Generative AI Archives - gettectonic.com - Page 4
salesforce agentforce rapid deployment

Businesses Face New Challenges

Businesses Face New Challenges: AI as the Key to Better Customer Experiences and EfficiencyModern businesses are under growing pressure to deliver exceptional customer experiences while boosting operational efficiency. To meet these demands, companies are turning to AI-powered solutions at an unprecedented pace. According to Capgemini’s 2024 Report on Harnessing the Value of Generative AI, 82% of organizations plan to integrate autonomous agents into their operations within the next one to three years. Agentforce: Salesforce’s Groundbreaking SolutionDriving this transformation is Salesforce’s Agentforce, launched in late 2024. This cutting-edge platform empowers businesses to build autonomous applications capable of handling customer interactions, automating operational tasks, and enabling employees to focus on strategic priorities. Beyond Chatbots: What Sets Agentforce Apart Unlike traditional chatbots or systems reliant on manual input, Agentforce acts autonomously. It retrieves relevant data, devises actionable plans, and executes tasks seamlessly. Equipped with real-time data capabilities, it adapts dynamically while maintaining compliance with secure, customizable guidelines. Agentforce not only performs tasks efficiently but also ensures contextually relevant and insightful interactions. It transitions tasks to human employees when necessary, providing summarized interactions and actionable recommendations to ensure smooth handoffs. Revolutionizing Customer Service: 24/7 Availability Without Delays Agentforce elevates customer service by engaging with users across various communication channels using natural language. It draws from trusted sources such as CRM systems, internal knowledge bases, and external platforms to deliver accurate and timely responses. For example, customers can use Agentforce to track orders, reschedule appointments, or resolve issues via platforms like WhatsApp or Apple Business Chat. By managing routine inquiries, Agentforce allows human agents to focus on complex, high-empathy issues requiring critical thinking. Supporting Sales Teams: From Lead Nurturing to Closing Deals Sales teams often face time constraints, and Agentforce addresses this by autonomously managing repetitive tasks such as answering product questions, scheduling meetings, and following up with leads. This allows sales professionals to concentrate on high-value deals. Agentforce can also act as an AI sales coach, using CRM data to simulate role-playing scenarios tailored to specific opportunities. This enables sales teams to refine skills like negotiation and objection handling. Notably, organizations that invest in sales coaching report a 16.7% revenue increase, even with minimal managerial input. With Agentforce, this process becomes scalable, offering real-time insights and actionable feedback to enhance performance. Transforming E-Commerce: Personalized Shopping Experiences Agentforce reshapes e-commerce by delivering personalized shopping experiences. Buyer Agents assist customers with natural-language product searches, offering tailored recommendations and enabling conversational reorders via mobile platforms. For returning customers, this creates a seamless, convenient experience. For larger-scale operations, Merchant Agents leverage conversational interfaces to create promotions, analyze store performance, and recommend strategies for improving key metrics. Streamlining Marketing Campaigns with Agentforce Agentforce’s Campaign Agent redefines marketing by automating every stage of the campaign lifecycle. From generating campaign briefs and audience segments to creating personalized content and building customer journeys in Salesforce Flow, the Campaign Agent accelerates workflows with unmatched precision. Using real-time analytics, the Campaign Agent monitors performance and identifies underperforming areas, offering proactive recommendations to optimize campaigns. This eliminates reliance on manual adjustments and ensures campaigns remain agile and effective. Focusing on Strategic Work A key advantage of Agentforce is its ability to handle repetitive tasks, freeing employees to focus on more complex and strategic activities. Whether addressing intricate customer needs, negotiating major deals, or developing innovative strategies, employees can dedicate their energy to driving long-term success. By automating routine processes and providing actionable insights, Agentforce not only enhances operational efficiency but also boosts employee satisfaction. Salesforce’s Bold Vision Salesforce CEO Marc Benioff shared the company’s ambitious goal: “Our vision is to empower one billion agents with Agentforce by the end of 2025. This is what AI is meant to be.” This statement underscores Salesforce’s commitment to delivering transformative AI solutions with tangible impact for businesses worldwide. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Scope of Generative AI

Generative AI Game Changer for Cybersecurity

Generative AI: A Game Changer for Cybersecurity—Both Good and Bad Generative AI is revolutionizing cybersecurity, enabling both cybercriminals and defenders to operate faster, smarter, and at a larger scale. How Hackers Leverage GenAI Cybercriminals are using generative AI to: One real-world example: In early 2024, fraudsters used a deepfake of a multinational company’s CFO to trick an employee into transferring $25 million. How Cybersecurity Teams Use GenAI for Defense Enterprise security teams are adopting generative AI to: According to a 2024 CrowdStrike survey, 64% of cybersecurity professionals are already researching or using AI tools, with 69% planning to invest further within a year. The Risks of AI in Cybersecurity Despite its benefits, AI introduces new risks: Security leaders must balance AI adoption with human oversight to maximize its defensive potential while minimizing unintended risks. As AI continues to shape the cybersecurity landscape, both attackers and defenders must adapt to stay ahead. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Navigating the New Era of Agentic Customer Engagement

