ADA Archives - gettectonic.com - Page 5
AI Agent Trends

AI Agent Trends

AI Agents: Key Statistics and Trends for 2025 “The agent revolution is real and as exciting as the cloud, social, and mobile revolutions,” remarked Salesforce Chair and CEO Marc Benioff. “It will provide a level of transformation that we’ve never seen.” With the general availability of Agentforce, the era of AI-powered agents is officially here. These intelligent software agents, designed to perform tasks autonomously or in collaboration with humans, are already transforming businesses by driving efficiency and improving customer outcomes. AI Agents in Action Companies across the globe are leveraging AI agents to achieve remarkable results. For example, Wiley has seen a 40% boost in case resolution rates with Agentforce, far surpassing their previous bot’s performance. Other success stories from Saks and Opentable reinforce the ROI potential of this groundbreaking technology. Salesforce research highlights data from consumers, employees, and business leaders worldwide, demonstrating how AI agents address key pain points while unlocking significant opportunities for enterprises and individuals alike. Why Consumers Need AI Agents Traditional customer service processes often frustrate consumers, leading to inefficiency and dissatisfaction: AI agents are transforming this landscape with immediate, personalized assistance that minimizes wait times and eliminates repeated explanations. Consumer sentiment indicates a growing acceptance of this technology: Why Enterprises Need AI Agents For enterprises, inefficiency is a persistent challenge. Time-consuming administrative tasks often prevent workers from focusing on strategic, customer-centric activities: AI adoption is increasingly a priority for revenue-generating teams, with measurable benefits: Salesforce experts emphasize that while AI has already proven its value in service, sales, marketing, and commerce, the surface of its potential has only just been scratched. The Agent-First Future As organizations adopt an agent-first approach, they unlock opportunities to redefine operations, increase efficiency, and drive innovation: AI agents are not just the future—they’re the present solution to enduring challenges, empowering businesses to meet the demands of a rapidly evolving digital economy. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Liquid Neural Networks

Liquid Neural Networks

LNNs mark a significant departure from traditional, rigid AI structures, drawing deeply from the adaptable nature of biological neural systems. MIT researchers explored how organisms manage complex decision-making and dynamic responses with minimal neurons, translating these principles into the design of LNNs

Read More
RAGate

RAGate

RAGate: Revolutionizing Conversational AI with Adaptive Retrieval-Augmented Generation Building Conversational AI systems is challenging.It’s not just feasible; it’s complex, resource-intensive, and time-consuming. The difficulty lies in creating systems that can not only understand and generate human-like responses but also adapt effectively to conversational nuances, ensuring meaningful engagement with users. Retrieval-Augmented Generation (RAG) has already transformed Conversational AI by combining the internal knowledge of large language models (LLMs) with external knowledge sources. By leveraging RAG with business data, organizations empower their customers to ask natural language questions and receive insightful, data-driven answers. The challenge?Not every query requires external knowledge. Over-reliance on external sources can disrupt conversational flow, much like consulting a book for every question during a conversation—even when internal knowledge is sufficient. Worse, if no external knowledge is available, the system may respond with “I don’t know,” despite having relevant internal knowledge to answer. The solution?RAGate — an adaptive mechanism that dynamically determines when to use external knowledge and when to rely on internal insights. Developed by Xi Wang, Procheta Sen, Ruizhe Li, and Emine Yilmaz and introduced in their July 2024 paper on Adaptive Retrieval-Augmented Generation for Conversational Systems, RAGate addresses this balance with precision. What Is Conversational AI? At its core, conversation involves exchanging thoughts, emotions, and information, guided by tone, context, and subtle cues. Humans excel at this due to emotional intelligence, socialization, and cultural exposure. Conversational AI aims to replicate these human-like interactions by leveraging technology to generate natural, contextually appropriate, and engaging responses. These systems adapt fluidly to user inputs, making the interaction dynamic—like conversing with a human. Internal vs. External Knowledge in AI Systems To understand RAGate’s value, we need to differentiate between two key concepts: Limitations of Traditional RAG Systems RAG integrates LLMs’ natural language capabilities with external knowledge retrieval, often guided by “guardrails” to ensure responsible, domain-specific responses. However, strict reliance on external knowledge can lead to: How RAGate Enhances Conversational AI RAGate, or Retrieval-Augmented Generation Gate, adapts dynamically to determine when external knowledge retrieval is necessary. It enhances response quality by intelligently balancing internal and external knowledge, ensuring conversational relevance and efficiency. The mechanism: Traditional RAG vs. RAGate: An Example Scenario: A healthcare chatbot offers advice based on general wellness principles and up-to-date medical research. This adaptive approach improves response accuracy, reduces latency, and enhances the overall conversational experience. RAGate Variants RAGate offers three implementation methods, each tailored to optimize performance: Variant Approach Key Feature RAGate-Prompt Uses natural language prompts to decide when external augmentation is needed. Lightweight and simple to implement. RAGate-PEFT Employs parameter-efficient fine-tuning (e.g., QLoRA) for better decision-making. Fine-tunes the model with minimal resource requirements. RAGate-MHA Leverages multi-head attention to interactively assess context and retrieve external knowledge. Optimized for complex conversational scenarios. RAGate Varients How to Implement RAGate Key Takeaways RAGate represents a breakthrough in Conversational AI, delivering adaptive, contextually relevant, and efficient responses by balancing internal and external knowledge. Its potential spans industries like healthcare, education, finance, and customer support, enhancing decision-making and user engagement. By intelligently combining retrieval-augmented generation with nuanced adaptability, RAGate is set to redefine the way businesses and individuals interact with AI. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more We Are All Cloud Users My old company and several others are concerned about security, and feel more secure with being able to walk down Read more

