Chatbots - gettectonic.com - Page 2
AI and Disability

AI and Disability

Dr. Johnathan Flowers of American University recently sparked a conversation on Bluesky regarding a statement from the organizers of NaNoWriMo, which endorsed the use of generative AI technologies, such as LLM chatbots, in this year’s event. Dr. Flowers expressed concern about the implication that AI assistance was necessary for accessibility, arguing that it could undermine the creativity and agency of individuals with disabilities. He believes that art often serves as a unique space where barriers imposed by disability can be transcended without relying on external help or engaging in forced intimacy. For Dr. Flowers, suggesting the need for AI support may inadvertently diminish the perceived capabilities of disabled and marginalized artists. Since the announcement, NaNoWriMo organizers have revised their stance in response to criticism, though much of the social media discussion has become unproductive. In earlier discussions, the author has explored the implications of generative AI in art, focusing on the human connection that art typically fosters, which AI-generated content may not fully replicate. However, they now wish to address the role of AI as a tool for accessibility. Not being personally affected by physical disability, the author approaches this topic from a social scientific perspective. They acknowledge that the views expressed are personal and not representative of any particular community or organization. Defining AI In a recent presentation, the author offered a new definition of AI, drawing from contemporary regulatory and policy discussions: AI: The application of specific forms of machine learning to perform tasks that would otherwise require human labor. This definition is intentionally broad, encompassing not just generative AI but also other machine learning applications aimed at automating tasks. AI as an Accessibility Tool AI has potential to enhance autonomy and independence for individuals with disabilities, paralleling technological advancements seen in fields like the Paris Paralympics. However, the author is keen to explore what unique benefits AI offers and what risks might arise. Benefits Risks AI and Disability The author acknowledges that this overview touches only on some key issues related to AI and disability. It is crucial for those working in machine learning to be aware of these dynamics, striving to balance benefits with potential risks and ensuring equitable access to technological advancements. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI FOMO

AI FOMO

Enterprise interest in artificial intelligence has surged in the past two years, with boardroom discussions centered on how to capitalize on AI advancements before competitors do. Generative AI has been a particular focus for executives since the launch of ChatGPT in November 2022, followed by other major product releases like Amazon’s Bedrock, Google’s Gemini, Meta’s Llama, and a host of SaaS tools incorporating the technology. However, the initial rush driven by fear of missing out (FOMO) is beginning to fade. Business and tech leaders are now shifting their attention from experimentation to more practical concerns: How can AI generate revenue? This question will grow in importance as pilot AI projects move into production, raising expectations for financial returns. Using AI to Increase Revenue AI’s potential to drive revenue will be a critical factor in determining how quickly organizations adopt the technology and how willing they are to invest further. Here are 10 ways businesses can harness AI to boost revenue: 1. Boost Sales AI-powered virtual assistants and chatbots can help increase sales. For example, Ikea’s generative AI tool assists customers in designing their living spaces while shopping for furniture. Similarly, jewelry insurance company BriteCo launched a GenAI chatbot that reduced chat abandonment rates, leading to more successful customer interactions and potentially higher sales. A TechTarget survey revealed that AI-powered customer-facing tools like chatbots are among the top investments for IT leaders. 2. Reduce Customer Churn AI helps businesses retain clients, reducing revenue loss and improving customer lifetime value. By analyzing historical data, AI can profile customer attributes and identify accounts at risk of leaving. AI can then assist in personalizing customer experiences, decreasing churn and fostering loyalty. 3. Enhance Recommendation Engines AI algorithms can analyze customer data to offer personalized product recommendations. This drives cross-selling and upselling opportunities, boosting revenue. For instance, Meta’s AI-powered recommendation engine has increased user engagement across its platforms, attracting more advertisers. 4. Accelerate Marketing Strategies While marketing doesn’t directly generate revenue, it fuels the sales pipeline. Generative AI can quickly produce personalized content, such as newsletters and ads, tailored to customer interests. Gartner predicts that by 2025, 30% of outbound marketing messages will be AI-generated, up from less than 2% in 2022. 5. Detect Fraud AI is instrumental in detecting fraudulent activities, helping businesses preserve revenue. Financial firms like Capital One use machine learning to detect anomalies and prevent credit card fraud, while e-commerce companies leverage AI to flag fraudulent orders. 6. Reinvent Business Processes AI can transform entire business processes, unlocking new revenue streams. For example, Accenture’s 2024 report highlighted an insurance company that expects a 10% revenue boost after retooling its underwriting workflow with AI. In healthcare, AI could streamline revenue cycle management, speeding up reimbursement processes. 7. Develop New Products and Services AI accelerates product development, particularly in industries like pharmaceuticals, where it assists in drug discovery. AI tools also speed up the delivery of digital products, as seen with companies like Ally Financial and ServiceNow, which have reduced software development times by 20% or more. 8. Provide Predictive Maintenance AI-driven predictive maintenance helps prevent costly equipment downtime in industries like manufacturing and fleet management. By identifying equipment on the brink of failure, AI allows companies to schedule repairs and avoid revenue loss from operational disruptions. 9. Improve Forecasting AI’s predictive capabilities enhance planning and forecasting. By analyzing historical and real-time data, AI can predict product demand and customer behavior, enabling businesses to optimize inventory levels and ensure product availability for ready-to-buy customers. 10. Optimize Pricing AI can dynamically adjust prices based on factors like demand shifts and competitor pricing. Reinforcement learning algorithms allow businesses to optimize pricing in real time, ensuring they maximize revenue even as market conditions change. Keeping ROI in Focus While AI offers numerous ways to generate new revenue streams, it also introduces costs in development, infrastructure, and operations—some of which may not be immediately apparent. For instance, research from McKinsey & Company shows that GenAI models account for only 15% of a project’s total cost, with additional expenses related to change management and data preparation often overlooked. To make the most of AI, organizations should prioritize use cases with a clear return on investment (ROI) and postpone those that don’t justify the expense. A focus on ROI ensures that AI deployments align with business goals and contribute to sustainable revenue growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Innovation at Salesforce

