Data Access - gettectonic.com - Page 3
Acceptable AI Use Policies

Acceptable AI Use Policies

With great power comes—when it comes to generative AI—significant security and compliance risks. Discover how AI acceptable use policies can safeguard your organization while leveraging this transformative technology. AI has become integral across various industries, driving digital operations and organizational infrastructure. However, its widespread adoption brings substantial risks, particularly concerning cybersecurity. A crucial aspect of managing these risks and ensuring the security of sensitive data is implementing an AI acceptable use policy. This policy defines how an organization handles AI risks and sets guidelines for AI system usage. Why an AI Acceptable Use Policy Matters Generative AI systems and large language models are potent tools capable of processing and analyzing data at unprecedented speeds. Yet, this power comes with risks. The same features that enhance AI efficiency can be misused for malicious purposes, such as generating phishing content, creating malware, producing deepfakes, or automating cyberattacks. An AI acceptable use policy is essential for several reasons: Crafting an Effective AI Acceptable Use Policy An AI acceptable use policy should be tailored to your organization’s needs and context. Here’s a general guide for creating one: Essential Elements of an AI Acceptable Use Policy A robust AI acceptable use policy should include: An AI acceptable use policy is not just a document but a dynamic framework guiding safe and responsible AI use within an organization. By developing and enforcing this policy, organizations can harness AI’s power while mitigating its risks to cybersecurity and data integrity, balancing innovation with risk management as AI continues to evolve and integrate into our digital landscapes. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Unlocking Enterprise AI Success

Unlocking Enterprise AI Success

Companies are diving into artificial intelligence. Unlocking enterprise AI success depends on four main factors. Tectonic is here to help you address each. Trust is Important-Trust is Everything Data is everything—it’s reshaping business models and steering the world through health and economic challenges. But data alone isn’t enough; in fact, it can be worse than useless—it’s a risk unless it’s trustworthy. The solution lies in a data trust strategy: one that maximizes data’s potential to create value while minimizing the risks associated with it. Data Trust is Declining, Not Improving Do you believe your company is making its data and data practices more trustworthy? If so, you’re in line with most business leaders. However, there’s a disconnect: consumers don’t share this belief. While 55% of business leaders think consumers trust them with data more than they did two years ago, only 21% of consumers report increased trust in how companies use their data. In fact, 28% say their trust has decreased, and a staggering 76% of global consumers view sharing their data with companies as a “necessary evil.” For companies that manage to build trust in their data, the benefits are substantial. Yet, only 37% of companies with a formal data valuation process involve privacy teams. Integrating privacy is just one aspect of building data trust, but companies that do so are already more than twice as likely as their peers to report returns on investment from key data-driven initiatives, such as developing new products and services, enhancing workforce effectiveness, and optimizing business operations. To truly excel, companies need to create an ongoing system that continually transforms raw information into trusted, business-critical data. Data is the Backbone-Data is the Key Data leaks, as shown below, are a major factor on data trust and quality. As bad as leaked data is to security, data availability is to being a data-driven organization. Extortionist Attack on Costa Rican Government Agencies In an unprecedented event in April 2022, the extortionist group Conti launched a cyberattack on Costa Rican government agencies, demanding a $20 million ransom. The attack crippled much of the country’s IT infrastructure, leading to a declared state of emergency. Lapsus$ Attacks on Okta, Nvidia, Microsoft, Samsung, and Other Companies The Lapsus$ group targeted several major IT companies in 2022, including Okta, Nvidia, Microsoft, and Samsung. Earlier in the year, Okta, known for its account and access management solutions—including multi-factor authentication—was breached. Attack on Swissport International Swissport International, a Swiss provider of air cargo and ground handling services operating at 310 airports across 50 countries, was hit by ransomware. The attack caused numerous flight delays and resulted in the theft of 1.6 TB of data, highlighting the severe consequences of such breaches on global logistics. Attack on Vodafone Portugal Vodafone Portugal, a major telecommunications operator, suffered a cyberattack that disrupted services nationwide, affecting 4G and 5G networks, SMS messaging, and TV services. With over 4 million cellular subscribers and 3.4 million internet users, the impact was widespread across Portugal. Data Leak of Indonesian Citizens In a massive breach, an archive containing data on 105 million Indonesian citizens—about 40% of the country’s population—was put up for sale on a dark web forum. The data, believed to have been stolen from the “General Election Commission,” included full names, birth dates, and other personal information. The Critical Importance of Accurate Data There’s no shortage of maxims emphasizing how data has become one of the most vital resources for businesses and organizations. At Tectonic, we agree that the best decisions are driven by accurate and relevant data. However, we also caution that simply having more data doesn’t necessarily lead to better decision-making. In fact, we argue that data accuracy is far more important than data abundance. Making decisions based on incorrect or irrelevant data is often worse than having too little of the right data. This is why accurate data is crucial, and we’ll explore this concept further in the following sections. Accurate data is information that truly reflects reality or another source of truth. It can be tested against facts or evidence to verify that it represents something as it actually is, such as a person’s contact details or a location’s coordinates. Accuracy is often confused with precision, but they are distinct concepts. Precision refers to how consistent or varied values are relative to one another, typically measured against some other variable. Thus, data can be accurate, precise, both, or neither. Another key factor in data accuracy is the time elapsed between when data is produced and when it is collected and used. The shorter this time frame, the more likely the data is to be accurate. As modern businesses integrate data into more aspects of their operations, they stand to gain significant competitive advantages if done correctly. However, this also means there’s more at stake if the data is inaccurate. The following points will highlight why accurate data is critical to various facets of your company. Ease and speed of access Access speeds are measured in bytes per second (Bps). Slower devices operate in thousands of Bps (kBps), while faster devices can reach millions of Bps (MBps). For example, a hard drive can read and write data at speeds of 300MBps, which is 5,000 times faster than a floppy disk! Fast data refers to data in motion, streaming into applications and computing environments from countless endpoints—ranging from mobile devices and sensor networks to financial transactions, stock tick feeds, logs, retail systems, and telco call routing and authorization systems. Improving data access speeds can significantly enhance operational efficiency by providing timely and accurate data to stakeholders throughout an organization. This can streamline business processes, reduce costs, and boost productivity. However, data access is not just about retrieving information. It plays a crucial role in ensuring data integrity, security, and regulatory compliance. Effective data access strategies help organizations safeguard sensitive information from unauthorized access while making it readily available to those who are authorized. Additionally, the accuracy and availability of data are essential to prevent data