Read More

AI’s Impact on Future Information Ecosystems

AI’s Impact on Future Information Ecosystems The proliferation of generative AI technology has ignited a renewed focus within the media industry on how to strategically adapt to its capabilities. Media professionals are now confronted with crucial questions: What are the most effective ways to leverage this technology for efficiency in news production and to enhance audience experiences? Conversely, what threats do these technological advancements pose? Is legacy media on the brink of yet another wave of disintermediation from its audiences? Additionally, how does the evolution of technology impact journalism ethics? AI’s Impact on Future Information Ecosystems. In response to these challenges, the Open Society Foundations (OSF) launched the AI in Journalism Futures project earlier this year. The first phase of this ambitious initiative involved an open call for participants to develop future-oriented scenarios that explore the potential driving forces and implications of AI within the broader media ecosystem. The project sought to answer questions about what might transpire among various stakeholders in 5, 10, or 15 years. As highlighted by Nick Diakopoulos, scenarios are a valuable method for capturing a diverse range of perspectives on complex issues. While predicting the future is not the goal, understanding a variety of plausible alternatives can significantly inform current strategic thinking. Ultimately, more than 800 individuals from approximately 70 countries contributed short scenarios for analysis. The AI in Journalism Futures project subsequently utilized these scenarios as a foundation for a workshop, which refined the ideas outlined in their report. Diakopoulos emphasizes the importance of examining this broad set of initial scenarios, which OSF graciously provided in anonymized form. This analysis specifically explores (1) the various types of impacts identified within the scenarios, (2) the associated timeframes for these impacts—whether they are short, medium, or long-term, and (3) the global differences in focus across regions, highlighting how different parts of the world emphasized distinct types of impacts. While many additional questions could be explored regarding this data—such as the drivers of impacts, final outcomes, severity, stakeholders involved, or technical capabilities emphasized—this analysis focuses primarily on impacts. Refining the Data The initial pool of 872 scenarios underwent a rigorous process of cleaning, filtering, transformation, and verification before analysis. Firstly, scenarios shorter than 50 words were excluded from consideration, resulting in 852 scenarios for analysis. Additionally, 14 scenarios that were not written in English were translated using Google Sheets. To enable geographic and temporal analysis, the country of origin for each scenario writer was mapped to their respective continents, and the free-text “timeframe” field was converted into numerical representations of years. Next, impacts were extracted from each scenario using an LLM (GPT-4 in this case). The prompts for the LLM were refined through iteration, with a clear definition established for what constitutes an “impact.” Diakopoulos defined an impact as “a significant effect, consequence, or outcome that an action, event, or other factor has in the scenario.” This definition encompasses not only the ultimate state of a scenario but also intermediate outcomes. The LLM was instructed to extract distinct impacts, with each impact represented by a one-sentence description and a short label. For instance, one impact could be described as, “The proliferation of flawed AI systems leads to a compromised information ecosystem, causing a general doubt in the reliability of all information,” labeled as “Compromised Information Ecosystem.” To ensure the accuracy of this extraction process, a random sample of five scenarios was manually reviewed to validate the extracted impacts against the established definition. All extracted impacts passed the checks, leading to confidence in scaling the analysis across the entire dataset. This process resulted in the identification of 3,445 impacts from the 852 scenarios. AI’s Impact on Future Information Ecosystems A typology of impact types was developed based on the 3,445 impact descriptions, utilizing a novel method for qualitative thematic analysis from a Stanford University study. This approach clusters input texts, synthesizes concepts that reflect abstract connections, and produces scoring definitions to assess the relevance of each original text. For example, a concept like “AI Personalization” might be defined by the question, “Does the text discuss how AI personalizes content or enhances user engagement?” Each impact description