AI Innovation at Salesforce

AI innovation is advancing at an unprecedented pace, unlike anything I’ve seen in nearly 25 years at Salesforce. It’s now a top priority for every CEO, CTO, and CIO I speak with. As a trusted partner, we help customers innovate, iterate, and navigate the evolving AI landscape. They recognize AI’s immense potential to revolutionize every aspect of business, across all industries. While they’re already seeing significant advancements, we are still just scratching the surface of AI’s full transformational promise. They seek AI technologies that will enhance productivity, augment employee performance at scale, improve customer relationships, and ultimately drive rapid time to value and higher margins. That’s where our new Agentforce Platform comes in. Agentforce represents a breakthrough in AI, delivering on the promise of autonomous AI agents. These agents perform advanced planning and decision-making with minimal human input, automating entire workflows, making real-time decisions, and adapting to new information—all without requiring human intervention. Salesforce customers are embracing Agentforce and integrating it with other products, including Einstein AI, Data Cloud, Sales Cloud, and Service Cloud. Here are some exciting ways our customers are utilizing these tools: Strengthening Customer Relationships with AI Agents OpenTable is leveraging autonomous AI agents to handle the massive scale of its operations, supporting 60,000 restaurants and millions of diners. By piloting Agentforce for Service, they’ve automated common tasks like account reactivations, reservation management, and loyalty point expiration. The AI agents even answer complex follow-up questions, such as “when do my points expire in Mexico?”—a real “wow” moment for OpenTable. These agents are redefining how customers engage with companies. Wiley, an educational publisher, faces a seasonal surge in service requests each school year. By piloting Agentforce Service Agent, they increased case resolution by 40-50% and sped up new agent onboarding by 50%, outperforming their previous systems. Harnessing Data Insights The Adecco Group, a global leader in talent solutions, wanted to unlock insights from its vast data reserves. Using Data Cloud, they’re connecting multiple Salesforce instances to give 27,000 recruiters and sales staff real-time, 360-degree views of their operations. This empowers Adecco to improve job fill rates and streamline operations for some of the world’s largest companies. Workday, a Salesforce customer for nearly two decades, uses Service Cloud to power customer service and Slack for internal collaboration. Our new partnership with Workday will integrate Agentforce with their platform, creating a seamless employee experience across Salesforce, Slack, and Workday. This includes AI-powered employee service agents accessible across all platforms. Wyndham Resorts is transforming its guest experience by using Data Cloud to harmonize CRM data across Sales Cloud, Marketing Cloud, and Service Cloud. By consolidating their systems, Wyndham anticipates a 30% reduction in call resolution time and an overall enhanced customer experience through better access to accurate guest and property data. Empowering Employees Air India, with ambitions to capture 30% of India’s airline market, is using Data Cloud, Service Cloud, and Einstein AI to unify data across merged airlines and enhance customer service. Now, human agents spend more time with customers while AI handles routine tasks, resulting in faster resolution of 550,000 monthly service calls. Heathrow Airport is focused on improving employee efficiency and personalizing passenger experiences. Service Cloud and Einstein chatbots have significantly reduced call volumes, with chatbots answering 4,000 questions monthly. Since launching, live chat usage has surged 450%, and average call times have dropped 27%. These improvements have boosted Heathrow’s digital revenue by 30% since 2019. Driving Productivity and Margins Aston Martin sought to improve customer understanding and dealer collaboration. By adopting Data Cloud, they unified their customer data, reducing redundancy by 52% and transitioning from six data systems to one, streamlining operations. Autodesk, a leader in 3D design and engineering software, uses Einstein for Service to generate AI-driven case summaries, cutting the time spent summarizing customer chats by 63%. They also use Salesforce to enhance data security, reducing ongoing maintenance by 30%. Creating a Bright Future for Our Customers For over 25 years, Salesforce has guided customers through transformative technological shifts. The fusion of AI and human intelligence is the most profound shift we’ve seen, unlocking limitless potential for business success. Join them at Dreamforce next month, where we’ll celebrate customer achievements and share the latest innovations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agents and Digital Transformation

Ready for AI Agents

Brands that can effectively integrate agentic AI into their operations stand to gain a significant competitive edge. But as with any innovation, success will depend on balancing the promise of automation with the complexities of trust, privacy, and user experience.

Read More
AI Agents and Digital Transformation

AI Agents and Digital Transformation

In the rapidly developingng world of technology, Artificial Intelligence (AI) is revolutionizing industries and reshaping how we interact with digital systems. One of the most promising advancements within AI is the development of AI agents. These intelligent entities, often powered by Large Language Models (LLMs), are driving the next wave of digital transformation by enabling automation, personalization, and enhanced decision-making across various sectors. AI Agents and digital transformation are here to stay. What is an AI Agent? An AI agent, or intelligent agent, is a software entity capable of perceiving its environment, reasoning about its actions, and autonomously working toward specific goals. These agents mimic human-like behavior using advanced algorithms, data processing, and machine-learning models to interact with users and complete tasks. LLMs to AI Agents — An Evolution The evolution of AI agents is closely tied to the rise of Large Language Models (LLMs). Models like GPT (Generative Pre-trained Transformer) have showcased remarkable abilities to understand and generate human-like text. This development has enabled AI agents to interpret complex language inputs, facilitating advanced interactions with users. Key Capabilities of LLM-Based Agents LLM-powered agents possess several key advantages: Two Major Types of LLM Agents LLM agents are classified into two main categories: Multi-Agent Systems (MAS) A Multi-Agent System (MAS) is a group of autonomous agents working together to achieve shared goals or solve complex problems. MAS applications span robotics, economics, and distributed computing, where agents interact to optimize processes. AI Agent Architecture and Key Elements AI agents generally follow a modular architecture comprising: Learning Strategies for LLM-Based Agents AI agents utilize various learning techniques, including supervised, reinforcement, and self-supervised learning, to adapt and improve their performance in dynamic environments. How Autonomous AI Agents Operate Autonomous AI agents act independently of human intervention by perceiving their surroundings, reasoning through possible actions, and making decisions autonomously to achieve set goals. AI Agents’ Transformative Power Across Industries AI agents are transforming numerous industries by automating tasks, enhancing efficiency, and providing data-driven insights. Here’s a look at some key use cases: Platforms Powering AI Agents The Benefits of AI Agents and Digital Transformation AI agents offer several advantages, including: The Future of AI Agents The potential of AI agents is immense, and as AI technology advances, we can expect more sophisticated agents capable of complex reasoning, adaptive learning, and deeper integration into everyday tasks. The future promises a world where AI agents collaborate with humans to drive innovation, enhance efficiency, and unlock new opportunities for growth in the digital age. AI Agents and Digital Transformation By partnering with AI development specialists at Tectonic, organizations can access cutting-edge solutions tailored to their needs, positioning themselves to stay ahead in the rapidly evolving AI-driven market. Agentforce Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Data Labeling