Navigating the New Era of Agentic Customer Engagement

Marketing is undergoing a seismic shift—from the tech-stack heavy approaches of the past decade to AI-driven, agentic customer engagement. No longer bogged down by complex integrations and data wrangling, marketers can now focus on what truly matters: creating meaningful, personalized customer experiences at scale. Welcome to the age of AI marketing agents—intelligent systems that learn from human expertise, then execute strategies autonomously. Unlike traditional customer service bots (which handle 1:1 interactions), marketing agents amplify human-approved content, campaigns, and branding across millions of touchpoints, ensuring consistency and precision at every step. Why Agentic Engagement is the Future The rapid evolution of AI has unlocked unprecedented capabilities: For marketers, this means:✔ Hyper-personalization at scale✔ Faster time-to-market for campaigns✔ Data-driven decision-making with AI-powered insights✔ More time for creativity & strategy (less manual execution) How AI Agents Enhance Marketing Marketing agents don’t replace humans—they augment them. Here’s how: 1. Agentic Content 2. Agentic Campaign Planning 3. Agentic Branding 4. Agentic Creative 5. Agentic Optimization The Human-Agent Partnership The best outcomes happen when human creativity meets AI efficiency: The Agent-to-Agent Ecosystem Imagine: This interconnected system creates a self-optimizing marketing engine. How to Prepare for the Agentic Future 1. Start Small, Scale Smart 2. Upskill Your Team 3. Strengthen Data Infrastructure 4. Establish Governance 5. Keep Humans in the Loop The Bottom Line Agentic engagement isn’t just another tech trend—it’s a fundamental shift in marketing. Companies that embrace it will:🚀 Launch campaigns faster🎯 Deliver hyper-relevant experiences📈 Drive higher ROI with AI-powered optimization The future belongs to marketers who harness AI agents as force multipliers—freeing teams to focus on strategy, storytelling, and innovation. Ready to step into the agentic era? Start experimenting today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
$15 Million to AI Training for U.S. Government Workforce

AI Adoption in the Federal Government

AI Adoption in the Federal Government: A New Era Under the Trump Administration With a new administration in Washington and a $500 billion AI infrastructure initiative underway, the U.S. federal government may be entering a phase of accelerated AI adoption. Federal AI Expansion AI adoption grew under the Biden administration, with agencies leveraging it for fraud detection, workflow automation, and data analysis. However, experts predict that the Trump administration will further expand federal AI use. “Trump and his advisers have spoken about ‘unleashing AI,’ signaling a push for broader adoption within government agencies,” said Darrell West, a senior fellow at the Brookings Institution’s Center for Technology Innovation. As the administration scales back AI safety regulations and deepens ties with major tech firms, federal AI usage is expected to rise. However, ensuring transparency and educating the public remain crucial for building trust in government AI applications. AI Governance Framework The foundation for federal AI governance was established under Trump’s first term, with executive orders EO 13859 (2019) and EO 13960 (2020). EO 13960 mandated an annual AI use case inventory, significantly expanding under Biden—from 710 cases in 2023 to 2,133 in 2024. Reggie Townsend, VP of Data Ethics at SAS and a National AI Advisory Committee (NAIAC) member, emphasized the importance of this transparency: “The inventory was a crucial first step in building public trust.” Biden’s EO 14110 (2023) introduced stronger AI guardrails, requiring agencies to designate chief AI officers, disclose safety-related AI use cases, and implement risk management guidelines. However, on his first day in office, Trump rescinded EO 14110, signaling a shift toward deregulation. AI Applications in Government The 2024 federal AI inventory reported 2,133 AI use cases across 41 agencies. The Department of Health and Human Services (HHS) led with 271 cases, reflecting a 66% increase from the previous year. Key applications include: Harvard Kennedy School adjunct lecturer Bruce Schneier anticipates even broader AI integration in government, from automating reports to drafting legislation and conducting audits. Despite growing interest, the federal government lags behind the private sector in AI adoption, especially for generative AI, due to concerns over bias, reliability, and transparency. AI Under a Second Trump Term Trump’s return to office in 2025 signals an AI policy shift favoring reduced oversight and enhanced global AI leadership. “Federal AI adoption will accelerate under Trump,” West said, citing efforts to integrate major tech figures into federal initiatives. Notably, Trump appointed xAI owner Elon Musk to lead the newly rebranded Department of Government Efficiency, formerly the U.S. Digital Service. This agency is tasked with modernizing federal technology, reducing costs, and driving deregulation. With EO 14110 rescinded, the scope of AI governance under Trump remains uncertain. “Will he eliminate all guardrails, or keep some protections? That’s something to watch,” West noted. Big Tech’s Role in Federal AI Trump’s inauguration underscored tech industry influence, with Elon Musk, Mark Zuckerberg, Jeff Bezos, and Sundar Pichai in attendance. Major tech firms, including Amazon, Google, and Microsoft, each contributed $1 million to the event, while OpenAI CEO Sam Altman made a personal $1 million donation. Some companies are aligning with the administration’s stance on AI and content moderation. Meta, for instance, has replaced its fact-checking services with a community-driven model similar to X’s Community Notes and relaxed its moderation policies. A deregulated AI landscape could benefit big tech, particularly in areas like AI safety standards and data copyright issues, while advancing the administration’s vision for U.S. AI dominance. AI’s Future in Government On his second day in office, Trump announced a $500 billion AI infrastructure investment, forming Stargate—a coalition of OpenAI, SoftBank, MGX, and Oracle—to expand AI infrastructure nationwide. “This will be the largest AI infrastructure project in history,” Trump declared, emphasizing the need for AI leadership against global competitors like China. However, West warned that accelerated adoption must be managed carefully: “It’s critical that AI is implemented fairly, with privacy and security safeguards in place.” Building AI Literacy Effective AI deployment requires education within federal agencies. “Many government workers lack AI expertise, making it difficult to procure and implement AI solutions effectively,” West said. NAIAC’s Townsend advocates for structured AI training, tailored to different federal roles. Public AI literacy is also crucial, with initiatives like the National AI Research Resource (NAIRR) promoting equitable access to AI education and development. “The public must be informed enough to hold the government accountable on AI issues,” Townsend concluded. As AI adoption accelerates, striking a balance between innovation, oversight, and public trust will define the next phase of federal AI policy. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
ai trust layer