was then scored against these concepts to tabulate occurrence frequencies. Impacts of AI on Media Ecosystems Through this analytical approach, 19 impact themes emerged, along with their corresponding scoring definitions: Interestingly, many scenarios articulated themes around how AI intersects with fact-checking, trust, misinformation, ethics, labor concerns, and evolving business models. Although some concepts may not be entirely distinct, this categorization offers a meaningful overview of the key ideas represented in the data. Distribution of Impact Themes Comparing these findings with those in the OSF report reveals some discrepancies. For instance, while the report emphasizes personalization and misinformation, these themes were less prevalent in the analyzed scenarios. Moreover, themes such as the rise of AI agents and audience fragmentation were mentioned but did not cluster significantly in the analysis. To capture potentially interesting but less prevalent impacts, the clustering was rerun with a smaller minimum cluster size. This adjustment yielded hundreds more concept themes, revealing insights into longer-tail issues. Positive visions for generative AI included reduced language barriers and increased accessibility for marginalized audiences, while concerns about societal fragmentation and privacy were also raised. Impacts Over Time and Around the World The analysis also explored how the impacts varied based on the timeframe selected by writers and their geographic locations. Using a Chi-Squared test, it was determined that “AI Personalization” trends towards long-term implications, while both “AI Fact-Checking” and “AI and Misinformation” skew toward shorter-term issues. This suggests that scenario writers perceive misinformation impacts as imminent threats, likely reflecting ongoing developments in the media landscape. When examining the distribution of impacts by region, it was found that “AI Fact-Checking” was more frequently noted by writers from Africa and Asia, while “AI and Misinformation” was less prevalent in scenarios from African writers but more so in those from Asian contributors. This indicates a divergence in perspectives on AI’s role in the media ecosystem.

Read More
Commerce Cloud and Agentic AI

Gen X and Millennials Lead in Embracing Agentic AI

Gen X and Millennials Lead in Embracing Agentic AI: Salesforce Report Generation X and millennials are showing greater openness to adopting agentic artificial intelligence (AI), according to Salesforce’s State of the AI Connected Customer report. Agentic AI refers to autonomous agents capable of independently making decisions and performing tasks, learning and adapting from experiences without direct human supervision. This technology is making significant inroads across industries, with applications ranging from personalized recommendations and inventory management in retail to supply chain optimization in logistics. It also finds use in healthcare, finance, telecom, IT, and customer service. Generational Differences in AI Adoption The report highlights that millennials (57%) and Gen Xers (58%) in India are more inclined to embrace AI agents for faster and more proactive customer service compared to Gen Z (51%) and Baby Boomers (42%). These autonomous agents enhance customer experiences by delivering personalized and relevant content, which resonates more with the tech-savvy Gen X and millennial demographics. Who Are These Generations? Building Trust in the AI Era The report reveals a sharp decline in consumer trust, with trust levels at their lowest in eight years. Over half of the respondents feel companies are less trustworthy than a year ago and believe businesses mishandle customer data. Arun Parameswaran, SVP & Managing Director, Sales and Distribution at Salesforce India, emphasized the critical role of trust in AI strategies: “As we enter a new era of intelligent customer engagement, brands that prioritize trust in their AI strategies will be best positioned to deliver impactful, lasting connections.” Transparency, according to the report, is key to restoring consumer confidence in the AI-driven era. Companies that adopt responsible AI practices, particularly in the design and deployment of agentic AI, can foster stronger customer relationships. Global Perspective The findings are based on a survey of 15,015 consumers across India, Australia, Brazil, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, Norway, Singapore, Spain, Sweden, the UK, and the US. As businesses increasingly integrate agentic AI into their operations, understanding generational attitudes and prioritizing ethical AI practices will be essential for fostering trust and delivering exceptional customer experiences. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Research Agents