Read More
Generative AI Replaces Legacy Systems

Securing AI for Efficiency and Building Customer Trust

As businesses increasingly adopt AI to enhance automation, decision-making, customer support, and growth, they face crucial security and privacy considerations. The Salesforce Platform, with its integrated Einstein Trust Layer, enables organizations to leverage AI securely by ensuring robust data protection, privacy compliance, transparent AI functionality, strict access controls, and detailed audit trails. Why Secure AI Workflows Matter AI technology empowers systems to mimic human-like behaviors, such as learning and problem-solving, through advanced algorithms and large datasets that leverage machine learning. As the volume of data grows, securing sensitive information used in AI systems becomes more challenging. A recent Salesforce study found that 68% of Analytics and IT teams expect data volumes to increase over the next 12 months, underscoring the need for secure AI implementations. AI for Business: Predictive and Generative Models In business, AI depends on trusted data to provide actionable recommendations. Two primary types of AI models support various business functions: Addressing Key LLM Risks Salesforce’s Einstein Trust Layer addresses common risks associated with large language models (LLMs) and offers guidance for secure Generative AI deployment. This includes ensuring data security, managing access, and maintaining transparency and accountability in AI-driven decisions. Leveraging AI to Boost Efficiency Businesses gain a competitive edge with AI by improving efficiency and customer experience through: Four Strategies for Secure AI Implementation To ensure data protection in AI workflows, businesses should consider: The Einstein Trust Layer: Protecting AI-Driven Data The Einstein Trust Layer in Salesforce safeguards generative AI data by providing: Salesforce’s Einstein Trust Layer addresses the security and privacy challenges of adopting AI in business, offering reliable data security, privacy protection, transparent AI operations, and robust access controls. Through this secure approach, businesses can maximize AI benefits while safeguarding customer trust and meeting compliance requirements. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Leeds and Other Heatmap Solutions