Data Labeling

Data Labeling: Essential for Machine Learning and AI Data labeling is the process of identifying and tagging data samples, essential for training machine learning (ML) models. While it can be done manually, software often assists in automating the process. Data labeling is critical for helping machine learning models make accurate predictions and is widely used in fields like computer vision, natural language processing (NLP), and speech recognition. How Data Labeling Works The process begins with collecting raw data, such as images or text, which is then annotated with specific labels to provide context for ML models. These labels need to be precise, informative, and independent to ensure high-quality model training. For instance, in computer vision, data labeling can tag images of animals so that the model can learn common features and correctly identify animals in new, unlabeled data. Similarly, in autonomous vehicles, labeling helps the AI differentiate between pedestrians, cars, and other objects, ensuring safe navigation. Why Data Labeling is Important Data labeling is integral to supervised learning, a type of machine learning where models are trained on labeled data. Through labeled examples, the model learns the relationships between input data and the desired output, which improves its accuracy in real-world applications. For example, a machine learning algorithm trained on labeled emails can classify future emails as spam or not based on those labels. It’s also used in more advanced applications like self-driving cars, where the model needs to understand its surroundings by recognizing and labeling various objects like roads, signs, and obstacles. Applications of Data Labeling The Data Labeling Process Data labeling involves several key steps: Errors in labeling can negatively affect the model’s performance, so many organizations adopt a human-in-the-loop approach to involve people in quality control and improve the accuracy of labels. Data Labeling vs. Data Classification vs. Data Annotation Types of Data Labeling Benefits and Challenges Benefits: Challenges: Methods of Data Labeling Companies can label data through various methods: Each organization must choose a method that fits its needs, based on factors like data volume, staff expertise, and budget. The Growing Importance of Data Labeling As AI and ML become more pervasive, the need for high-quality data labeling increases. Data labeling not only helps train models but also provides opportunities for new jobs in the AI ecosystem. For instance, companies like Alibaba, Amazon, Facebook, Tesla, and Waymo all rely on data labeling for applications ranging from e-commerce recommendations to autonomous driving. Looking Ahead Data tools are becoming more sophisticated, reducing the need for manual work while ensuring higher data quality. As data privacy regulations tighten, businesses must also ensure that labeling practices comply with local, state, and federal laws. In conclusion, labeling is a crucial step in building effective machine learning models, driving innovation, and ensuring that AI systems perform accurately across a wide range of applications. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Third Wave of AI at Salesforce

Third Wave of AI at Salesforce

The Third Wave of AI at Salesforce: How Agentforce is Transforming the Landscape At Dreamforce 2024, Salesforce unveiled several exciting innovations, with Agentforce taking center stage. This post explores the key changes and enhancements designed to improve efficiency and elevate customer interactions. Introducing Agentforce Agentforce is a customizable AI agent builder that empowers organizations to create and manage autonomous agents for various business tasks. But what exactly is an agent? An agent is akin to a chatbot but goes beyond traditional capabilities. While typical chatbots are restricted to scripted responses and predefined questions, Agentforce agents leverage large language models (LLMs) and generative AI to comprehend customer inquiries contextually. This enables them to make independent decisions, whether processing requests or resolving issues using real-time data from your company’s customer relationship management (CRM) system. The Role of Atlas At the heart of Agentforce’s functionality lies the Atlas reasoning engine, which acts as the operational brain. Unlike standard assistive tools, Atlas is an agentic system with the autonomy to act on behalf of the user. Atlas formulates a plan based on necessary actions and can adjust that plan based on evaluations or new information. When it’s time to engage, Atlas knows which business processes to activate and connects with customers or employees via their preferred channels. This sophisticated approach allows Agentforce to significantly enhance operational efficiency. By automating routine inquiries, it frees up your team to focus on more complex tasks, delivering a smoother experience for both staff and customers. Speed to Value One of Agentforce’s standout features is its emphasis on rapid implementation. Many AI projects can be resource-intensive and take months or even years to launch. However, Agentforce enables quick deployment by leveraging existing Salesforce infrastructure, allowing organizations to implement solutions rapidly and with greater control. Salesforce also offers pre-built Agentforce agents tailored to specific business needs—such as Service Agent, Sales Development Representative Agent, Sales Coach, Personal Shopper Agent, and Campaign Agent—all customizable with the Agent Builder. Agentforce for Service and Sales will be generally available starting October 25, 2024, with certain elements of the Atlas Reasoning Engine rolling out in February 2025. Pricing begins at $2 per conversation, with volume discounts available. Transforming Customer Insights with Data Cloud and Marketing Cloud Dreamforce also highlighted enhancements to Data Cloud, Salesforce’s backbone for all cloud products. The platform now supports processing unstructured data, which constitutes up to 90% of company data often overlooked by traditional reporting systems. With new capabilities for analyzing various unstructured formats—like video, audio, sales demos, customer service calls, and voicemails—businesses can derive valuable insights and make informed decisions across Customer 360. Furthermore, Data Cloud One enables organizations to connect siloed Salesforce instances effortlessly, promoting seamless data sharing through a no-code, point-and-click setup. The newly announced Marketing Cloud Advanced edition serves as the “big sister” to Marketing Cloud Growth, equipping larger marketing teams with enhanced features like Path Experiment, which tests different content strategies across channels, and Einstein Engagement Scoring for deeper insights into customer behavior. Together, these enhancements empower companies to engage customers more meaningfully and measurably across all touchpoints. Empowering the Workforce Through Education Salesforce is committed to making AI accessible for all. They recently announced free instructor-led courses and AI certifications available through 2025, aimed at equipping the Salesforce community with essential AI and data management skills. To support this initiative, Salesforce is establishing AI centers in major cities, starting with London, to provide hands-on training and resources, fostering AI expertise. They also launched a global Agentforce World Tour to promote understanding and adoption of the new capabilities introduced at Dreamforce, featuring repackaged sessions from the conference and opportunities for specialists to answer questions. The Bottom Line What does this mean for businesses? With the rollout of Agentforce, along with enhancements to Data Cloud and Marketing Cloud, organizations can operate more efficiently and connect with customers in more meaningful ways. Coupled with a focus on education through free courses and global outreach, getting on board has never been easier. If you’d like to discuss how we can help your business maximize its potential with Salesforce through data and AI, connect with us and schedule a meeting with our team. Legacy systems can create significant gaps between operations and employee needs, slowing lead processes and resulting in siloed, out-of-sync data that hampers business efficiency. Responding to inquiries within five minutes offers a 75% chance of converting leads into customers, emphasizing the need for rapid, effective marketing responses. Salesforce aims to help customers strengthen relationships, enhance productivity, and boost margins through its premier AI CRM for sales, service, marketing, and commerce, while also achieving these goals internally. Recognizing the complexity of its decade-old processes, including lead assignment across three systems and 2 million lines of custom code, Salesforce took on the role of “customer zero,” leveraging Data Cloud to create a unified view of customers known as the “Customer 360 Truth Profile.” This consolidation of disparate data laid the groundwork for enterprise-wide AI and automation, improving marketing automation and reducing lead time by 98%. As Michael Andrew, SVP of Marketing Decision Science at Salesforce, noted, this initiative enabled the company to provide high-quality leads to its sales team with enriched data and AI scoring while accelerating time to market and enhancing data quality. Embracing Customer Zero “Almost exactly a year ago, we set out with a beginner’s mind to transform our lead automation process with a solution that would send the best leads to the right sales teams within minutes of capturing their data and support us for the next decade,” said Andrew. The initial success metric was “speed to lead,” aiming to reduce the handoff time from 20 minutes to less than one minute. The focus was also on integrating customer and lead data to develop a more comprehensive 360-degree profile for each prospect, enhancing lead assignment and sales rep productivity. Another objective was to boost business agility by cutting the average time to implement assignment changes from four weeks to mere days. Accelerating Success with

