AI Tools Archives - gettectonic.com - Page 2
AI Agents Set to Break Through in 2025

AI Agents Set to Break Through in 2025

2025: The Year AI Agents Transform Work and Life Despite years of hype around artificial intelligence, its true disruptive impact has so far been limited. However, industry experts believe that’s about to change in 2025 as autonomous AI agents prepare to enter and reshape nearly every facet of our lives. Since OpenAI’s ChatGPT took the world by storm in late 2022, billions of dollars have been funneled into the AI sector. Big tech and startups alike are racing to harness the transformative potential of the technology. Yet, while millions now interact with AI chatbots daily, turning them into tools that deliver tangible business value has proven challenging. A recent study by Boston Consulting Group revealed that only 26% of companies experimenting with AI have progressed beyond proof of concept to derive measurable value. This lag reflects the limitations of current AI tools, which serve primarily as copilots—capable of assisting but requiring constant oversight and remaining prone to errors. AI Agents Set to Break Through in 2025 The status quo, however, is poised for a radical shift. Autonomous AI agents—capable of independently analyzing information, making decisions, and taking action—are expected to emerge as the industry’s next big breakthrough. “For the first time, technology isn’t just offering tools for humans to do work,” Salesforce CEO Marc Benioff wrote in Time. “It’s providing intelligent, scalable digital labor that performs tasks autonomously. Instead of waiting for human input, agents can analyze information, make decisions, and adapt as they go.” At their core, AI agents leverage the same large language models (LLMs) that power tools like ChatGPT. But these agents take it further, acting as reasoning engines that develop step-by-step strategies to execute tasks. Armed with access to external data sources like customer records or financial databases and equipped with software tools, agents can achieve goals independently. While current LLMs still face reasoning limitations, advancements are on the horizon. New models like OpenAI’s “o1” and DeepSeek’s “R1” are specialized for reasoning, sparking hope that 2025 will see agents grow far more capable. Big Tech and Startups Betting Big Major players are already gearing up for this new era. Startups are also eager to carve out their share of the market. According to Pitchbook, funding deals for agent-focused ventures surged by over 80% in 2024, with the median deal value increasing nearly 50%. Challenges to Overcome Despite the enthusiasm, significant hurdles remain. 2025: A Turning Point Despite these challenges, many experts believe 2025 will mark the mainstream adoption of AI agents. A New World of Work No matter the pace, it’s clear that AI agents will dominate the industry’s focus in 2025. If the technology delivers on its promise, the workplace could undergo a profound transformation, enabling entirely new ways of working and automating tasks that once required human intervention. The question isn’t if agents will redefine the way we work—it’s how fast. By the end of 2025, the shift could be undeniable. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Gen AI Unleased With Vector Database

Knowledge Graphs and Vector Databases

The Role of Knowledge Graphs and Vector Databases in Retrieval-Augmented Generation (RAG) In the dynamic AI landscape, Retrieval-Augmented Generation (RAG) systems are revolutionizing data retrieval by combining artificial intelligence with external data sources to deliver contextual, relevant outputs. Two core technologies driving this innovation are Knowledge Graphs and Vector Databases. While fundamentally different in their design and functionality, these tools complement one another, unlocking new potential for solving complex data problems across industries. Understanding Knowledge Graphs: Connecting the Dots Knowledge Graphs organize data into a network of relationships, creating a structured representation of entities and how they interact. These graphs emphasize understanding and reasoning through data, offering explainable and highly contextual results. How They Work Strengths Limitations Applications Vector Databases: The Power of Similarity In contrast, Vector Databases thrive in handling unstructured data such as text, images, and audio. By representing data as high-dimensional vectors, they excel at identifying similarities, enabling semantic understanding. How They Work Strengths Limitations Applications Combining Knowledge Graphs and Vector Databases: A Hybrid Approach While both technologies excel independently, their combination can amplify RAG systems. Knowledge Graphs bring reasoning and structure, while Vector Databases offer rapid, similarity-based retrieval, creating hybrid systems that are more intelligent and versatile. Example Use Cases Knowledge Graphs vs. Vector Databases: Key Differences Feature Knowledge Graphs Vector Databases Data Type Structured Unstructured Core Strength Relational reasoning Similarity-based retrieval Explainability High Low Scalability Limited for large datasets Efficient for massive datasets Flexibility Schema-dependent Schema-free Challenges in Implementation Future Trends: The Path to Convergence As AI evolves, the distinction between Knowledge Graphs and Vector Databases is beginning to blur. Emerging trends include: This convergence is paving the way for smarter, more adaptive systems that can handle both structured and unstructured data seamlessly. Conclusion Knowledge Graphs and Vector Databases represent two foundational technologies in the realm of Retrieval-Augmented Generation. Knowledge Graphs excel at reasoning through structured relationships, while Vector Databases shine in unstructured data retrieval. By combining their strengths, organizations can create hybrid systems that offer unparalleled insights, efficiency, and scalability. In a world where data continues to grow in complexity, leveraging these complementary tools is essential. Whether building intelligent healthcare systems, enhancing recommendation engines, or powering semantic search, the synergy between Knowledge Graphs and Vector Databases is unlocking the next frontier of AI innovation, transforming how industries harness the power of their data. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Artificial Intelligence (AI) is significantly transforming threat detection by enabling faster, more accurate identification of potential security breaches through its ability to analyze vast amounts of data in real-time, detect anomalies and patterns that might indicate a threat, even when those threats are new or previously unknown, thus providing a proactive approach to cybersecurity compared to traditional rule-based systems.