Gen AI Trust Layers

Addressing the Generative AI Production Gap with Trust Layers Despite the growing excitement around generative AI, only a small percentage of projects have successfully moved into production. A key barrier is the persistent concern over large language models (LLMs) generating hallucinations—responses that are inconsistent or completely disconnected from reality. To address these issues, organizations are increasingly adopting AI trust layers to enhance reliability and mitigate risk. Understanding the Challenge Generative AI models, like LLMs, are powerful tools trained on vast amounts of unstructured data, enabling them to answer questions and complete tasks based on text, documents, recordings, images, and videos. This capability has revolutionized the creation of chatbots, co-pilots, and even semi-autonomous agents. However, these models are inherently non-deterministic, meaning they don’t always produce consistent outputs. This lack of predictability leads to the infamous phenomenon of hallucination—what the National Institute of Standards and Technology (NIST) terms “confabulation.” While hallucination is a byproduct of how generative models function, its risks in mission-critical applications cannot be ignored. Implementing AI Trust Layers To address these challenges, organizations are turning to AI trust layers—frameworks designed to monitor and control generative AI behavior. These trust layers vary in implementation: Galileo: Building AI Trust from the Ground Up Galileo, founded in 2021 by Yash Sheth, Atindriyo Sanyal, and Vikram Chatterji, has emerged as a leader in developing AI trust solutions. Drawing on his decade of experience at Google building LLMs for speech recognition, Sheth recognized early on that non-deterministic AI systems needed robust trust frameworks to achieve widespread adoption in enterprise settings. The Need for Trust in Mission-Critical AI “Sheth explained: ‘Generative AI doesn’t give you the same answer every time. To mitigate risk in mission-critical tasks, you need a trust framework to ensure these models behave as expected in production.’ Enterprises, which prioritize privacy, security, and reputation, require this level of assurance before deploying LLMs at scale. Galileo’s Approach to Trust Layers Galileo’s AI trust layer is built on its proprietary foundation model, which evaluates the behavior of target LLMs. This approach is bolstered by metrics and real-time guardrails to block undesirable outcomes, such as hallucinations, data leaks, or harmful outputs. Key Products in Galileo’s Suite Sheth described the underlying technology: “Our evaluation foundation models are dependable, reliable, and scalable. They run continuously in production, ensuring bad outcomes are blocked in real time.” By combining these components, Galileo provides enterprises with a trust layer that gives them confidence in their generative AI applications, mirroring the reliability of traditional software systems. From Research to Real-World Impact Unlike vendors who quickly adapted traditional machine learning frameworks for generative AI, Galileo spent two years conducting research and developing its Generative AI Studio, launched in August 2023. This thorough approach has started to pay off: A Crucial Moment for AI Trust Layers As enterprises prepare to move generative AI experiments into production, trust layers are becoming essential. These frameworks address lingering concerns about the unpredictable nature of LLMs, allowing organizations to scale AI while minimizing risk. Sheth emphasized the stakes: “When mission-critical software starts becoming infused with AI, trust layers will define whether we progress or regress to the stone ages of software. That’s what’s holding back proof-of-concepts from reaching production.” With Galileo’s innovative approach, enterprises now have a path to unlock the full potential of generative AI—responsibly, securely, and at scale. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
ChatGPT 5.0 is Coming