Read More
AI Agents, Tech's Next Big Bet

AI Agents, Tech’s Next Big Bet

What Marketers Need to Know About AI Agents, Tech’s Next Big Bet Companies like Salesforce and OpenAI are making significant investments in AI agents, which are digital assistants poised to represent the next evolution of artificial intelligence. These agents promise to autonomously handle a variety of tasks, from making reservations to negotiating business deals. During OpenAI’s DevDay event in San Francisco last week, the company showcased a voice bot that successfully ordered 400 chocolate-covered strawberries from a local delivery service, specifying delivery and payment terms with minimal issues. OpenAI CEO Sam Altman stated, “2025 is when agents will work,” highlighting the potential for these technologies to revolutionize workflows. While this may seem futuristic, companies like Salesforce, HubSpot, and Pactum AI are already implementing their own AI agents, though examples from brands like Qantas Airways remain relatively scarce—a point of discussion at Advertising Week New York. What Are AI Agents? AI agents extend beyond mere chatbots. According to Parasvil Patel, a partner at Radical Ventures, they lack a single unifying definition and encompass a wide range of functionalities, from automating workflows to scheduling meetings. The overarching goal, however, is clear: “The ultimate aim is to execute work autonomously,” Patel explained. Currently, AI agents are in the “co-pilot” phase, handling specific tasks such as summarizing meetings. The true breakthrough will occur when they transition to “autopilot,” managing more complex tasks without human intervention. According to Patel, this shift could take up to 24 months. When Did They Emerge? AI agents first gained attention on social media in early 2023, with various startups, including AutoGPT—an open-source application built on OpenAI’s models—promising autonomous capabilities. However, Patel notes that many of these early experiments were not robust enough to be deployed effectively in production environments. How Are Companies Using AI Agents? The appeal of AI agents lies in their ability to save time, enhance efficiency, and free employees from repetitive tasks. For instance, a large distribution company struggling to manage 100,000 suppliers utilized Pactum’s AI, which deploys autonomous agents for negotiations. Instead of seeing negotiations as a dead end, these AI agents continuously customized payment deals based on the speed of suppliers’ goods. This approach led to price discounts, rebates, and allowances. Salesforce has also seen positive results with its AI agents. Its pilot program, AgentForce, launched with five clients—including OpenTable and global publisher Wiley—and achieved a 40% increase in case resolution compared to its previous chatbot for Wiley. At the firm’s Dreamforce event, Salesforce demonstrated AgentForce with Ask Astro, assisting attendees in planning their schedules by suggesting sessions and making reservations. Salesforce’s chief marketing officer, Ariel Kelman, stated that the company has heavily invested in developing its AI agent platform in response to client demand. “What companies are figuring out with generative AI is how to deliver productivity improvements for employees and provide meaningful interactions with customers,” he noted. What About Roadblocks? The journey to fully functional AI agents is not without challenges. Managing different data formats—text, images, and videos—can be complex, as highlighted by William Chen, director of product management for AI & emerging tech at Agora. “Your system is only as good as your data source,” he said. For Salesforce, the challenge lies in the nascent customer adoption of AI agents, with companies just beginning to explore how to leverage them for productivity, according to Kelman. The key challenge is determining what solutions work best for employees and customers across various use cases. Are Jobs at Risk? Not necessarily. AI agents are unlikely to replace jobs in the immediate future. Instead, they allow employees to focus on more strategic and meaningful tasks. Rand explained, “The role of people will shift to configuring the autopilot, rather than flying the plane, which is a positive change.” For example, a major logistics client of Pactum, which previously relied on human negotiators for managing deals with freight providers, can now use AI agents to negotiate more efficiently. This adaptability allows companies to dynamically shift their business strategies based on market conditions. What’s Next? While early adopters of AI agents are seeing initial successes, there’s much more to discover. Salesforce plans to launch its next AI agent later this month: a Sales Development Representative (SDR) designed to manage early-stage sales interactions. Typically, human SDRs follow up on marketing leads through emails and calls, but this AI agent will qualify leads, providing human salespeople with a targeted list of 50 to 100 prospects eager to engage. “Instead of receiving a list of 500 leads, they’ll get a refined list of those who actually want to talk,” Kelman concluded. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Autonomous Agents on the Agentforce Platform

Autonomous Agents on the Agentforce Platform

In early September, Salesforce introduced its latest innovation: Salesforce Agentforce. This AI-powered suite is part of Salesforce’s expanding portfolio aimed at enhancing efficiency and streamlining business operations. Autonomous Agents on the Agentforce Platform are here. What is Salesforce Agentforce? Salesforce Agentforce is a platform designed to build autonomous AI agents, allowing businesses to manage critical tasks without requiring human involvement. What are Autonomous Agents on the Agentforce Platform ? Autonomous AI Service AgentsAn AI agent is an intelligent assistant that autonomously handles customer service and sales functions. These agents operate continuously, addressing basic queries without needing complex dialog systems, Natural Language Processing (NLP), or pre-configured workflows. Autonomous Agents on the Agentforce Platform Agentforce Service Agent The Agentforce Service Agent is an AI-powered customer support assistant that delivers autonomous, natural service. Unlike traditional chatbots, these generative AI agents provide brand-aligned responses while handling tasks, making decisions, and operating around the clock across self-service portals and messaging channels. Key Benefits of Agentforce Service Agent: Agentforce SDR Agent The Agentforce SDR Agent is designed to help businesses engage and qualify inbound leads. It manages prospect inquiries, addresses objections, and leverages customer insights to schedule meetings with the appropriate sales representatives. Key Benefits of Agentforce SDR Agent: Agentforce is Already Delivering Results! As a premier pilot partner for Salesforce we has been working with customers to implement Agentforce, generating rapid success. Stay tuned for more exciting updates and opportunities with Agentforce! Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Revolution Customer Service with Agentforce