AI is Transforming Threat Detection

Artificial Intelligence (AI) is significantly transforming threat detection by enabling faster, more accurate identification of potential security breaches through its ability to analyze vast amounts of data in real-time, detect anomalies and patterns that might indicate a threat, even when those threats are new or previously unknown, thus providing a proactive approach to cybersecurity compared to traditional rule-based systems.

Read More
AI and UX Design

AI and UX Design

This insight comprehensively covers how AI is transforming UX design, presenting both opportunities and challenges while emphasizing the importance of maintaining a human-centric approach. Here’s a polished and slightly condensed version, retaining the core points for better clarity and engagement: AI in UX Design: Transforming Experiences in 2024 and Beyond In 2024, artificial intelligence (AI) is redefining user experience (UX) design and research. From streamlining processes to elevating personalization, UX professionals are integrating AI into their workflows to create experiences that are more intuitive and efficient. This insight explores how AI is reshaping UX and how designers can leverage it while preserving the human touch. How AI is Revolutionizing UX Design 1. Advanced AI Technologies in UXAI technologies like machine learning (ML), natural language processing (NLP), and computer vision are empowering designers with tools to understand user behavior better, build conversational interfaces, and create accessible, adaptable designs. These innovations provide deeper insights into user preferences and help refine interfaces to align with evolving needs. 2. Automating Routine Design TasksAI is taking over repetitive tasks such as rapid prototyping, A/B testing, and user data analysis, allowing designers to focus on creative, strategic challenges. For example: 3. Enhanced PersonalizationAI-driven systems offer dynamic content delivery, adaptive interfaces, and predictive behavior modeling to craft uniquely tailored experiences. These enhancements not only engage users but also foster loyalty by addressing individual preferences in real time. Balancing AI and Human-Centric Design While AI accelerates UX processes, maintaining a human-centered approach is essential. Successful integration requires: Best Practices for AI-Driven UX Design Ethical Considerations in AI-Enhanced UX Ethics remain at the forefront of AI in UX. Key concerns include: Learning from Case Studies These examples highlight how thoughtful AI integration can transform UX into a seamless, user-friendly journey. Preparing for Future Trends Looking ahead to 2025 and beyond, AI will continue to introduce innovations like emotional recognition and generative design, enabling even more intuitive user experiences. However, challenges such as data privacy concerns and high implementation costs will persist. UX professionals must adapt by blending AI-driven insights with human creativity, ensuring that designs remain empathetic and accessible. Conclusion AI is revolutionizing UX design, offering tools to enhance efficiency, personalization, and user engagement. The key to success lies in using AI as a complement to creativity rather than a replacement. By balancing automation with human-centered principles and committing to ethical practices, businesses can harness AI to create transformative, user-focused designs that truly resonate. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI Agents and Consumer Trust

