward in AI-powered customer engagement. By providing autonomous, intelligent agents capable of managing complex tasks, Salesforce is positioning itself at the forefront of AI innovation. As businesses continue to explore ways to improve efficiency and customer satisfaction, Agentforce could redefine how organizations interact with customers and streamline their operations. If this is the Third Wave of AI, what will the fourth wave bring? Written by Tectonic’s Solutions Architect, Shannan Hearne Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business

Read More
Ethical AI Implementation

Ethical AI Implementation

AI technologies are rapidly evolving, becoming a practical solution to support essential business operations. However, creating true business value from AI requires a well-balanced approach that considers people, processes, and technology. Ethical AI Implementation. AI encompasses various forms, including machine learning, deep learning, predictive analytics, natural language processing, computer vision, and automation. To leverage AI’s competitive advantages, companies need a strong foundation and a realistic strategy aligned with their business goals. “Artificial intelligence is multifaceted,” said John Carey, managing director at AArete, a business management consultancy. “There’s often hype and, at times, exaggeration about how ‘intelligent’ AI truly is.” Business Advantages of AI Adoption Recent advancements in generative AI, such as ChatGPT and Dall-E, have showcased AI’s significant impact on businesses. According to a McKinsey Global Survey, global AI adoption surged from around 50% over the past six years to 72% in 2024. Some key benefits of adopting AI include: Prerequisites for AI Implementation Successfully implementing AI can be complex. A detailed understanding of the following prerequisites is crucial for achieving positive results: 13 Steps for Successful AI Implementation Common AI Implementation Mistakes Organizations often stumble by: Key Challenges in Ethical AI Implementation Human-related challenges often present the biggest hurdles. To overcome them, organizations must foster data literacy and build trust among stakeholders. Additionally, challenges around data management, model governance, system integration, and intellectual property need to be addressed. Ensuring Ethical AI Implementation To ensure responsible AI use, companies should: Ethical AI implementation requires a continuous commitment to transparency, fairness, and inclusivity across all levels of the organization. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Agentforce Unveiled

Agentforce Unveiled

Salesforce Unveils ‘Agentforce’ to Empower a Billion AI Agents by 2025 Salesforce has introduced Agentforce, a revolutionary suite of autonomous AI agents aimed at transforming service, sales, marketing, and commerce sectors. With Agentforce, companies can rapidly scale their operations, boost efficiency, and elevate customer satisfaction by leveraging intelligent agents that handle routine tasks and complex workflows. The Agentforce Atlas Reasoning Engine powers these agents, autonomously analyzing data, making decisions, and completing tasks. This engine enables organizations to easily build, customize, and deploy their own agents using intuitive low-code tools. In addition, the Agentforce Partner Network allows customers to integrate pre-built agents from industry leaders like AWS, Google, IBM, and Workday, offering even more flexibility. Real-world impact Companies like OpenTable, Saks, and Wiley are already deploying Agentforce within their existing systems to enhance workforce capabilities and scale operations. Agentforce works autonomously, retrieving the right data on demand, building action plans, and executing them without human intervention. However, when needed, it can seamlessly hand off tasks to human employees, providing an overview of interactions, customer details, and suggested next steps. For example, Wiley has reported a 40% increase in case resolution after implementing Agentforce to handle routine inquiries. During busy seasons, like back-to-school, Agentforce has helped Wiley streamline operations, freeing up employees to handle more complex cases. Saks is also leveraging Agentforce to elevate its personalized customer experiences, empowering employees with real-time insights to deliver exceptional service. A new era of AI-driven customer success Salesforce CEO Marc Benioff is confident that Agentforce represents the third wave of AI, surpassing traditional chatbots and copilots with its fully autonomous capabilities. “Agentforce is a revolutionary and trusted solution that seamlessly integrates AI across every workflow, embedding itself deeply into the heart of the customer journey. This means anticipating needs, strengthening relationships, driving growth, and taking proactive action at every touchpoint,” Benioff said. Unlike its predecessors, Agentforce operates independently, adapting to changing conditions using real-time data. Whether responding to a customer service inquiry, qualifying sales leads, or optimizing marketing campaigns, Agentforce makes timely, relevant decisions based on an organization’s custom settings. When more human oversight is required, the platform provides detailed summaries and recommendations to assist employees in making informed decisions. Agentforce’s scalability and future Salesforce’s ambitious goal is to empower one billion AI agents by the end of 2025. This bold vision stems from the understanding that 41% of employee time is often spent on repetitive, low-impact work, according to the Salesforce Trends in AI Report. By automating these tasks, Agentforce allows employees to focus on more strategic, high-value initiatives, creating a hybrid workforce that is more effective and adaptable. Benioff noted, “While others require you to DIY your AI, Agentforce offers a fully tailored, enterprise-ready platform designed for immediate impact and scalability. Our vision is bold, and this is what AI is meant to be.” As businesses worldwide continue to explore AI’s potential, Agentforce positions Salesforce as a leader in the next wave of AI innovation, where autonomous agents enhance every facet of business operations. With over 1,000 agents already active, the future of work is a dynamic blend of human expertise and AI-powered agents, enabling organizations to thrive in an increasingly competitive landscape. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Anthropic’s New Approach to RAG

Anthropic’s New Approach to RAG

advanced RAG methodology demonstrates how AI can overcome traditional challenges, delivering more precise, context-aware responses while maintaining efficiency and scalability.

Read More
gettectonic.com