ChatGPT Search

OpenAI’s ChatGPT Search: Everything You Need to Know ChatGPT Search is OpenAI’s generative AI-powered search engine, designed to provide real-time information while eliminating the limitations of traditional language models’ knowledge cutoffs. It combines conversational AI with real-time web search, offering up-to-date insights, summaries, and more. Here’s a deep dive into what makes ChatGPT Search unique and how it compares to existing solutions like Google. Overcoming Knowledge Cutoffs Earlier iterations of OpenAI’s models, like GPT-4 (October 2023 cutoff) and GPT-3 (September 2021 cutoff), lacked the ability to access real-time data, a significant drawback for users seeking the latest information. By integrating live search capabilities, ChatGPT Search resolves this issue. Unlike traditional search engines like Google, which continuously crawl and update web indexes, ChatGPT combines the strengths of its GPT-4o model with live web access, bridging the gap between generative AI and real-time search. What Is ChatGPT Search? Launched on October 31, 2024, after being prototyped as “SearchGPT,” ChatGPT Search pairs OpenAI’s advanced language models with live web search. Initially available to ChatGPT Plus and Team users, it will expand to Enterprise, Education, and free-tier users by early 2025. Key Features of ChatGPT Search How Does It Work? ChatGPT Search leverages the following technologies: Accessing ChatGPT Search ChatGPT Search is accessible through multiple platforms: Why ChatGPT Search Challenges Google While Google dominates the search market, OpenAI’s ChatGPT Search introduces key differentiators: AI-Powered Search Engine Comparison Search Engine Platform Integration Publisher Collaboration Ads Cost ChatGPT Search OpenAI infrastructure Strong media partnerships Ad-free Free (Premium tiers planned) Google AI Overviews Google infrastructure SEO-focused partnerships Ads included Free Bing AI Microsoft infrastructure SEO-focused partnerships Ads included Free Perplexity AI Independent, standalone Basic attribution Ad-free Free; $20/month premium You.com Multi-mode AI assistant Basic attribution Ad-free Free; premium available Brave Search Independent index Basic attribution Ad-free Free The Roadmap for ChatGPT Search OpenAI has ambitious plans to refine and expand ChatGPT Search, including: Conclusion ChatGPT Search marks a pivotal shift in how users interact with AI and access information. By combining the generative power of GPT-4o with real-time search, OpenAI has created a tool that rivals traditional search engines with conversational AI, summarized insights, and ad-free functionality. As OpenAI continues to refine the platform, ChatGPT Search is poised to redefine the way we find and interact with information—offering a glimpse into the future of search. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Arms Race

AI-Powered Cancer Immunotherapy

AI-Powered Cancer Immunotherapy: How Predictive Models Are Personalizing Treatment The Challenge of Predicting Immunotherapy Success Immunotherapy—particularly immune checkpoint inhibitors (ICIs)—has revolutionized cancer treatment, offering long-term remission for some patients with lung cancer, melanoma, and kidney cancer. However, only 20-40% of patients respond to ICIs, and clinicians struggle to predict who will benefit. Current biomarkers like tumor mutational burden (TMB) and PD-L1 expression are expensive, inconsistent, and not universally applicable. This leaves doctors relying on trial-and-error approaches, delaying effective treatment and increasing costs. SCORPIO: An AI Tool Using Routine Blood Tests to Predict Treatment Response Researchers from Mount Sinai’s Tisch Cancer Institute and Memorial Sloan Kettering Cancer Center have developed SCORPIO, an AI model that predicts ICI effectiveness using routine blood tests and clinical data—eliminating the need for costly genomic sequencing. How SCORPIO Works Key Advantages Over Traditional Methods ✔ More accurate than PD-L1 & TMB testing in trials✔ Works across 21 cancer types (validated in 10,000+ patients)✔ Low-cost & scalable—uses existing lab tests✔ No specialized equipment needed, ideal for resource-limited settings Why This Matters for Cancer Care Next Steps: From Research to Real-World Use Before widespread adoption, SCORPIO will undergo prospective clinical trials to confirm real-world performance. Challenges include: The Future of AI in Immunotherapy SCORPIO is part of a growing wave of AI tools transforming oncology: As Diego Chowell, PhD (Mount Sinai) notes: “SCORPIO represents a major step toward democratizing precision oncology—making advanced cancer care accessible to all patients, not just those at specialized centers.” The Bottom Line AI is shifting immunotherapy from trial-and-error to predictive, personalized medicine. With tools like SCORPIO, the future of cancer treatment is smarter, faster, and more equitable. Next Frontier? Combining AI with real-time patient monitoring to dynamically adjust therapies—bringing us closer to truly adaptive cancer care. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
agentforce digital workforce