AI Research Agents

AI Research Agents: Transforming Knowledge Discovery by 2025 (Plus the Top 3 Free Tools) The research world is on the verge of a groundbreaking shift, driven by the evolution of AI research agents. By 2025, these agents are expected to move beyond being mere tools to becoming transformative assets for knowledge discovery, revolutionizing industries such as marketing, science, and beyond. Human researchers are inherently limited—they cannot scan 10,000 websites in an hour or analyze data at lightning speed. AI agents, however, are purpose-built for these tasks, providing efficiency and insights far beyond human capabilities. Here, we explore the anticipated impact of AI research agents and highlight three free tools redefining this space (spoiler alert: it’s not ChatGPT or Perplexity!). AI Research Agents: The New Era of Knowledge Exploration By 2030, the AI research market is projected to skyrocket from .1 billion in 2024 to .1 billion. This explosive growth represents not just advancements in AI but a fundamental transformation in how knowledge is gathered, analyzed, and applied. Unlike traditional AI systems, which require constant input and supervision, AI research agents function more like dynamic research assistants. They adapt their approach based on outcomes, handle vast quantities of data, and generate actionable insights with remarkable precision. Key Differentiator: These agents leverage advanced Retrieval Augmented Generation (RAG) technology, ensuring accuracy by pulling verified data from trusted sources. Equipped with anti-hallucination algorithms, they maintain factual integrity while citing their sources—making them indispensable for high-stakes research. The Technology Behind AI Research Agents AI research agents stand out due to their ability to: For example, an AI agent can deliver a detailed research report in 30 minutes, a task that might take a human team days. Why AI Research Agents Matter Now The timing couldn’t be more critical. The volume of data generated daily is overwhelming, and human researchers often struggle to keep up. Meanwhile, Google’s focus on Experience, Expertise, Authoritativeness, and Trustworthiness (EEAT) has heightened the demand for accurate, well-researched content. Some research teams have already reported time savings of up to 70% by integrating AI agents into their workflows. Beyond speed, these agents uncover perspectives and connections often overlooked by human researchers, adding significant value to the final output. Top 3 Free AI Research Tools 1. Stanford STORM Overview: STORM (Synthesis of Topic Outlines through Retrieval and Multi-perspective Question Asking) is an open-source system designed to generate comprehensive, Wikipedia-style articles. Learn more: Visit the STORM GitHub repository. 2. CustomGPT.ai Researcher Overview: CustomGPT.ai creates highly accurate, SEO-optimized long-form articles using deep Google research or proprietary databases. Learn more: Access the free Streamlit app for CustomGPT.ai. 3. GPT Researcher Overview: This open-source agent conducts thorough research tasks, pulling data from both web and local sources to produce customized reports. Learn more: Visit the GPT Researcher GitHub repository. The Human-AI Partnership Despite their capabilities, AI research agents are not replacements for human researchers. Instead, they act as powerful assistants, enabling researchers to focus on creative problem-solving and strategic thinking. Think of them as tireless collaborators, processing vast amounts of data while humans interpret and apply the findings to solve complex challenges. Preparing for the AI Research Revolution To harness the potential of AI research agents, researchers must adapt. Universities and organizations are already incorporating AI training into their programs to prepare the next generation of professionals. For smaller labs and institutions, these tools present a unique opportunity to level the playing field, democratizing access to high-quality research capabilities. Looking Ahead By 2025, AI research agents will likely reshape the research landscape, enabling cross-disciplinary breakthroughs and empowering researchers worldwide. From small teams to global enterprises, the benefits are immense—faster insights, deeper analysis, and unprecedented innovation. As with any transformative technology, challenges remain. But the potential to address some of humanity’s biggest problems makes this an AI revolution worth embracing. Now is the time to prepare and make the most of these groundbreaking tools. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Salesforce CPQ Check Up