Revolution Customer Service with Agentforce

Agentforce stole the spotlight at Dreamforce, but it’s not just about replacing human workers. Equally significant for Service Cloud was the focus on how AI can be leveraged to make agents, dispatchers, and field service technicians more productive and proactive. Join a conversation to unpack the latest Sales Cloud innovations, with a spotlight on Agentforce for sales followed by a Q&A with Salesblazers. During the Dreamforce Service Cloud keynote, GM Kishan Chetan emphasized the dramatic shift over the past year, with AI moving from theoretical to practical applications. He challenged customer service leaders to embrace AI agents, highlighting that AI-driven solutions can transform customer service from delivering “good” benefits to achieving exponential growth. He noted that AI agents are capable of handling common customer requests like tech support, scheduling, and general inquiries, as well as more complex tasks such as de-escalation, billing inquiries, and even cross-selling and upselling. In practice, research by Valoir shows that most Service Cloud customers are still in the early stages of AI adoption, particularly with generative AI. While progress has accelerated recently, most companies are only seeing incremental gains in individual productivity rather than the exponential improvements highlighted at Dreamforce. To achieve those higher-level returns, customers must move beyond simple automation and summarization to AI-driven transformation, powered by Agentforce. Chetan and his team outlined four key steps to make this transition. “Agentforce represents the Third Wave of AI—advancing beyond copilots to a new era of highly accurate, low-hallucination intelligent agents that actively drive customer success. Unlike other platforms, Agentforce is a revolutionary and trusted solution that seamlessly integrates AI across every workflow, embedding itself deeply into the heart of the customer journey. This means anticipating needs, strengthening relationships, driving growth, and taking proactive action at every touchpoint,” said Marc Benioff, Chair and CEO, Salesforce. “While others require you to DIY your AI, Agentforce offers a fully tailored, enterprise-ready platform designed for immediate impact and scalability. With advanced security features, compliance with industry standards, and unmatched flexibility. Our vision is bold: to empower one billion agents with Agentforce by the end of 2025. This is what AI is meant to be.” In contrast to now-outdated copilots and chatbots that rely on human requests and strugglewith complex or multi-step tasks, Agentforce offers a new level of sophistication by operating autonomously, retrieving the right data on demand, building action plans for any task, and executing these plans without requiring human intervention. Like a self-driving car, Agentforce uses real-time data to adapt to changing conditions and operates independently within an organizations’ customized guardrails, ensuring every customer interaction is informed, relevant, and valuable. And when desired, Agentforce seamlessly hands off to human employees with a summary of the interaction, an overview of the customer’s details, and recommendations for what to do next. Deploy AI agents across channelsAgentforce Service Agent is more than a chatbot—it’s an autonomous AI agent capable of handling both simple and complex requests, understanding text, video, and audio. Customers were invited to build their own Service Agents during Dreamforce, and many took up the challenge. Service-related agents are a natural fit, as research shows Service Cloud customers are generally more prepared for AI adoption due to the volume and quality of customer data available in their CRM systems. Turn insights into actionLaunching in October 2024, Customer Experience Intelligence provides an omnichannel supervisor Wall Board that allows supervisors to monitor conversations in real time, complete with sentiment scores and organized metrics by topics and regions. Supervisors can then instruct Service Agent to dive into root causes, suggest proactive messaging, or even offer discounts. This development represents the next stage of Service Intelligence, combining Data Cloud, Tableau, and Einstein Conversation Mining to give supervisors real-time insights. It mirrors capabilities offered by traditional contact center vendors like Verint, which also blend interaction, sentiment, and other data in real time—highlighting the convergence of contact centers and Service Cloud service operations. Empower teams to become trusted advisorsSalesforce continues to navigate the delicate balance between digital and human agents, especially within Service Cloud. The key lies in the intelligent handoff of customer data when escalating from a digital agent to a human agent. Service Planner guides agents step-by-step through issue resolution, powered by Unified Knowledge. The demo also showcased how Service Agent can merge Commerce and Service by suggesting agents offer complimentary items from a customer’s shopping cart. Enable field teams to be proactiveSalesforce also announced improvements in field service, designed to help dispatchers and field service agents operate more proactively and efficiently. Agentforce for Dispatchers enhances the ability to address urgent appointments quickly. Asset Service Prediction leverages AI to forecast asset failures and upcoming service needs, while AI-generated prework briefs provide field techs with asset health scores and critical information before they arrive on site. Setting a clear roadmap for adopting Agentforce across these four areas is an essential step toward helping customers realize more than just incremental gains in their service operations. Equally important will be helping customers develop a data strategy that harnesses the power of Data Cloud and Salesforce’s partner ecosystem, enabling a truly data-driven service experience. Investments in capabilities like My Service Journeys will also be critical in guiding customers through the process of identifying which AI features will deliver the greatest returns for their specific needs. Agentforce leverages Salesforce’s generative AI, like Einstein GPT, to automate routine tasks, provide real-time insights, and offer personalized recommendations, enhancing efficiency and enabling agents to deliver exceptional customer experiences. Agentforce is not just another traditional chatbot; it is a next-generation, AI-powered solution that understands complex queries and acts autonomously to enhance operational efficiency. Unlike conventional chatbots, Agentforce is intelligent and adaptive, capable of managing a wide range of customer issues with precision. It offers 24/7 support, responds in a natural, human-like manner, and seamlessly escalates to human agents when needed and redefining customer service by delivering faster, smarter, and more effective support experiences. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM

Read More
Salesforce Agentforce Integration

Salesforce Agentforce Integration

The rise of AI-powered solutions is transforming customer service, support, and automation. For organizations such as nonprofits, national associations, and large enterprises, delivering seamless customer experiences has become crucial. Salesforce’s Agentforce, a next-generation conversational AI tool, plays a vital role in this transformation. Designed to elevate customer support and interaction, Agentforce provides an intelligent and scalable solution for integrating AI chatbots into content management systems (CMS) like WordPress, Drupal, and HubSpot. Salesforce Agentforce Integration. In this detailed feature review, we will dive into the extensive capabilities of Salesforce Agentforce, analyzing its role as a conversational tool, its technical requirements, and the benefits it provides for nonprofits, national associations, and businesses. We’ll also compare its applications across various CMS platforms like Drupal, WordPress, and HubSpot, exploring its potential as a powerful AI assistant for website automation and customer interaction. Salesforce Agentforce: A Technical Perspective Salesforce Agentforce is an advanced AI-driven conversational assistant that seamlessly integrates into the Salesforce environment. By tapping into Salesforce CRM’s vast data resources, Agentforce serves as an intelligent interface, automating everything from initial customer inquiries to more personalized interactions. Utilizing natural language processing (NLP) and machine learning, it continually refines responses and scales interactions, making it an indispensable tool for organizations aiming to enhance customer service workflows. Agentforce integrates smoothly with Salesforce Service Cloud, automating both live chat support and chatbot responses. Additionally, it can connect with third-party platforms, including popular CMS solutions like WordPress, Drupal, and HubSpot, allowing organizations to centralize customer service operations in one interface. Core Features and Technical Architecture of Agentforce Natural Language Understanding (NLU) and Processing (NLP) Agentforce’s NLP capabilities are its backbone, allowing it to understand complex human language and respond contextually. This empowers it to manage initial inquiries as well as more sophisticated support requests. Agentforce’s NLU also enables it to work across different languages, dialects, and industry-specific terminology, making it particularly valuable for global organizations and national associations serving diverse audiences. Machine Learning for Continuous Improvement Agentforce’s machine learning feature enhances its ability to improve accuracy and understanding over time. Each interaction helps the chatbot evolve, making it more effective at delivering relevant, real-time responses. This model integrates directly with Salesforce’s data infrastructure, giving Agentforce access to historical data and interactions to offer highly personalized, context-aware answers. Deep Integration with Salesforce CRM As a Salesforce-native tool, Agentforce can harness CRM data in ways other AI tools cannot. By accessing customer histories, purchase data, and previous interactions, it creates personalized experiences that build customer trust. Nonprofits and associations can use this data to improve donor or member interactions, offering targeted support and outreach. Agentforce can also be tailored to retrieve specific datasets, such as an individual’s support history or ongoing service case updates. Cross-Platform Flexibility and API Integration Agentforce offers flexible APIs that enable integration with third-party systems, including CMS platforms like WordPress, Drupal, and HubSpot. This flexibility ensures that AI-powered chatbots can be deployed on organizational websites, providing a seamless experience for customers, donors, and members alike. Whether it’s a nonprofit using Drupal or a business on WordPress, Agentforce acts as the central hub for support and engagement, offering fluid interactions on top of your CMS. HubSpot users can further leverage Agentforce’s marketing features to align lead generation with personalized, chat-based interactions. Use Cases for Agentforce in Nonprofits, National Associations, and Businesses Nonprofit Organizations For nonprofits managing donor, volunteer, and beneficiary relationships, Agentforce offers scalable, automated support: National Associations National associations can use Agentforce to handle high volumes of inquiries from members and professionals: Businesses For service-based enterprises, Agentforce is essential for customer service: Salesforce Agentforce and CMS Integration: WordPress, Drupal, and HubSpot WordPress and Salesforce Agentforce Integration For WordPress users, Agentforce offers customizable chatbot widgets that enhance customer engagement, handle ecommerce inquiries, and integrate with WooCommerce for product support. Drupal and Agentforce Integration Drupal’s modular architecture allows Agentforce to automate membership management, provide multilingual support, and distribute content for nonprofits and associations. HubSpot and Agentforce Integration HubSpot users benefit from Agentforce’s ability to automate lead nurturing, sales and marketing workflows, and customer support, all while keeping HubSpot and Salesforce CRM data synchronized. Tectonic and Salesforce Agentforce Integration At Tectonic, we understand that adopting AI-powered solutions like Salesforce Agentforce is only the first step toward delivering exceptional customer experiences. We specialize in crafting, training, and implementing tailored AI chatbot solutions that enhance engagement, streamline processes, and drive growth, all while seamlessly integrating with your current website or mobile app. As a full-service digital strategy firm, Tectonic excels in integrating advanced tools like Salesforce Agentforce into platforms like WordPress, Drupal, and HubSpot, ensuring your automation strategies are executed with precision. From custom chatbot implementations to comprehensive digital strategy services, our team is dedicated to optimizing your website for engagement and lead generation. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI All Grown Up