How Agentforce Works

Salesforce Agentforce: Everything You Need to Know Salesforce Agentforce represents a paradigm shift from generative AI to agentic AI—a new class of AI capable of autonomous action. Since its launch at Dreamforce in September 2024, Agentforce has redefined the conversation around AI, customer service, and experience management. To meet skyrocketing demand, Salesforce announced plans to hire more than 1,000 employees shortly after the launch. What is Salesforce Agentforce? Agentforce is a next-generation platform layer within the Salesforce ecosystem. While its bots leverage generative AI capabilities, they differ significantly from platforms like ChatGPT or Google Gemini. Agentforce bots are designed not just to generate responses but to act autonomously within predefined organizational guardrails. Unlike traditional chatbots, which follow scripted patterns, Agentforce AI agents are trained on proprietary data, enabling flexible and contextually accurate responses. They also integrate with Salesforce’s Data Cloud, enhancing their capacity to access and utilize customer data effectively. Agentforce combines three core tools—Agent Builder, Model Builder, and Prompt Builder—allowing businesses to create customized bots using low-code tools. Key Features of Agentforce The platform offers ready-to-deploy AI agents tailored for various industries, including: Agentforce officially became available on October 25, 2024, with pricing starting at $2 per conversation, and volume discounts offered for enterprise customers. Salesforce also launched the Agentforce Partner Network, enabling third-party integrations and custom agent designs for expanded functionality. How Agentforce Works Salesforce designed Agentforce for users without deep technical expertise in AI. As CEO Marc Benioff said, “This is AI for the rest of us.” The platform is powered by the upgraded Atlas Reasoning Engine, a component of Salesforce Einstein AI, which mimics human reasoning and planning. Like self-driving cars, Agentforce interprets real-time data to adapt its actions and operates autonomously within its established parameters. Enhanced Atlas Reasoning Engine In December 2024, Salesforce enhanced the Atlas Reasoning Engine with retrieval-augmented generation (RAG) and advanced reasoning capabilities. These upgrades allow agents to: Seamless Integrations with Salesforce Tools Agentforce is deeply integrated with Salesforce’s ecosystem: Key Developments Agentforce Testing Center Launched in December 2024, the Testing Center allows businesses to test agents before deployment, ensuring they are accurate, fast, and aligned with organizational goals. Skill and Integration Library Salesforce introduced a pre-built library for CRM, Slack, Tableau, and MuleSoft integrations, simplifying agent customization. Examples include: Industry-Specific Expansion Agentforce for Retail Announced at the NRF conference in January 2025, this solution offers pre-built skills tailored to retail, such as: Additionally, Salesforce unveiled Retail Cloud with Modern POS, unifying online and offline inventory data. Notable Agentforce Customers Looking Ahead Marc Benioff calls Agentforce “the third wave of AI”, advancing beyond copilots into a new era of autonomous, low-hallucination intelligent agents. With its robust capabilities, Agentforce is positioned to transform how businesses interact with customers, automate workflows, and drive success. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Potential of GenAI in Healthcare

5 Key Use Cases for Generative AI in Healthcare Documentation

Generative AI (GenAI) holds significant promise for improving healthcare documentation, but clear regulations and standards are needed to maximize benefits while minimizing risks. Healthcare documentation encompasses medical histories, clinical notes, diagnostic results, treatment plans, prescriptions, and billing records. Studies show that clinicians spend more time on documentation than patient care—a major contributor to burnout. GenAI can help by automating electronic health record (EHR) data entry and drafting medical notes for clinician review. According to a February 2025 American Medical Association (AMA) survey, early GenAI adoption in healthcare focuses on administrative tasks that enhance documentation quality and efficiency. For example, Microsoft’s Dax Copilot saves clinicians five minutes per patient encounter, while Oracle Health Clinical AI Agent reduces documentation time by nearly 30%. Here are five key ways GenAI improves healthcare documentation: 1. Streamline Workflows GenAI reduces administrative burdens by automating documentation tasks, allowing clinicians to focus more on patient care. Key applications include: A JAMA Network Open (2024) study found AI-generated draft replies to patient messages reduced provider workload and emotional exhaustion, suggesting strong potential for workflow efficiency. 2. Improve Data Accuracy GenAI enhances documentation precision by identifying missing or inconsistent data. Applications include: By minimizing manual entry, GenAI helps prevent errors that lead to billing delays or compliance issues. 3. Optimize Medical Data Approximately 80% of healthcare data is unstructured (e.g., physician notes, scanned documents). GenAI transforms this into structured, usable formats by: This optimization improves interoperability and speeds up decision-making. 4. Reduce Clinician Burnout Physician burnout is often linked to excessive documentation. GenAI alleviates stress by: A UC San Diego (2024) study found that AI-assisted documentation helps clinicians engage more with patients, improving satisfaction and outcomes. 5. Enhance Patient Engagement GenAI improves patient interactions by: By reducing screen time during visits, GenAI helps clinicians build stronger patient relationships. Best Practices for GenAI in Healthcare Documentation To ensure safe and effective AI adoption:✔ Start with pilot programs – Test AI tools in controlled settings.✔ Train clinicians on AI review – Ensure staff can validate AI-generated content.✔ Notify patients about AI use – Maintain transparency in documentation.✔ Secure patient data – Encrypt and de-identify protected health information (PHI).✔ Maintain audit logs – Track AI-generated documentation for accuracy and compliance. Challenges & Future Outlook GenAI faces hurdles in data privacy, regulatory compliance, and liability. Until formal standards emerge, frameworks like the WHO’s AI Ethics Guidelines and Coalition for Health AI (CHAI) Assurance Standards can help guide responsible use. As multimodal AI models advance, GenAI will better adapt to clinician workflows. However, strong governance is essential to balance innovation with patient safety. Conclusion GenAI is transforming healthcare documentation by reducing burnout, improving accuracy, and enhancing patient engagement. By implementing best practices and robust governance, healthcare organizations can harness AI’s potential while mitigating risks. Content updated April 2025. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Leveraging Data to Enhance Customer Experiences