Leeds and Other Heatmap Solutions

With over 80% of people shopping online – and the numbers are bound to rise – it’s important to know how your would-be customers behave on your website: where they click, how they scroll, and what motivates them to take specific actions. Heatmap analytics does it, allowing you to dominate CRO and UX through effective behavior data interpretation. This insight will look at Leeds and Other Heatmap Solutions. Powered by heatmap software and heatmap tools, heatmap analytics can help you convert customers at scale by optimizing their on-site and mobile experience. Make no mistake: the quality of user behavior tracking can make a difference between a closed sale and a bounce. Leads Heatmap Software is an innovative tool that transforms complex lead data into easy-to-understand, color-coded heatmaps within Salesforce CRM. This solution uses advanced data visualization techniques, enabling users to quickly identify high-potential leads. Interactive Heatmaps Leverage dynamic, real-time heatmaps to visualize lead density and quality, making it easier to pinpoint high-potential areas. Real-Time Updates Stay up-to-date with the latest information as heatmaps automatically refresh with new leads or changes to existing data, ensuring you always have the most current view. Enhanced Analytics Dive deeper into lead behavior and trends with comprehensive analytics tools that provide detailed reports and predictive insights. Detailed Lead Profiles Access in-depth lead profiles directly from the heatmap, including contact details, engagement history, and quick shortcuts for a complete view of each lead. Online Chat Integration Interact with leads instantly using integrated online chat, facilitating immediate and personalized communication. All website pages have a purpose, whether that purpose is to drive further clicks, qualify visitors, provide a solution, or even a mix of all of those things. Heatmaps and recorded user sessions allow you to see if your page is serving that purpose or going against it. What Is a Heatmap? Generally speaking, heatmaps are graphical representations of data that highlight value with color. On a website heatmap, the most popular areas are showcased in red (hot) and the least popular are in blue (cold). The colors range on a scale from red to blue. Heatmaps are an excellent method of collecting user behavior data and converting it into a deep analysis of how visitors engage with your website pages. It can analyze: That information will help you identify user trends and key into what should be optimized to up engagement. Setting up website heatmapping software is a great start to refining your website design process and understanding your users. When to Use Heatmaps The truth is that heatmaps can actually be invaluable when testing and optimizing user experiences and conversion opportunities. There are many times you should be using them. Redesigning Your Website Updating, or even upgrading, your website isn’t just a task on your to do list. Careful thought, attention, and creativity should be put into the revamp if you want it to be worth the time and resources. Heatmaps can help with studying your current design to identify what your visitors are engaging with and what they’re ignoring. You’ll be tapped into what makes your visitors tick so that you can build a site meant specifically for your unique audience. Analyzing Webpage Conversions Trying to figure out why certain pages aren’t converting the way you thought they would? Use a heatmap. You’ll be able to identify exactly what’s attracting attention and deduce why. The same goes for buttons and pages that are showing a higher rate of conversion than anticipated. By keying into the design, copy, and other elements that are working for you, you’ll know exactly how to optimize your under-performing webpages. Testing New Updates As your business grows and you develop new ideas, naturally you’ll want to test them. A/B testing allows you to measure and analyze visitor response to a project or design, but you can take it a step further with heatmapping. Leverage the data graph by examining exactly what captures your visitors’ attention. At the end of the testing period, you may be able to pull designs or elements that received high levels of engagement from the page that didn’t perform as well into the successful one. How To Analyze Visually Using the color-coded visualizations, you can read your webpage for engagement levels and attention “hot spots.” Where the map reads red, that’s where visitors are showing the highest points of interactivity. Blue reflects low numbers. You can spot design issues or opportunities to move buttons, forms, and the like with a visual read. Data Points Reviewing raw data tables will give you more specific insights into your page’s performance. You can examine HTML elements and pixel locations of clicks to really understand what’s drawing people in. You can even filter your clicks and views in order of popularity with certain software. This takes the guessing out of your redesign and testing efforts. Tableau has instant, real-time reporting in place for users looking for actionable insights. With smart dashboards and a drag and drop interface, navigating the product is easy. Their cloud storage means omni-channel data access from anywhere. You can perform ad hoc analyses whenever it’s convenient for you. You can also share your reports with anyone to boost business impact. With built in A/B testing and consolidated heatmaps, Freshmarketer puts in the extra effort to plot out visitor interactions. Recorded in real time, you can analyze heatmaps based by device, which the software automatically detects. Offering scrollmaps and click maps, Freshmarketer strives to “go beyond traditional heatmaps.” Looker offers similar services to the other software options listed, but they also supply a unique security management feature to protect your data. Also partnered with Google Cloud, you’ll have access to reporting from anywhere in the world. Primarily a data analysis solution, you’ll have access to other data intelligence and visualization features as well. Hotjar is one of the most popular website analytics software suites, offering free heatmaps for desktop, mobile, and tablet within its basic subscription plan. You can create heatmaps and synergize them with other free features like user session recordings, surveys, and