AI Agents Next AI Evolution

AI agents are being hailed as the next big leap in artificial intelligence, but there’s no universally accepted definition of what they are—or what they should do. Even within the tech community, there’s debate about what constitutes an AI agent. At its core, an AI agent can be described as software powered by artificial intelligence that performs tasks once handled by human roles, such as customer service agents, HR representatives, or IT help desk staff. However, their potential spans much further. These agents don’t just answer questions—they take action, often working across multiple systems. For example, Perplexity recently launched an AI agent to assist with holiday shopping, while Google introduced Project Mariner, an agent that helps users book flights, find recipes, and shop for household items. While the idea seems straightforward, it’s muddied by inconsistent definitions. For Google, AI agents are task-based assistants tailored to specific roles, like coding help for developers or troubleshooting issues for IT professionals. In contrast, Asana views agents as digital co-workers that take on assigned tasks, and Sierra—a startup led by former Salesforce co-CEO Bret Taylor—envisions agents as sophisticated customer experience tools that surpass traditional chatbots by tackling complex problems. This lack of consensus adds to the uncertainty around what AI agents can truly achieve. Rudina Seseri, founder and managing partner at Glasswing Ventures, explains this ambiguity stems from the technology’s infancy. She describes AI agents as intelligent systems capable of perceiving their environment, reasoning, making decisions, and taking actions to achieve specific goals autonomously. These agents rely on a mix of AI technologies, including natural language processing, machine learning, and computer vision, to operate in dynamic environments. Optimists, like Box CEO Aaron Levie, believe AI agents will improve rapidly as advancements in GPU performance, model efficiency, and AI frameworks create a self-reinforcing cycle of innovation. However, skeptics like MIT robotics pioneer Rodney Brooks caution against overestimating progress, noting that solving real-world problems—especially those involving legacy systems with limited API access—can be far more challenging than anticipated. David Cushman of HFS Research likens current AI agents to assistants rather than fully autonomous entities, with their capabilities limited to helping users complete specific tasks within pre-defined boundaries. True autonomy, where AI agents handle contingencies and perform at scale without human oversight, remains a distant goal. Jon Turow, a partner at Madrona Ventures, emphasizes the need for dedicated infrastructure to support the development of AI agents. He envisions a tech stack that allows developers to focus on product differentiation while leaving scalability and reliability to the platform. This infrastructure would likely involve multiple specialized models working together under a routing layer, rather than relying on a single large language model (LLM). Fred Havemeyer of Macquarie US Equity Research agrees, noting that the most effective AI agents will combine various models to handle complex tasks. He imagines a future where agents act like autonomous supervisors, delegating tasks and reasoning through multi-step processes to achieve abstract goals. While this vision is compelling, the current state of AI agents suggests we’re still in a transitional phase. The progress so far is promising, but several breakthroughs are needed before agents can operate as envisioned—truly autonomous, multi-functional, and capable of seamless collaboration across diverse systems. This story, originally published on July 13, 2024, has been updated to reflect new developments from Perplexity and Google. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
google agentspace