AI All Grown Up

If you thought Salesforce had fully embraced AI, think again. The company has much more in store. AI All Grown Up and Salesforce is the educator! Alongside the announcement of the new Agentforce platform, Salesforce has teased plans to offer free premium instructor-led courses and AI certifications throughout 2025, reflecting a bold commitment to fostering AI skills and expertise. We’ve talked quite a bit over the last year about the need for AI education, and lo and behold here comes Salesforce to the rescue! AI All Grown Up Ah, they grow up so fast. Once just a baby cradeled in our arms with endless possibilities and potential. It was just like a year or so ago we heard of ChatGPT. Prior to that most people’s main exposure to artificial intelligence was their smart phones, which today we realize weren’t reall that smart. Generative, predictive and agentic AI have barreled down the pipeline increasing our vocabulary, and understanding, of what artificial intelligence can do. From generative content to sounds and images, AI continued to amaze us. Then predictive AI did our calculations faster than we could have imagined. Then agentic AI did nearly everything imaginable. AI All Grown Up. Like a very proud mentor of the process, I want to talk about Salesforce’s major contribution. Addressing the AI Skills Gap: Salesforce’s $50 Million Investment As the veritable plethora of AI tools rapidly expands, Salesforce is taking proactive steps to address the growing AI skills gap by investing $50 million into workforce upskilling initiatives. The company aims to ensure that businesses and individuals are prepared to utilize their new wave of AI tools effectively. While the full details have yet to be released, Salesforce has revealed that its premium AI courses and certifications will be made available for free via Trailhead by the end of 2025. This could mean certifications such as AI Associate and AI Specialist, which currently cost $75 and $200 respectively, may soon be offered at no cost. Gratis. Free, Salesforce has also mentioned “premium instructor-led training,” sparking speculation that AI-focused, instructor-led Trailhead Academy courses could become accessible to everyone in the Salesforce ecosystem. Expanding AI Education with Global AI Centers Salesforce’s AI upskilling push is part of a broader initiative to establish “AI Centers” across the globe. Following the opening of its first center in London in June, Salesforce is planning to launch additional AI hubs in cities like Chicago, Tokyo, Sydney, and even a pop-up center in San Francisco. These centers will host in-person premium courses and serve as gathering spaces for industry experts, partners, and customers. This initiative benefits not only the Salesforce ecosystem by increasing AI knowledge where expertise is scarce, but also aligns with Salesforce’s strategy of bringing AI-driven solutions to market through new products like Copilot Studio, Data Cloud, and the newly launched Agentforce platform. Agentforce: Salesforce’s Third Wave of AI On August 28, 2024, Salesforce introduced Agentforce, a suite of autonomous AI agents that marks a significant leap in how businesses engage with customers. Described as the “Third Wave of AI,” Agentforce goes beyond traditional chatbots, providing intelligent agents capable of driving customer success with minimal human intervention. What is Agentforce? Agentforce is a comprehensive platform designed for organizations to build, customize, and deploy autonomous AI agents across various business functions, such as customer service, sales, marketing, and commerce. These agents operate independently, accessing data, crafting action plans, and executing tasks without needing constant human oversight. It is like Artificial Intelligence just graduated highschool and is off to a world of new adventures and growth opportunities at college or university! Key Features of Agentforce: The Technology Behind Agentforce At the core of Agentforce is the Atlas Reasoning Engine, a system designed to mimic human reasoning. Here’s how it works: Customization Tools: Agent Builder Agentforce provides tools like Agent Builder, a low-code platform for customizing out-of-the-box agents or creating new ones for specific business needs. With this tool, users can: The Agentforce Partner Network Salesforce’s partner ecosystem plays a key role in Agentforce’s versatility, with contributions from companies like AWS, Google, IBM, and Workday. Together, they’ve developed over 20 agent actions available through the Salesforce AppExchange. As proud parents we watch our Artificial Intelligence child venture into the world making friends along the way. Learning social skills. Benefits and Impact of Agentforce Early Adopters and Success Stories Several companies are already benefiting from Agentforce: Availability and Pricing of Salesforce’s AI All Grown Up Agentforce for Service and Sales will be generally available on October 25, 2024, with some components of the Atlas Reasoning Engine launching in February 2025. Pricing starts at $2 per conversation, with volume discounts available. The Future of AI and Work Salesforce’s ambitious vision is to empower one billion AI agents with Agentforce by the end of 2025. This reflects their belief that the future of work will involve a hybrid workforce, where humans and AI agents collaborate to drive customer success. AI All Grown Up and We Couldn’t Be Prouder Our amazing AI child has graduated college and ventured out into the workforce. Agentforce vs. Einstein Bots: What’s the Difference? Conclusion Agentforce represents a major leap forward in AI-powered customer engagement. By providing autonomous, intelligent agents capable of managing complex tasks, Salesforce is positioning itself at the forefront of AI innovation. As businesses continue to explore ways to improve efficiency and customer satisfaction, Agentforce could redefine how organizations interact with customers and streamline their operations. If this is the Third Wave of AI, what will the fourth wave bring? Written by Tectonic’s Solutions Architect, Shannan Hearne Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business

Read More
Generative AI and Patient Engagement

Generative AI and Patient Engagement

The healthcare industry is undergoing a significant digital transformation, with generative AI and chatbots playing a prominent role in various patient engagement applications. Technologies such as online symptom checkers, appointment scheduling, patient navigation tools, medical search engines, and patient portal messaging are prime examples of how AI is enhancing patient-facing interactions. These advancements aim to alleviate staff workload while improving the overall patient experience, according to industry experts. However, even these patient-centric applications face challenges, such as the risk of generating medical misinformation or biased outcomes. As healthcare professionals explore the potential of generative AI and chatbots, they must also implement safeguards to prevent the spread of false information and mitigate disparities in care. Online Symptom Checkers Online symptom checkers allow patients to input their symptoms and receive a list of potential diagnoses, helping them decide the appropriate level of care, whether it’s urgent care or self-care at home. These tools hold promise for improving patient experiences and operational efficiency, reducing unnecessary healthcare visits. For healthcare providers, they help triage patients, ensuring those who need critical care receive it. However, the effectiveness of online symptom checkers is mixed. A 2022 literature review revealed that diagnostic accuracy ranged between 19% and 37.9%, while triage accuracy was higher, between 48.9% and 90%. Patient reception to these tools has been lukewarm as well, with some expressing dissatisfaction with the COVID-19 symptom checkers during the pandemic, mainly when the tools did not emulate human interaction. Moreover, studies have indicated that these tools might exacerbate health inequities, as users tend to be younger, female, and more digitally literate. To mitigate this, developers must ensure that chatbots can communicate in multiple languages, replicate human interactions, and escalate to human providers when needed. Self-Scheduling and Patient Navigation Generative AI and conversational AI have shown promise in addressing lower-level patient inquiries, such as appointment scheduling and navigation, reducing the strain on healthcare staff. AI-driven scheduling systems help fill gaps in navigation by assisting patients with appointment bookings and answering logistical questions, like parking or directions. A December 2023 review noted that AI-optimized patient scheduling reduces provider time burdens and improves patient satisfaction. However, barriers such as health equity, access to broadband, and patient trust must be addressed to ensure effective implementation. While organizations need to ensure these systems are accessible to all, AI is a valuable tool for managing routine patient requests, freeing staff to focus on more complex issues. Online Medical Research AI tools like ChatGPT are expanding on the “Dr. Google” phenomenon, offering patients a way to search for medical information. Despite initial concerns from clinicians about online medical searches, recent studies show that generative AI tools can provide accurate and understandable information. For instance, ChatGPT accurately answered breast cancer screening questions 88% of the time in one 2023 study and offered adequate colonoscopy preparation information in another. However, patients remain cautious about AI-generated medical advice. A 2023 survey revealed that nearly half of respondents were concerned about potential misinformation, and many were unsure about the sources AI tools use. Addressing these concerns by validating source material and providing supplementary educational resources will be crucial for building patient trust. Patient Portal Messaging and Provider Communication Generative AI is also finding its place in patient portal messaging, where it can generate responses to patient inquiries, helping to alleviate clinician burnout. In a 2024 study, AI-generated responses within a patient portal were often indistinguishable from those written by clinicians, requiring human editing in only 58% of cases. While chatbot-generated messages have been found to be more empathetic than those written by overworked providers, it’s important to ensure AI-generated responses are always reviewed by healthcare professionals to catch any potential errors. In addition to patient engagement, generative AI is being used in clinical decision support and ambient documentation, showcasing its potential to improve healthcare efficiency. However, developers and healthcare organizations must remain vigilant about preventing algorithmic bias and other AI-related risks. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Natural Language Processing Explained