Read More
Implementing Salesforce Education Cloud

Implementing Salesforce Education Cloud

Client OverviewThe client is a leading educational institution offering a wide array of programs, from undergraduate degrees to continuing education. With around 15,000 students and a global alumni network of over 50,000, they are dedicated to delivering a holistic educational experience while nurturing lifelong relationships with their alumni. ChallengesBefore implementing Salesforce Education Cloud, the client faced several large challenges: ObjectivesThe institution sought to achieve the following with Salesforce Education Cloud: Solution: Salesforce Education Expertise Strategy and Planning Design and Wireframing Development Testing Deployment Results: Before and After Aspect Before After Data Management Fragmented across multiple systems Centralized in Salesforce Education Cloud Communication Disjointed communication processes Streamlined internal and external channels Alumni Engagement Outdated tools for managing alumni relationships Modern tools for enhanced engagement Before and after Salesforce Education Cloud Quantifiable OutcomesWith Salesforce Education Cloud, the client achieved: Implementing Salesforce Education CloudBy implementing Salesforce Education Cloud, the Salesforce partner delivered a transformative solution that surpassed the institution’s objectives. The integration of centralized data, enhanced communication processes, and modern alumni management tools led to: These impressive results highlight Tectonic’s commitment to providing expert Salesforce solutions that aid education clients achieve their strategic goals. Contact us today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Confidential AI Computing in Health