Google Agentspace

Google Agentspace: Boosting Productivity with AI-Powered Agents Google has unveiled Agentspace, a cutting-edge tool designed to revolutionize workplace productivity by combining the power of AI agents, Google Gemini 2.0, and its advanced search capabilities. This tool aims to streamline workflows, enhance information discovery, and empower enterprises to unlock the full potential of their data. What is Google Agentspace? Google Agentspace is an enterprise-focused productivity platform that simplifies complex tasks involving planning, research, and content generation. By integrating AI-powered tools like NotebookLM Plus, it enables employees to uncover insights, interact with unstructured and structured data, and make informed decisions—all in one centralized platform. Key features include: Core Benefits of Google Agentspace 1. Streamlined Information Discovery Employees often waste hours sifting through fragmented data in emails, documents, and spreadsheets. Agentspace serves as a centralized knowledge hub, offering conversational assistance, proactive suggestions, and actionable insights from both unstructured and structured data sources. With pre-built connectors for tools like Google Drive, Jira, Microsoft SharePoint, and ServiceNow, Agentspace ensures seamless integration with existing systems, providing employees with relevant information faster. 2. Enhanced Multimodal Capabilities Agentspace leverages Google’s search expertise and Gemini 2.0 to provide advanced reasoning capabilities. Employees can query in multiple formats (text, audio, video), translate information into different languages, and generate audio summaries, enhancing productivity and accessibility. 3. Task Automation Across Departments Agentspace empowers teams across various functions to automate repetitive tasks, such as: 4. Scalable AI for Enterprises Agentspace offers a low-code visual tool for creating custom AI agents tailored to specific business needs. These agents can automate multi-step workflows, conduct in-depth research, and assist with data-driven content generation, enabling enterprises to scale AI adoption effortlessly. Security and Responsible AI Google Agentspace is built on Google Cloud’s secure-by-design infrastructure, ensuring that enterprises can deploy AI tools with confidence. Key Security Features Google is also addressing responsible AI concerns with tools for evaluation, content moderation, and bias mitigation, ensuring ethical and explainable AI use in the workplace. Use Cases Google Agentspace provides solutions tailored to various enterprise needs: Challenges and Future Directions Despite its potential, Agentspace faces hurdles such as employee training and adoption. Organizations must ensure that employees understand how to incorporate the tool into their daily workflows effectively. Moreover, Google’s approach to responsible AI will be closely scrutinized. Addressing issues like explainability, bias prevention, and robust data infrastructure will be crucial for building trust and driving adoption. Early Access and the Road Ahead Google is offering early access to Agentspace, allowing enterprises to explore its potential and provide feedback. As AI continues to reshape the workplace, tools like Agentspace position Google as a leader in productivity-enhancing solutions for businesses. For enterprises looking to harness AI to unlock creativity, improve decision-making, and automate workflows, Agentspace is the next step in digital transformation. Sign up for early access today to bring the future of work to your organization. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
UK Leading AI’s Third Wave

UK Leading AI’s Third Wave

The UK Leading AI’s Third Wave: Insights from Salesforce’s AI Readiness Index Salesforce’s latest UK AI Readiness Index positions the UK as a frontrunner in the third wave of AI innovation, particularly in agentic AI—autonomous systems capable of decision-making and action. This comes as nations globally compete for leadership in AI development, with significant implications for economic growth, national security, and technological sovereignty. UK’s AI Readiness Exceeds G7 Averages The index reveals that the UK’s overall readiness score is 65.5, outpacing the G7 average of 61.2. Both government and business sectors outperform their peers, reflecting a robust environment for innovation. Zahra Bahrololoumi, CBE, UKI CEO of Salesforce, highlights the transformative potential of this technology, stating: “Agentic AI is revolutionising enterprise software by enabling seamless collaboration between humans and AI agents, driving customer success. The UK AI Readiness Index affirms the UK’s vision and infrastructure to lead globally in this new wave of innovation.” Driving Forces Behind UK’s Leadership The UK’s strength lies in its holistic approach to AI development, integrating: Minister for AI and Digital Government, Feryal Clark, notes: “These findings are proof that the UK is primed to leverage AI’s potential, showcasing our strength in fostering innovation, investment, and collaboration across sectors.” AI in Action: Transforming UK Businesses Salesforce’s Agentforce platform is helping UK organisations capitalise on AI’s potential. Leading companies such as Capita, Heathrow Airport, and Bionic have reported significant productivity gains: The Road Ahead: Maintaining Leadership The report outlines key priorities for sustaining the UK’s position: Salesforce’s commitment to the UK includes a $4 billion investment over five years and the opening of its AI Centre in London, aimed at training developers and administrators in cutting-edge AI technologies. What the Experts Say Antony Walker, Deputy CEO of techUK, remarks: “The Salesforce UK AI Readiness Index highlights the UK’s strong position to lead the next wave of AI innovation. By supporting SMEs, investing in skills, and ensuring flexible regulation, the UK can solidify its global AI leadership.” Paul O’Sullivan, UKI CTO and SVP Solution Engineering at Salesforce, reinforces the urgency: “We are in the third wave of AI—an autonomous age moving at unprecedented speed. The UK has a unique opportunity to lead, but this requires sustained focus on skills, innovation, and collaboration.” Conclusion As the AI revolution accelerates, the UK’s leadership in agentic AI positions it as a global AI powerhouse. By balancing innovation with responsibility and investing in infrastructure and talent, the UK is not just adapting to AI’s future but shaping it. Salesforce’s AI initiatives, including its Agentforce platform and London AI Centre, ensure the UK remains at the forefront of this transformational journey. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI-Driven Care Coordination Software