Natural Language Processing Explained

What is Natural Language Processing (NLP)? Natural Language Processing (NLP) is a branch of artificial intelligence (AI) that enables computers to interpret, analyze, and generate human language. By leveraging machine learning, computational linguistics, and deep learning, NLP helps machines understand written and spoken words, making communication between humans and computers more seamless. I apologize folks. I am feeling like the unicorn who missed the Ark. Tectonic has been providing you with tons of great material on artificial intelligence, but we left out a basic building block. Without further ado, Natural Language Processing Explained. Like a lot of components of AI, we often are using it without knowing we are using it. NLP is widely used in everyday applications such as: How Does NLP Work? Natural Language Processing combines several techniques, including computational linguistics, machine learning, and deep learning. It works by breaking down language into smaller components, analyzing these components, and then drawing conclusions based on patterns. If you have ever read a first grader’s reading primer it is the same thing. Learn a little three letter word. Recognize the meaning of the word. Understand it in the greater context of the sentence. Key NLP preprocessing steps include: Why Is NLP Important? NLP plays a vital role in automating and improving human-computer interactions by enabling systems to interpret, process, and respond to vast amounts of textual and spoken data. By automating tasks like sentiment analysis, content classification, and question answering, NLP boosts efficiency and accuracy across industries. For example: Key Use Cases of NLP in Business NLP Tasks NLP enables machines to handle various language tasks, including: Approaches to NLP Future of NLP NLP is becoming more integral in daily life as technology improves. From customer service chatbots to medical record summarization, NLP continues to evolve, but challenges remain, including improving coherence and reducing biases in machine-generated text. Essentially, NLP transforms the way machines and humans interact, making technology more intuitive and accessible across a range of industries. By Tectonic Solutions Architect – Shannan Hearne Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Promising Patient Engagement Use Cases for GenAI and Chatbots

Promising Patient Engagement Use Cases for GenAI and Chatbots

Promising Patient Engagement Use Cases for GenAI and Chatbots Generative AI (GenAI) is showing great potential in enhancing patient engagement by easing the burden on healthcare staff and clinicians while streamlining the overall patient experience. As healthcare undergoes its digital transformation, various patient engagement applications for GenAI and chatbots are emerging as promising tools. Let’s look at Promising Patient Engagement Use Cases for GenAI and Chatbots. Key applications of GenAI and patient-facing chatbots include online symptom checkers, appointment scheduling, patient navigation, medical search engines, and even patient portal messaging. These technologies aim to alleviate staff workloads while improving the patient journey, according to some experts. However, patient-facing AI applications are not without challenges, such as the risk of generating medical misinformation or exacerbating healthcare disparities through biased algorithms. As healthcare professionals explore the potential of GenAI and chatbots for patient engagement, they must also ensure safeguards are in place to prevent the spread of inaccuracies and avoid creating health inequities. Online Symptom Checkers Online symptom checkers allow healthcare organizations to assess patients’ medical concerns without requiring an in-person visit. Patients can input their symptoms, and the AI-powered chatbot will generate a list of possible diagnoses, helping them decide whether to seek urgent care, visit the emergency department, or manage symptoms at home. These tools promise to improve both patient experience and operational efficiency by directing patients to the right care setting, thus reducing unnecessary visits. For healthcare providers, symptom checkers can help triage patients and ensure high-acuity areas are available for those needing critical care. Despite their potential, studies show mixed results regarding the diagnostic accuracy of online symptom checkers. A 2022 literature review found that diagnostic accuracy for these tools ranged from 19% to 37.9%. However, triage accuracy—referring patients to the correct care setting—was better, ranging between 48.9% and 90%. Patient reception to symptom checkers has also been varied. For example, during the COVID-19 pandemic, symptom checkers were designed to help patients assess whether their symptoms were virus-related. While patients appreciated the tools, they preferred chatbots that displayed human-like qualities and competence. Tools perceived as similar in quality to human interactions were favored. Furthermore, some studies indicate that online symptom checkers could deepen health inequities, as users tend to be younger, female, and more digitally literate. To mitigate this, AI developers must create chatbots that can communicate in multiple languages, mimic human interaction, and easily escalate issues to human professionals when needed. Self-Scheduling and Patient Navigation GenAI and conversational AI are proving valuable in addressing routine patient queries, like appointment scheduling and patient navigation, tasks that typically fall on healthcare staff. With a strained medical workforce, using AI for lower-level inquiries allows clinicians to focus on more complex tasks. AI-enhanced appointment scheduling systems, for example, not only help patients book visits but also answer logistical questions like parking directions or department locations within a clinic. A December 2023 literature review highlighted that AI-optimized scheduling could reduce provider workload, increase patient satisfaction, and make healthcare more patient-centered. However, key considerations for AI integration include ensuring health equity, broadband access, and patient trust. While AI can manage routine requests, healthcare organizations need to ensure their tools are accessible and functional for diverse populations. Online Medical Research GenAI tools like ChatGPT are contributing to the “Dr. Google” phenomenon, where patients search online for medical information before seeing a healthcare provider. While some clinicians have been cautious about these tools, research suggests they can effectively provide accurate medical information. For instance, an April 2023 study showed that ChatGPT answered 88% of breast cancer screening questions correctly. Another study in May 2023 demonstrated that the tool could adequately educate patients on colonoscopy preparation. In both cases, the information was presented in an easy-to-understand format, essential for improving health literacy. However, GenAI is not without flaws. Patients express concern about the reliability of AI-generated information, with a 2023 Wolters Kluwer survey showing that 49% of respondents worry about false information from GenAI. Additionally, many are uneasy about the unknown sources and validation processes behind the information. To build patient trust, AI developers must ensure the accuracy of their source material and provide supplementary authoritative resources like patient education materials. Patient Portal Messaging and Provider Communication Generative AI has also found use in patient portal messaging, where it can draft responses on behalf of healthcare providers. This feature has the potential to reduce clinician burnout by handling routine inquiries. A study conducted at Mass General Brigham in April 2024 revealed that a large language model embedded in a secure messaging tool could generate acceptable responses to patient questions. In 58% of cases, chatbot-generated messages required human editing. Promising Patient Engagement Use Cases for GenAI and Chatbots Interestingly, other research has found that AI-generated responses in patient portals are often more empathetic than those written by overworked healthcare providers. Nevertheless, AI responses should always be reviewed by a clinician to ensure accuracy before being sent to patients. Generative AI is also making strides in clinical decision support and ambient documentation, further boosting healthcare efficiency. However, as healthcare organizations adopt these technologies, they must address concerns around algorithmic bias and ensure patient safety remains a top priority. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
gettectonic.com