Confidential AI Computing in Health

Accelerating Healthcare AI Development with Confidential Computing Can confidential computing accelerate the development of clinical algorithms by creating a secure, collaborative environment for data stewards and AI developers? The potential of AI to transform healthcare is immense. However, data privacy concerns and high costs often slow down AI advancements in this sector, even as other industries experience rapid progress in algorithm development. Confidential computing has emerged as a promising solution to address these challenges, offering secure data handling during AI projects. Although its use in healthcare was previously limited to research, recent collaborations are bringing it to the forefront of clinical AI development. In 2020, the University of California, San Francisco (UCSF) Center for Digital Health Innovation (CDHI), along with Fortanix, Intel, and Microsoft Azure, formed a partnership to create a privacy-preserving confidential computing platform. This collaboration, which later evolved into BeeKeeperAI, aimed to accelerate clinical algorithm development by providing a secure, zero-trust environment for healthcare data and intellectual property (IP), while facilitating streamlined workflows and collaboration. Mary Beth Chalk, co-founder and Chief Commercial Officer of BeeKeeperAI, shared insights with Healthtech Analytics on how confidential computing can address common hurdles in clinical AI development and how stakeholders can leverage this technology in real-world applications. Overcoming Challenges in Clinical AI Development Chalk highlighted the significant barriers that hinder AI development in healthcare: privacy, security, time, and cost. These challenges often prevent effective collaboration between the two key parties involved: data stewards, who manage patient data and privacy, and algorithm developers, who work to create healthcare AI solutions. Even when these parties belong to the same organization, workflows often remain inefficient and fragmented. Before BeeKeeperAI spun out of UCSF, the team realized how time-consuming and costly the process of algorithm development was. Regulatory approvals, data access agreements, and other administrative tasks could take months to complete, delaying projects that could be finished in a matter of weeks. Chalk noted, “It was taking nine months to 18 months just to get approvals for what was essentially a two-month computing project.” This delay and inefficiency are unsustainable in a fast-moving technology environment, especially given that software innovation outpaces the development of medical devices or drugs. Confidential computing can address this challenge by helping clinical algorithm developers “move at the speed of software.” By offering encryption protection for data and IP during computation, confidential computing ensures privacy and security at every stage of the development process. Confidential Computing: A New Frontier in Healthcare AI Confidential computing protects sensitive data not only at rest and in transit but also during computation, which sets it apart from other privacy technologies like federated learning. With federated learning, data and IP are protected during storage and transmission but remain exposed during computation. This exposure raises significant privacy concerns during AI development. In contrast, confidential computing ensures end-to-end encrypted protection, safeguarding both data and intellectual property throughout the entire process. This enables stakeholders to collaborate securely while maintaining privacy and data sovereignty. Chalk emphasized that with confidential computing, stakeholders can ensure that patient privacy is protected and intellectual property remains secure, even when multiple parties are involved in the development process. As a result, confidential computing becomes an enabling core competency that facilitates faster and more efficient clinical AI development. Streamlining Clinical AI Development with Confidential Computing Confidential computing environments provide a secure, automated platform that facilitates the development process, reducing the need for manual intervention. Chalk described healthcare AI development as a “well-worn goat path,” where multiple stakeholders know the steps required but are often bogged down by time-consuming administrative tasks. BeeKeeperAI’s platform streamlines this process by allowing AI developers to upload project protocols, which are then shared with data stewards. The data steward can determine if they have the necessary clinical data and curate it according to the AI developer’s specifications. This secure collaboration is built on automated workflows, but because the data and algorithms remain encrypted, privacy is never compromised. The BeeKeeperAI platform enables a collaborative, familiar interface for developers and data stewards, allowing them to work together in a secure environment. The software does not require extensive expertise in confidential computing, as BeeKeeperAI manages the infrastructure and ensures that the data never leaves the control of the data steward. Real-World Applications of Confidential Computing Confidential computing has the potential to revolutionize healthcare AI development, particularly by improving the precision of disease detection, predicting disease trajectories, and enabling personalized treatment recommendations. Chalk emphasized that the real promise of AI in healthcare lies in precision medicine—the ability to tailor interventions to individual patients, especially those on the “tails” of the bell curve who may respond differently to treatment. For instance, confidential computing can facilitate research into precision medicine by enabling AI developers to analyze patient data securely, without risking exposure of sensitive personal information. Chalk explained, “With confidential computing, I can drill into those tails and see what was unique about those patients without exposing their identities.” Currently, real-world data access remains a significant challenge for clinical AI development, especially as research moves from synthetic or de-identified data to high-quality, real-world clinical data. Chalk noted that for clinical AI to demonstrate efficacy, improve outcomes, or enhance safety, it must operate on real-world data. However, accessing this data while ensuring privacy has been a major obstacle for AI teams. Confidential computing can help bridge this “data cliff” by providing a secure environment for researchers to access and utilize real-world data without compromising privacy. Conclusion While the use of confidential computing in healthcare is still evolving, its potential is vast. By offering secure data handling throughout the development process, confidential computing enables AI developers and data stewards to collaborate more efficiently, overcome regulatory hurdles, and accelerate clinical AI advancements. This technology could help realize the promise of precision medicine, making personalized healthcare interventions safer, more effective, and more widely available. Chalk highlighted that many healthcare and life sciences organizations are exploring confidential computing use cases, particularly in neurology, oncology, mental health, and rare diseases—fields that require the use of

Read More
Autodesk Enhancements with Einstein 1

Autodesk Enhancements with Einstein 1

Autodesk Enhances Customer Service and Agent Productivity with Salesforce AI Integration Autodesk, a leader in 3D design, engineering, and entertainment software, has strengthened its partnership with Salesforce by incorporating Salesforce AI technology into its service agent workflow. This integration aims to boost agent productivity and enhance customer satisfaction. Autodesk Enhancements with Einstein 1. Impact of Salesforce Integration By leveraging Salesforce’s CRM, trusted AI, and data solutions, Autodesk has unified data access and developed an AI-powered self-service application. This initiative aims to foster deeper customer relationships and enhance employee productivity. The integration with Salesforce is transforming Autodesk’s customer engagement and agent workflow efficiency. Key Benefits for Autodesk Accelerating Self-Service: Autodesk uses the Einstein 1 Platform, which employs AI to create actionable data and streamline processes. This has enabled the development of a comprehensive, intuitive service cloud application for Autodesk’s team. At the conclusion of customer-agent interactions, Einstein for Service generates AI-powered case summaries, reducing the time agents spend summarizing chats by 63%. Creating Frictionless Experiences: MuleSoft has been pivotal in advancing Autodesk’s automation strategy by providing integrated and unified data access across cloud solutions. This has allowed Autodesk to modernize, simplify, and connect existing SaaS applications, resulting in smoother operations. Minimizing Disruption: Salesforce Professional Services provides real-time, 24/7 monitoring, equipping Autodesk with tools to identify and resolve potential performance issues before they affect customers. Salesforce also enhances data access monitoring, leading to a 30% reduction in ongoing maintenance. Customer Perspective Prakash Kota, SVP and CIO of Autodesk, expressed enthusiasm for the partnership: “We are thrilled to partner with Salesforce as Autodesk continues to innovate, grow, and scale with the customer at the center of our business. Our teams are excited to put generative AI to work across the enterprise, enhancing the productivity of our service agents. Saving time on tasks enables our employees to focus on higher-value work.” This partnership underscores Autodesk’s commitment to customer-centric innovation and operational efficiency, leveraging Salesforce’s advanced technologies to drive continued growth and customer satisfaction. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Zero ETL