AI-Driven Care Coordination Software

Can AI-Driven Care Coordination Software Improve Workflows? University Hospitals is leveraging AI to enhance care coordination across its network of 13 hospitals and numerous outpatient settings. This effort highlights the transformative potential of AI-driven platforms in streamlining workflows, improving patient outcomes, and addressing clinician burnout. The Role of AI in Care Coordination Care coordination ensures seamless collaboration between healthcare providers, aiming for safe, appropriate, and effective treatment. Effective information-sharing can: According to the U.S. Centers for Medicare & Medicaid Services (CMS), poor care coordination can lead to: The Agency for Healthcare Research and Quality (AHRQ) advocates for a mix of technology adoption and care-specific strategies, such as proactive care plans tailored to patient needs. While electronic health records (EHRs) aid in these efforts, AI’s ability to analyze vast data sets positions it as the next evolution in care coordination. University Hospitals’ AI Initiative University Hospitals has partnered with Aidoc to deploy its AI-powered platform, aiOS, to improve radiology and care coordination workflows. Chair of Radiology Donna Plecha shared insights on how AI is already assisting in their operations: Best Practices for Implementing AI 1. Identify High-Value Use Cases: 2. Conduct Architectural Reviews: 3. Monitor ROI and Metrics: 4. Gain Clinician Buy-In: Looking Ahead AI is proving to be a valuable tool in care coordination, but its adoption requires realistic expectations and a thoughtful approach. Plecha underscores that AI won’t replace radiologists but will empower those who embrace it. As healthcare faces increasing patient volumes and clinician shortages, leveraging AI to reduce workloads and enhance care quality is becoming a necessity. With ongoing evaluations and phased implementations, University Hospitals is setting a precedent for how AI can drive innovation in care coordination while maintaining clinician oversight and patient trust. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Transforming Fundraising for Nonprofits

Leverage AI to Enhance Customer Retention

Leverage AI to Enhance Customer Retention and Reduce Churn Customer churn is among the most expensive challenges businesses face—and one of the hardest to tackle. Predictive and generative AI technologies offer an immediate opportunity to boost retention rates. When applied strategically, these tools can revolutionize how customer service and support teams operate, creating measurable improvements in retention and overall customer satisfaction. A recent McKinsey & Company study highlights the impact of AI in customer service. One company reported a 14% increase in issue resolution and a 9% reduction in issue handling time with generative AI. Requests to escalate to a manager dropped by 25%, and employee retention in service roles improved. When every percentage point matters, AI’s ability to engage and retain customers (and employees) can significantly affect your bottom line and business success. The Cost of Poor Customer Service on Retention Retaining existing customers is far more cost-effective than acquiring new ones. Happy, long-term customers are also more likely to purchase additional products or services, making upselling and cross-selling efforts easier. However, poor customer service experiences—such as lengthy hold times, repeating information, or unhelpful chatbot interactions—can damage customer relationships and lead to churn. As Salesforce points out, these four signs indicate broken customer service: To address these challenges, a seamless, data-driven approach to customer service is essential. Prevent Churn with CRM + AI Customer data spans multiple touchpoints, from website visits to call center interactions. Without a unified view, even the most skilled service teams struggle to deliver exceptional experiences. A solution like Salesforce Service Cloud, enhanced by AI tools such as Agentforce Service Agents, empowers teams to: By combining predictive analytics with a unified customer experience platform, businesses can deliver personalized, proactive service that fosters loyalty. Retention Agent: The AI Solution for Customer Retention Retention Agent, part of Tectonic’s Agentforce suite, leverages AI to identify at-risk customers and equip sales, service, and support teams with actionable insights. It provides recommendations for re-engagement strategies, personalized offers, and targeted communications to prevent costly churn. Here’s how Retention Agent works: By integrating AI into customer service operations, businesses can stay ahead of churn, improve satisfaction, and build stronger, longer-lasting customer relationships. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Empowering LLMs with a Robust Agent Framework