Leveraging Data to Enhance Customer Experiences

Imagine leveraging your organization’s existing data to enhance customer experiences, enable faster decision-making, and boost efficiency. With the combined power of Data + AI + CRM, this becomes a reality. The Foundation: CRM as the Single Source of Truth At the heart of this transformation is Customer Relationship Management (CRM)—technology that centralizes customer records, providing a unified view for every department. But CRM data alone only tells part of the story. Most businesses store valuable data across various systems. By integrating Artificial Intelligence (AI), you can unify and harness this data to generate insights, automate processes, and create predictive models that drive smarter business decisions. AI: Your Ultimate Business Co-Pilot AI—especially generative AI—is a game-changer. It doesn’t just analyze data; it creates. From predicting customer behavior to generating personalized content, AI enhances productivity and innovation. When AI is integrated with your business systems, it acts as a powerful assistant, uncovering new opportunities and streamlining operations. Even more transformative are autonomous AI agents. These intelligent assistants engage with customers and teams through natural conversations, helping scale operations without increasing workload or costs. How Data + AI + CRM Work Together Each component is powerful alone, but together they create better customer experiences, faster decision-making, and increased efficiency. Let’s explore how this synergy benefits different business areas. Business Area What Data + AI + CRM Can Do Sales AI-generated, hyper-personalized emails streamline prospecting and save reps valuable time. AI agents engage inbound leads via chat, optimizing sales interactions. Customer Service AI auto-generates responses using real-time data, speeding up issue resolution. Post-interaction summaries capture key details for future reference. AI agents provide 24/7 customer support, freeing up human agents for complex cases. Marketing AI analyzes CRM data to generate personalized landing pages and campaign content. Assistive AI identifies trends and helps teams engage audiences more effectively. Commerce AI predicts product demand based on CRM and social data, ensuring optimal inventory and merchandising decisions. AI agents manage site experiences to optimize business operations. IT AI-driven code generation automates repetitive tasks, improving development efficiency and consistency. AI supports low-code solutions, enabling seamless IT operations. Implementing a Trusted Generative AI Strategy The potential of AI is immense, but responsible implementation is key. To build trust and ensure safe, effective AI adoption, focus on these core areas: ✅ Build Trust – Establish ethical AI guidelines, conduct risk assessments, and use transparency tools like the Einstein Trust Layer to mitigate bias. ✅ Ready Your Technology – Align on data metrics, enhance productivity through automation, and unify data under a single source of truth. ✅ Empower Your People – Foster continuous learning, equip teams with AI-driven tools, and customize AI agents to complement human expertise. The Future of Business: Data + AI + CRM AI continues to evolve, offering new ways to drive success. As businesses integrate autonomous agents and AI-driven insights, the potential for growth, efficiency, and customer satisfaction only expands. This is just the beginning—by implementing Data + AI + CRM strategically, your organization is poised to lead in the next era of digital transformation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
No-Code Generative AI