Zero ETL

What is Zero-ETL? Zero-ETL represents a transformative approach to data integration and analytics by bypassing the traditional ETL (Extract, Transform, Load) pipeline. Unlike conventional ETL processes, which involve extracting data from various sources, transforming it to fit specific formats, and then loading it into a data repository, Zero-ETL eliminates these steps. Instead, it enables direct querying and analysis of data from its original source, facilitating real-time insights without the need for intermediate data storage or extensive preprocessing. This innovative method simplifies data management, reducing latency and operational costs while enhancing the efficiency of data pipelines. As the demand for real-time analytics and the volume of data continue to grow, ZETL offers a more agile and effective solution for modern data needs. Challenges Addressed by Zero-ETL Benefits of ZETL Use Cases for ZETL In Summary ZETL transforms data management by directly querying and leveraging data in its original format, addressing many limitations of traditional ETL processes. It enhances data quality, streamlines analytics, and boosts productivity, making it a compelling choice for modern organizations facing increasing data complexity and volume. Embracing Zero-ETL can lead to more efficient data processes and faster, more actionable insights, positioning businesses for success in a data-driven world. Components of Zero-ETL ZETL involves various components and services tailored to specific analytics needs and resources: Advantages and Disadvantages of ZETL Comparison: Z-ETL vs. Traditional ETL Feature Zero-ETL Traditional ETL Data Virtualization Seamless data duplication through virtualization May face challenges with data virtualization due to discrete stages Data Quality Monitoring Automated approach may lead to quality issues Better monitoring due to discrete ETL stages Data Type Diversity Supports diverse data types with cloud-based data lakes Requires additional engineering for diverse data types Real-Time Deployment Near real-time analysis with minimal latency Batch processing limits real-time capabilities Cost and Maintenance More cost-effective with fewer components More expensive due to higher computational and engineering needs Scale Scales faster and more economically Scaling can be slow and costly Data Movement Minimal or no data movement required Requires data movement to the loading stage Comparison: Zero-ETL vs. Other Data Integration Techniques Top Zero-ETL Tools Conclusion Transitioning to Zero-ETL represents a significant advancement in data engineering. While it offers increased speed, enhanced security, and scalability, it also introduces new challenges, such as the need for updated skills and cloud dependency. Zero-ETL addresses the limitations of traditional ETL and provides a more agile, cost-effective, and efficient solution for modern data needs, reshaping the landscape of data management and analytics. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Harnessing Zero Copy Integration