PydanticAI: Empowering LLMs with a Robust Agent Framework As the Generative AI landscape evolves at a historic pace, AI agents and multi-agent systems are expected to dominate 2025. Industry leaders like AWS, OpenAI, and Microsoft are racing to release frameworks, but among these, PydanticAI stands out for its unique integration of the powerful Pydantic library with large language models (LLMs). Why Pydantic Matters Pydantic, a Python library, simplifies data validation and parsing, making it indispensable for handling external inputs such as JSON, user data, or API responses. By automating data checks (e.g., type validation and format enforcement), Pydantic ensures data integrity while reducing errors and development effort. For instance, instead of manually validating fields like age or email, Pydantic allows you to define models that automatically enforce structure and constraints. Consider the following example: pythonCopy codefrom pydantic import BaseModel, EmailStr class User(BaseModel): name: str age: int email: EmailStr user_data = {“name”: “Alice”, “age”: 25, “email”: “[email protected]”} user = User(**user_data) print(user.name) # Alice print(user.age) # 25 print(user.email) # [email protected] If invalid data is provided (e.g., age as a string), Pydantic throws a detailed error, making debugging straightforward. What Makes PydanticAI Special Building on Pydantic’s strengths, PydanticAI brings structured, type-safe responses to LLM-based AI agents. Here are its standout features: Building an AI Agent with PydanticAI Below is an example of creating a PydanticAI-powered bank support agent. The agent interacts with customer data, evaluates risks, and provides structured advice. Installation bashCopy codepip install ‘pydantic-ai-slim[openai,vertexai,logfire]’ Example: Bank Support Agent pythonCopy codefrom dataclasses import dataclass from pydantic import BaseModel, Field from pydantic_ai import Agent, RunContext from bank_database import DatabaseConn @dataclass class SupportDependencies: customer_id: int db: DatabaseConn class SupportResult(BaseModel): support_advice: str = Field(description=”Advice for the customer”) block_card: bool = Field(description=”Whether to block the customer’s card”) risk: int = Field(description=”Risk level of the query”, ge=0, le=10) support_agent = Agent( ‘openai:gpt-4o’, deps_type=SupportDependencies, result_type=SupportResult, system_prompt=( “You are a support agent in our bank. Provide support to customers and assess risk levels.” ), ) @support_agent.system_prompt async def add_customer_name(ctx: RunContext[SupportDependencies]) -> str: customer_name = await ctx.deps.db.customer_name(id=ctx.deps.customer_id) return f”The customer’s name is {customer_name!r}” @support_agent.tool async def customer_balance(ctx: RunContext[SupportDependencies], include_pending: bool) -> float: return await ctx.deps.db.customer_balance( id=ctx.deps.customer_id, include_pending=include_pending ) async def main(): deps = SupportDependencies(customer_id=123, db=DatabaseConn()) result = await support_agent.run(‘What is my balance?’, deps=deps) print(result.data) result = await support_agent.run(‘I just lost my card!’, deps=deps) print(result.data) Key Concepts Why PydanticAI Matters PydanticAI simplifies the development of production-ready AI agents by bridging the gap between unstructured LLM outputs and structured, validated data. Its ability to handle complex workflows with type safety and its seamless integration with modern AI tools make it an essential framework for developers. As we move toward a future dominated by multi-agent AI systems, PydanticAI is poised to be a cornerstone in building reliable, scalable, and secure AI-driven applications. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
More Cool AI Tools

Salesforce Expands Partnership with AWS

Salesforce Expands Partnership with AWS: AI and Marketplace Integration Salesforce (NYSE: CRM) is making significant strides in its partnership with Amazon (NASDAQ: AMZN), unveiling an expanded collaboration at AWS. Customers can now purchase Salesforce products directly through the AWS Marketplace, paying with AWS credits. This integration aims to simplify access to Salesforce offerings, enhance data integration capabilities, and leverage generative AI tools. Key Announcements: Marc Benioff, Chair and CEO of Salesforce, highlighted the importance of this milestone: “We’re bringing together the No. 1 AI CRM provider and the leading cloud provider to deliver a trusted, open, integrated data and AI platform. With these enhancements to our partnership, we’re enabling all of our customers to be more innovative, productive, and successful in this new AI era.” AWS CEO Adam Selipsky echoed these sentiments, emphasizing how the partnership will enable joint customers to “innovate, collaborate, and build more customer-focused applications.” Strategic Benefits: Revenue-Sharing Structure: Like app stores, Amazon will take a percentage of Salesforce’s revenue generated through AWS Marketplace. Despite this, the potential growth in sales and efficiency gains may outweigh the costs. Market Reaction: Following the announcement, both Salesforce and Amazon shares experienced a boost in premarket trading, signaling investor optimism about the partnership’s potential. This expansion reinforces Salesforce’s strategy of aligning with major cloud providers to meet growing demand for AI-driven, integrated data platforms. As this collaboration evolves, it is poised to drive significant value for businesses navigating the AI and data revolution. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agents, Tech's Next Big Bet