Generative-Driven Development

Nowhere has the rise of generative AI tools been more transformative than in software development. It began with GitHub Copilot’s enhanced autocomplete, which then evolved into interactive, real-time coding assistants like Aider and Cursor that allow engineers to dictate changes and see them applied live in their editor. Today, platforms like Devin.ai aim even higher, aspiring to create autonomous software systems capable of interpreting feature requests or bug reports and delivering ready-to-review code. At its core, the ambition of these AI tools mirrors the essence of software itself: to automate human work. Whether you were writing a script to automate CSV parsing in 2005 or leveraging AI today, the goal remains the same—offloading repetitive tasks to machines. What makes generative AI tools distinct, however, is their focus on automating the work of automation itself. Framing this as a guiding principle enables us to consider the broader challenges and opportunities generative AI brings to software development. Automate the Process of Automation The Doctor-Patient Strategy Most contemporary generative AI tools operate under what can be called the Doctor-Patient strategy. In this model, the GenAI tool acts on a codebase as a distinct, external entity—much like a doctor treats a patient. The relationship is one-directional: the tool modifies the codebase based on given instructions but remains isolated from the architecture and decision-making processes within it. Why This Strategy Dominates: However, the limitations of this strategy are becoming increasingly apparent. Over time, the unidirectional relationship leads to bot rot—the gradual degradation of code quality due to poorly contextualized, repetitive, or inconsistent changes made by generative AI. Understanding Bot Rot Bot rot occurs when AI tools repeatedly make changes without accounting for the macro-level architecture of a codebase. These tools rely on localized context, often drawing from semantically similar code snippets, but lack the insight needed to preserve or enhance the overarching structure. Symptoms of Bot Rot: Example:Consider a Python application that parses TPS report IDs. Without architectural insight, a code bot may generate redundant parsing methods across multiple modules rather than abstracting the logic into a centralized model. Over time, this duplication compounds, creating a chaotic and inefficient codebase. A New Approach: Generative-Driven Development (GDD) To address the flaws of the Doctor-Patient strategy, we propose Generative-Driven Development (GDD), a paradigm where the codebase itself is designed to enable generative AI to enhance automation iteratively and sustainably. Pillars of GDD: How GDD Improves the Development Lifecycle Under GDD, the traditional Test-Driven Development (TDD) cycle (red, green, refactor) evolves to integrate AI processes: This complete cycle eliminates the gaps present in current generative workflows, reducing bot rot and enabling sustainable automation. Over time, GDD-based codebases become easier to maintain and automate, reducing error rates and cycle times. A Day in the Life of a GDD Engineer Imagine a GDD-enabled workflow for a developer tasked with updating TPS report parsing: By embedding AI into the development process, GDD empowers engineers to focus on high-level decision-making while ensuring the automation process remains sustainable and aligned with architectural goals. Conclusion Generative-Driven Development represents a significant shift in how we approach software development. By prioritizing architecture, embedding automation into the software itself, and writing GenAI-optimized code, GDD offers a sustainable path to achieving the ultimate goal: automating the process of automation. As AI continues to reshape the industry, adopting GDD will be critical to harnessing its full potential while avoiding the pitfalls of bot rot. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI and Related Tools Boost Holiday Sales

AI and Related Tools Boost Holiday Sales

AI Drives Holiday Sales in 2024: A Record-Breaking Shopping Season with Rising Returns Artificial intelligence (AI) played a transformative role in shaping the 2024 holiday shopping season, with Salesforce reporting that AI-powered tools influenced $229 billion, or 19%, of global online sales. Based on data from 1.5 billion global shoppers and 1.6 trillion page views, AI tools such as product recommendations, targeted promotions, and customer service significantly boosted sales, marking a 6% year-over-year increase in engagement. Generative AI features, including conversational agents, saw a 25% surge in usage during the holiday period compared to earlier months, further highlighting their role in shaping consumer behavior. Mobile commerce amplified AI’s influence, with nearly 70% of global online sales being placed via smartphones. On Christmas Day alone, mobile orders accounted for 79% of transactions, showcasing the shift toward mobile-first shopping. “Retailers who have embraced AI and conversational agents are already reaping the benefits, but these tools will become even more critical in the new year as retailers aim to minimize revenue losses from returns and reengage with shoppers,” said Caila Schwartz, Salesforce’s Director of Consumer Insights. Record-Breaking Sales and Rising Returns Online sales hit .2 trillion globally and 2 billion in the U.S. during the holiday season, but returns surged to $122 billion globally—a 28% increase compared to 2023. Salesforce attributed this spike to evolving shopping habits like bracketing (buying multiple sizes to ensure fit) and try-on hauls (bulk purchasing for social media content), which have become increasingly common. The surge in returns presents a challenge to retailers, potentially eroding profit margins. To address this, many are turning to AI-powered solutions for streamlining returns processes. According to Salesforce, 75% of U.S. shoppers expressed interest in using AI agents for returns, with one-third showing strong enthusiasm for such tools. The Role of AI in Enhancing the Holiday Shopping Experience AI-powered chatbots saw a 42% year-over-year increase in usage during the holiday season, supporting customers with purchases, returns, and product inquiries. These conversational agents, combined with AI-driven loyalty programs and targeted promotions, were instrumental in engaging customers and increasing conversion rates. AI’s influence extended to social commerce, with platforms like TikTok Shop and Instagram driving 20% of global holiday sales. Personalized recommendations and advertisements, powered by AI algorithms, significantly boosted social media referral traffic, which grew by 8% year-over-year. Mobile Commerce and AI Synergy Mobile devices were the dominant force in holiday shopping, generating 2 billion in global online sales and 5 billion in the U.S. Orders placed via smartphones peaked on Christmas Day, with mobile accounting for 79% of all transactions. This mobile-first trend highlights the growing importance of integrating AI into mobile commerce to enhance the shopping experience. AI Integration Expands Across Retail Operations In the UK, retailers are increasingly leveraging AI to optimize operations and improve personalization. A study by IMRG and Scurri revealed that 57% of UK online retailers used generative AI for content creation in 2024, while 31% implemented AI-informed product search tools. By 2025, 75% of UK retailers plan to adopt AI for marketing efforts, and 42% aim to use AI-powered product information management systems to streamline processes. Tesco, for example, uses AI to analyze Clubcard data, enabling tailored product recommendations, healthier purchasing choices, and waste reduction. Meanwhile, Must Have Ideas, a homeware retailer, has launched an AI-driven TV shopping channel powered by proprietary software, Spark, which automates programming schedules based on real-time stock levels and market trends. Looking Ahead The 2024 holiday season underscored the transformative potential of AI in retail. While AI-powered tools drove record sales and engagement, the rise in returns presents a challenge that retailers must address to protect their bottom line. As AI continues to evolve, its role in shaping consumer behavior, streamlining operations, and enhancing customer experiences will become even more integral in the retail landscape. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Content Marketing Lessons