Harnessing Zero Copy Integration

Streamlining Data Management: Harnessing Zero Copy Integration for Efficient Customer Insights Zero copy integration offers a revolutionary approach to accessing and utilizing customer data without the need for burdensome data transfers. By seamlessly linking disparate databases, this innovative technique eliminates the complexities associated with moving, copying, or reformatting data. Let’s explore how zero copy integration can optimize data management processes and enhance the efficiency of customer data platforms (CDPs) alongside traditional data warehouses. Understanding Zero Copy Integration: Zero copy integration, also known as zero ETL (extract-transform-load), facilitates the sharing of data across multiple databases without physically relocating it. This method enables real-time access to data, significantly reducing costs and mitigating the risks of errors inherent in data movement processes. Unlike traditional data replication methods, zero copy integration ensures that data remains in its original location, eliminating the need for redundant storage and synchronization efforts. Good technology standards can actually bring order to the chaos and allow products from different companies to work together, fostering healthy competition and enhancing productivity. That is precisely what Zero-Copy Integration does. Zero-Copy Integration is a framework that eliminates the need for data copies and integration, making it easier to work with applications, analytics, artificial intelligence, and machine learning. Canada’s Digital Governance Council recently announced that Zero-Copy Integration has been published for open access by the public, setting a new standard for data collaboration. Moreover, Zero-Copy Integration prioritizes data-centricity and active metadata over complex code and solution modularity over monolithic design. It also facilitates data governance through data products and federated stewardship, eliminating the need for centralized teams. In addition to boosting the development and deployment of new technologies, Zero-Copy Integration also addresses the growing number of data privacy regulations. By putting data at the center of the process, Zero-Copy Integration ensures greater collaboration and control, positively affecting industries like healthcare, research, banking, and public services. Benefits of Zero-Data Integration Proponents of zero-copy integration and dataware say the framework will lower data storage costs, improve performance of IT teams, improve privacy and security of data, and drive innovation in systems for public health, social research, open banking and sustainability through innovations in: Comparing Traditional vs. Zero Copy Integration: Aspect Traditional Zero Copy Replication Requires copying data to target Data remains in original location Updates Data accuracy dependent on synchronization Real-time access to data Cost Involves data movement expenses No additional data movement costs Regulatory Compliance Complex governance due to data duplication Simplified compliance with source data only Errors Data movement introduces potential errors Minimized risk of errors with no data movement Maintenance Increases complexity with copying and synchronization Streamlined management with no data relocation Implementing Zero Copy Integration: The implementation of zero copy integration varies depending on the platform and direction of data access. Let’s explore how it works in scenarios involving Salesforce Data Cloud and Snowflake data warehouse: Case Study: Buyers Edge’s Zero Copy Success Story: Buyers Edge, a procurement optimization company, leveraged zero copy integration to unify customer profiles in a CDP while accessing purchase data from their data warehouse. By seamlessly integrating Salesforce Data Cloud with their warehouse, Buyers Edge enhanced predictive modeling capabilities, resulting in tailored sales and marketing strategies. Zero copy integration revolutionizes data management practices by enabling seamless data access and eliminating the need for data duplication or relocation. As businesses navigate the evolving data landscape, leveraging zero copy integration can streamline operations, enhance insights, and empower organizations to unlock the full potential of their data assets. MILESTONES / TIMELINE Second half 2023 – Internationalization February 21, 2023 – Information Session (watch above ☝ or via YouTube) February 15, 2023 – ‘Zero-copy’ applications published by DCA February 08, 2023 – Published by Digital Governance Council (Press release) December 15, 2022 – Approved by Standards Council of Canada June-Nov 2022 – Public consultation period Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Healthcare Cloud Marketplace

Healthcare Cloud Marketplace

Healthcare Cloud Computing Market: A Comprehensive Overview and Future Outlook Vantage Market Research Report: Insights into Healthcare Cloud Computing by 2030 WASHINGTON, D.C., February 6, 2024 /EINPresswire.com/ — The global Healthcare Cloud Marketplace was valued at USD 38.25 billion in 2022 and is projected to grow at a compound annual growth rate (CAGR) of 18.2% from 2023 to 2030, reaching approximately USD 145.86 billion by 2030, according to Vantage Market Research. This technology allows healthcare organizations to utilize cloud-based services for data storage, management, and analysis, providing numerous benefits such as cost efficiency, scalability, flexibility, security, and interoperability. It enhances healthcare delivery by enabling seamless data access and sharing across various locations, devices, and networks. Additionally, cloud computing supports the integration of advanced technologies like artificial intelligence, big data analytics, telehealth, and mobile health, driving progress in disease diagnosis, treatment, and prevention. Market Dynamics The market’s growth is fueled by several key factors, including the increasing demand for healthcare IT solutions, the rising prevalence of chronic diseases, the widespread adoption of electronic health records (EHRs), and evolving payment models and regulatory frameworks. The exponential increase in healthcare data, encompassing patient records, imaging scans, and research findings, necessitates scalable storage and analysis solutions. Cloud computing meets this need by providing flexible and scalable infrastructure, accommodating data growth without overburdening IT systems. The rise of telehealth and remote patient monitoring further boosts the demand for secure, cloud-based platforms that facilitate efficient data exchange. However, stringent data privacy regulations like HIPAA and GDPR require robust security measures, compelling healthcare organizations to seek cloud providers that offer strong compliance and access controls. This need for a balance between agility and security shapes the healthcare cloud computing market’s future trajectory. Leading Companies in the Global Healthcare Cloud Computing Market Market Segmentation By Product: By Deployment: By Component: By Pricing Model: By Service Model: Key Trends and Opportunities The healthcare cloud computing market is witnessing significant trends, including the adoption of hybrid and multi-cloud models, which combine the benefits of both public and private clouds. The integration of artificial intelligence (AI) and machine learning (ML) into cloud-based healthcare applications is opening new avenues for personalized medicine, clinical decision support, and drug discovery. Moreover, blockchain technology is emerging as a solution to enhance data security and patient privacy, addressing critical industry concerns. Key Findings: Opportunities: Healthcare Cloud Marketplace The healthcare cloud computing market is poised for robust growth, driven by the increasing demand for scalable and secure data management solutions. As healthcare organizations navigate challenges related to data privacy and security, robust cloud solutions and supportive government policies will be essential in unlocking the full potential of cloud computing in healthcare. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Trust Through Effective Data Access