Business Intelligence and AI

AI in Business Intelligence: Uses, Benefits, and Challenges AI tools are increasingly becoming integral to Business Intelligence (BI) systems, enhancing analytics capabilities and streamlining tasks. In this article, we explore how AI can bring new value to BI processes and what to consider as this integration continues to evolve. AI’s Role in Business Intelligence Business Intelligence tools, such as dashboards and interactive reports, have traditionally focused on analyzing historical and current data to describe business performance—known as descriptive analytics. While valuable, many business users seek more than just a snapshot of past performance. They also want predictive insights (forecasting future trends) and prescriptive guidance (recommendations for action). Historically, implementing these advanced capabilities was challenging due to their complexity, but AI simplifies this process. By leveraging AI’s analytical power and natural language processing (NLP), businesses can move from descriptive to predictive and prescriptive analytics, enabling proactive decision-making. AI-powered BI systems also offer the advantage of real-time data analysis, providing up-to-date insights that help businesses respond quickly to changing conditions. Additionally, AI can automate routine tasks, boosting efficiency across business operations. Benefits of Using AI in BI Initiatives The integration of AI into BI systems brings several key benefits, including: Examples of AI Applications in BI AI’s role in BI is not limited to internal process improvements. It can significantly enhance customer experience (CX) and support business growth. Here are a few examples: Challenges of Implementing AI in BI While the potential for AI in BI is vast, there are several challenges companies must address: Best Practices for Deploying AI in BI To maximize the benefits of AI in BI, companies should follow these best practices: Future Trends to Watch AI is not poised to replace traditional BI tools but to augment them with new capabilities. In the future, we can expect: In conclusion, AI is transforming business intelligence by turning data analysis from a retrospective activity into a forward-looking, real-time process. While challenges remain, such as data governance, ethical concerns, and skill shortages, AI’s potential to enhance BI systems and drive business success is undeniable. By following best practices and staying abreast of industry developments, businesses can harness AI to unlock new opportunities and deliver better insights. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More

AI Agents Are the Next Wave of Generative Technology

How AI Agents Are the Next Wave of Generative Technology The rise of agentic technology marks a pivotal evolution in artificial intelligence, signaling a shift from mere assistive tools to autonomous agents capable of complex, multi-step tasks. While excitement abounds, this new wave of AI also raises questions about its practical application and long-term impact. AI agents—autonomous tools designed to perform tasks independently—are rapidly gaining traction across industries. Vendors and developers are positioning them as the future of generative AI, enabling organizations to streamline workflows and unlock new efficiencies. However, concerns remain regarding the scope of tasks assigned to these agents and their return on investment (ROI). A Growing Presence at Industry Events The growing curiosity and cautious optimism surrounding AI agents were palpable at the recent AI Summit conference. “AI agents are here, and they’re scaling,” said Tim Cotten, CEO and founder of Scripted Inc., a generative AI platform for game development powered by autonomous agents. Speaking during a session on AI in game development, Cotten predicted that a third of companies present at the summit would likely adopt agent-based solutions in the near future. Cotten emphasized the transformative potential of AI agents: “Agents allow you to spread your influence while you’re asleep. They can do the job for you, generate new ideas, and even create additional agents to tackle emerging needs.” However, he also highlighted a critical challenge: ensuring agents remain focused on well-defined tasks. Overloading agents with responsibilities beyond their scope can lead to inefficiencies and diminished outcomes. Specialized Agents vs. General-Purpose Agents The debate between using specialized agents versus general-purpose agents continues to shape the discussion around agentic AI. According to Atif Khan, Chief Artificial Intelligence Officer at Semantex: “If you have a large application with different components, it’s better to deploy specialized agents for each task. For example, one agent could handle search, another documentation, and others for accounting or customer service.” Khan advocated for modular, independent agents that can be trained and refined individually, rather than a single, all-encompassing agent. This approach not only improves efficiency but also reduces the risk of “hallucinations,” or inaccuracies, that can arise when agents attempt to manage overly complex workloads. Mitigating Risks and Maintaining Oversight Despite their autonomy, AI agents still require oversight to ensure accuracy and compliance. Drayton Wade, COO at Kognitos, stressed the importance of human validation: “Organizations must determine where human review is necessary, especially in high-stakes environments like finance, where agents operate at scale and speed.” Logging agent activities and involving humans in critical decision-making processes can mitigate risks and create accountability, Wade added. Agentforce for Sales: Unlocking New Possibilities One of the most promising applications of agentic technology is in sales, where AI agents can significantly boost productivity and enhance customer experiences. Agentforce for Sales is a cutting-edge suite of tools designed to create and deploy both autonomous and assistive sales agents within Salesforce environments. These agents handle tasks such as lead qualification, pipeline building, case deflection, and sales coaching, allowing sales reps to focus on high-value activities. Types of Agentforce Sales Agents The Future of Agentic Technology AI agents are ushering in a new era of generative technology, enabling businesses to scale operations and optimize workflows. However, their success depends on thoughtful deployment, clear task delineation, and ongoing human oversight. By embracing solutions like Agentforce for Sales, organizations can maximize the potential of agentic AI, transforming how teams work and paving the way for continued innovation. The question is no longer whether to adopt AI agents but how to deploy them effectively to achieve lasting impact. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
ai arms race