Marketing Cloud Editions & Agentforce

In Salesforce, Marketing Cloud editions refer to the different tiers of the platform, such as Growth Edition and Advanced Edition, each offering varying levels of marketing automation capabilities. Agentforce, an AI-powered feature within Marketing Cloud, enhances these editions by using generative AI to assist with tasks like creating email content, landing pages, and campaign briefs—essentially serving as a virtual marketing assistant. Both features work together to improve personalization and streamline marketing workflows across different editions. Marketing Cloud Editions Salesforce offers multiple Marketing Cloud editions, each designed to meet different business needs: Agentforce: AI-Powered Marketing Assistance Agentforce is available in both Growth and Advanced editions, enabling users to leverage generative AI to enhance marketing efficiency and effectiveness. Key Benefits of Agentforce ✅ Content Creation – Generate landing pages, email copy, and campaign briefs instantly.✅ Personalization – Tailor content dynamically based on customer data for highly relevant messaging.✅ Efficiency – Automate content generation tasks to reduce manual effort and improve productivity. By integrating Agentforce with Marketing Cloud, businesses can accelerate content creation, enhance personalization, and optimize marketing workflows for better results. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
copilots and agentic ai

Transforming Industries and Redefining Workflows

The Rise of Agentic AI: Transforming Industries and Redefining Workflows Artificial Intelligence (AI) is evolving faster than we anticipated. No longer limited to predicting outcomes or generating content, AI systems are now capable of handling complex tasks and making autonomous decisions. This new era—driven by Agentic AI—is set to redefine the workplace and transform industries. From Prediction to Autonomy: The Three Waves of AI To understand where we’re headed, it’s important to see how far AI has come. Arun Parameswaran, SVP & MD of Salesforce India, describes it as a fundamental shift: “What has changed with agents is their ability to handle complex reasoning… and, most importantly, to take action.” Unlike previous AI models that recommend or predict, Agentic AI executes tasks, reshaping customer experiences and operational workflows. Agentic AI in Action: Industry Applications At a recent Mint x Salesforce India deep-dive event on AI, industry leaders explored how Agentic AI is driving transformation across sectors. The panel featured: Here’s how Agentic AI is already making an impact: 1. Revolutionizing Customer Support Traditional chatbots have limited capabilities. Agentic AI, however, understands urgency and context. 2. Accelerating Business Decisions In finance and supply chain management, AI agents analyze vast amounts of data and execute decisions autonomously. 3. Transforming Travel & Aviation Airlines are leveraging AI to optimize booking systems, reduce costs, and enhance efficiency. 4. Automating Wealth Management AI agents in financial services monitor markets, adjust strategies, and offer personalized investment recommendations in real time. The Risks & Responsibilities of Agentic AI With great autonomy comes great responsibility. The potential of Agentic AI is vast—but so are the challenges: The Future of Work: AI as a Partner, Not a Replacement Despite concerns about job displacement, AI is more likely to reshape rather than replace roles. What Are AI Agents? AI agents go beyond traditional models like ChatGPT or Gemini. They are proactive, self-learning systems that: They fall into two categories: “AI agents don’t just wait for commands; they anticipate needs and act,” says Dr. Tomer Simon, Chief Scientist at Microsoft Research Israel. AI Agents in the Workplace: A Shift in Roles AI agents streamline processes, but they don’t eliminate the need for human oversight. Salesforce’s Agentforce is a prime example: “Companies need to integrate AI, not fear it. Those who fail to adopt AI tools risk drowning in tasks AI can handle,” warns Dr. Omri Allouche, Chief Scientist at Gong. The Road Ahead: AI-Driven Business Growth Agentic AI is not about replacing people—it’s about empowering them. As organizations re-evaluate workflows and embrace AI collaboration, the companies that act early will gain a competitive edge in efficiency and innovation. Final Thought The AI revolution is here, and Agentic AI is at its forefront. The key question isn’t whether AI will transform industries—it’s how organizations will adapt and thrive in this new era. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com