Generate Trust Through Effective Data Access

Trust Through Effective Data Access Objective: Empower your teams with data access to encourage proactive decision-making. Simplify your business’s data landscape by tailoring team members’ access, ensuring they can readily find the pertinent information. Implementation: Incorporate role-based licensing with built-in governance to create trust through effective data access. Distribute data broadly across your organization, ensuring each user possesses the necessary capabilities for data-driven decision-making. Specify access levels for consuming produced content or analyzing processed data, allowing certain team members to download and modify data sources locally. Deploy automations to swiftly update access when workflow or staff changes occur. Define clear roles and responsibilities for governance decisions. Being sure you are identifying stakeholders across the business to manage accessibility and foster cross-functional collaboration. Strengthen external security measures for data storage, utilizing automation to grant access to the right team members. Align data access with project workflows, enhancing organizational agility and enabling team members to leverage relevant data sources. Establish guidelines for transitioning dashboards into production, ensuring new data sources align with leadership-defined strategies. Define a certification process for data sources and share guidelines to maintain consistency in certification choices among administrators and project leaders. Manage tokens, passwords, and keys, maintaining a single password for each data source. Institute Service Level Agreements (SLAs) regarding quality, refresh rates, and uptime. For example, a sales dashboard pipeline may be updated hourly, with increased frequency at the end of the quarter. As the business expands, SLAs become essential for managing data pipelines. Provide a catalog to define dimensions and offer context to team members, ensuring confidence in using the correct data. Implement row-level security to streamline workflows and enhance security, allowing team members to view only the data relevant to their roles. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more 50 Advantages of Salesforce Sales Cloud According to the Salesforce 2017 State of Service report, 85% of executives with service oversight identify customer service as a Read more CRM Cloud Salesforce What is a CRM Cloud Salesforce? Salesforce Service Cloud is a customer relationship management (CRM) platform for Salesforce clients to Read more Salesforce Data Studio Data Studio Overview Salesforce Data Studio is Salesforce’s premier solution for audience discovery, data acquisition, and data provisioning, offering access Read more

Read More
Salesforce Flow

Salesforce Flow

Salesforce Flow is a tool designed to automate complex business processes by collecting and manipulating data. Flow Builder, the declarative interface for creating flows, allows users to construct logic similar to coding without requiring programming expertise. When customers engage with a company—whether purchasing tickets, managing bills, or arranging reservations—they anticipate a seamless, personalized experience. Flow Builder empowers users to automate processes across Salesforce applications, experiences, and portals with intuitive, point-and-click functionality. Types of Flows in Salesforce include: Advantages of Salesforce Flow: Difference between Flow and Workflow in Salesforce: Flow offers more versatility than workflow rules and process builders. While workflows operate in the background, flows can guide users through processes with interactive screens and are not limited to specific objects. Flows have the capability to create, update, and delete records across multiple objects. Here’s a structured approach to effectively leverage Flow Builder: Flow Builder equips users with robust tools for automating Salesforce processes while adhering to best practices. By following these guidelines, users can develop efficient, tailored flows that align with specific business requirements. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com