AI Arms Race

AI Arms Race: Providers Catching Up to Payers in Claims Review The healthcare sector is in the midst of an escalating AI arms race as providers adopt the same artificial intelligence technologies payers are leveraging for claims review. Insurers currently lead this race, using AI to streamline processes such as prior authorizations, but experts predict providers will soon narrow the gap. Insurers’ AI Advantage Leading payers, including UnitedHealth, Humana, and Cigna, have integrated algorithmic decision tools to assess claims and determine coverage eligibility. These technologies allow insurers to flag services that fall outside plan criteria, ostensibly increasing efficiency. This trend is expanding, as evidenced by Blue Shield of California’s announcement of a partnership with Salesforce to pilot claims automation technology in early 2025. The nonprofit insurer claims this initiative will reduce prior authorization decision times from weeks or days to mere seconds, benefiting providers and patients alike. However, provider experiences paint a more contentious picture. Reports from lawmakers and healthcare executives suggest AI-driven claims processes lead to a surge in denials. For example, Providence CFO Greg Hoffman revealed that AI adoption by payers resulted in a 50% increase in underpayments and initial denials over two years, forcing providers to significantly increase manual interventions to resolve claims. A Battle for Balance The imbalance in AI adoption has prompted providers to take action. Experts like Jeffrey Cribbs, a vice president analyst at Gartner, see this as a forced “arms race” in which both sides are continually refining their tools. While payers focus on flagging potential exceptions, providers are working to develop systems for more efficient claims submissions and dispute resolution. Providence’s strategy includes outsourcing revenue cycle management to R1, a 10-year partnership designed to quickly address rising claims denials. Hoffman explained that building equivalent AI systems internally would take years, making partnerships essential for staying competitive in the short term. Collaboration Among Providers On the provider side, executives like Sara Vaezy, EVP and Chief Strategy Officer at Providence, emphasize the need for collaboration. She advocates for coalitions to share data and establish AI standards, which would allow providers to compete more effectively. Panelists at HLTH echoed this sentiment. Amit Phull, Chief Physician Experience Officer at Doximity, argued that AI could eventually “level the playing field” for providers by reducing the time required for claims documentation. Deloitte principal consultant Bill Fera added that AI would allow providers to quickly analyze policies and determine whether a patient qualifies for coverage under plan terms. The Road Ahead Despite the current disparity, experts believe AI will eventually equalize the claims review process. Providers are beginning to invest in tools that will help them handle vast amounts of data efficiently, offering clarity in disputes and cutting down documentation time. “It’s still early innings,” Phull said, “but the technology is going to go a long way toward leveling that playing field.” For now, however, insurers maintain the upper hand. As providers navigate the complexities of AI adoption, partnerships and collaboration may prove critical in ensuring they remain competitive in this rapidly evolving landscape. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com