Salesforce CPQ Check Up

A Salesforce CPQ Check Up is a comprehensive review of your system’s configuration and performance. It assesses how well your CPQ solution integrates with your business processes, highlighting any gaps hindering your sales efforts. From pricing rules to approval processes, a health check ensures seamless functionality and equips your sales reps with the tools they need to succeed.

Read More
Pioneering AI-Driven Customer Engagement

Pioneering AI-Driven Customer Engagement

With Salesforce at the forefront of the AI revolution, Agentforce, introduced at Dreamforce, represents the next phase in customer service automation. It integrates AI and human collaboration to automate repetitive tasks, freeing human talent for more strategic activities, ultimately improving customer satisfaction. Tallapragada emphasized how this AI-powered tool enables businesses, particularly in the Middle East, to scale operations and enhance efficiency, aligning with the region’s appetite for growth and innovation.

Read More

Customization and Configuration in Salesforce

Salesforce Customization vs. Configuration: Choosing the Right Approach for Your Business Salesforce has become a top choice for businesses aiming to strengthen customer relationships and achieve their goals. Its flexibility to adapt to diverse needs through customization and configuration makes it stand out. While both approaches aim to tailor your Salesforce Org to meet specific business requirements, they differ in methodology and use cases. This insight will help you understand their differences and provide insights into when and how to choose between them. Let’s get the insight! What is Salesforce Customization? Salesforce customization involves enhancing your Salesforce Org by introducing tailored features, functionalities, and applications through coding. It goes beyond the out-of-the-box capabilities, enabling you to extend your platform to meet unique and complex business requirements. This approach requires expertise from a Salesforce developer who leverages tools such as Apex, Lightning Components, and the Salesforce Code Builder to create custom solutions. Examples of Customization: What is Salesforce Configuration? Salesforce configuration refers to adapting Salesforce’s native features to meet business needs without modifying the underlying code. By using tools such as drag-and-drop builders, configuration allows users—even those without technical expertise—to optimize the platform’s functionality. Examples of Configuration: Key Differences Between Customization and Configuration Basis Customization Configuration Level of Personalization High personalization, tailored to unique needs Limited to Salesforce’s native capabilities Implementation Requires coding expertise and detailed development Simpler, relies on drag-and-drop tools Time to Deploy Longer development cycles Faster implementation and deployment Maintenance Can require ongoing updates and compatibility adjustments during Salesforce upgrades Easier to maintain, as it aligns with standard platform updates Cost Higher costs due to skilled developer involvement Cost-effective; can be handled by in-house admins Risk Higher risks due to potential code conflicts or errors Lower risks, but over-configuration can lead to complexity Best Practices for Customization and Configuration Choosing the Right Approach The decision to opt for customization or configuration depends on factors like business requirements, budget, timeline, and project complexity. Sometimes, a hybrid approach that combines customization and configuration is the best solution, providing flexibility while optimizing costs and implementation speed. Why Partner with Salesforce Experts? Partnering with experienced Salesforce consultants at Tectonic ensures your Org is tailored to meet your specific business needs. They analyze your workflows, processes, and challenges to recommend the most effective approach—whether it’s customization, configuration, or a blend of both. At Tectonic, our team of 200+ Salesforce experts specializes in delivering tailored solutions that maximize ROI. From development to ongoing maintenance, we ensure your Salesforce Org aligns with your long-term goals. Ready to transform your Salesforce platform? Let’s discuss how we can help. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com