Data Analytics Archives - gettectonic.com
AI-Powered Smarter Media

AI Transforming Precision Medicine

How AI-Driven Data Curation is Transforming Precision Medicine Precision medicine—a healthcare approach that personalizes disease prevention and treatment based on insights into a patient’s genes, environment, and behavior—holds incredible promise. However, its success depends on high-quality, curated data from sources like electronic health records (EHRs). This reliance creates significant challenges for healthcare providers and researchers. Can artificial intelligence (AI) help address these hurdles? AI-enabled data curation is already making strides in advancing precision medicine, particularly in oncology. By analyzing vast datasets, including structured and unstructured information, AI is helping healthcare organizations accelerate research and improve patient outcomes. Data Curation Challenges in Precision Medicine Real-world data (RWD) is a key driver of precision medicine, but processing this data is fraught with challenges. According to Dr. C.K. Wang, Chief Medical Officer at COTA, Inc., EHRs provide unprecedented access to detailed patient information, enabling deeper insights into care patterns. However, much of this data resides in unstructured formats, such as clinicians’ notes, making it difficult to extract and analyze. “To transform this unstructured data into actionable insights, significant human expertise and resources are required,” Wang explained. While AI tools like COTA’s CAILIN, which uses advanced search capabilities, streamline this process, human involvement remains essential. Wang emphasized that even with the rapid advancements in AI, healthcare data curation requires expert oversight to ensure quality and reliability. “The adage ‘junk in, junk out’ applies here—without high-quality training data, AI cannot generate meaningful insights,” he noted. PHI and COTA: A Collaborative Approach to AI-Driven Curation To overcome these challenges, Precision Health Informatics (PHI), a subsidiary of Texas Oncology, partnered with COTA to enhance their data curation capabilities. The collaboration aims to integrate structured and unstructured data, including clinician notes and patient-reported outcomes, into a unified resource for precision medicine. PHI’s database, which represents 1.6 million patient journeys, provides a rich resource for hypothesis-driven studies and clinical trial enrichment. However, much of this data was siloed or unstructured, requiring advanced tools and expert intervention. Lori Brisbin, Chief Operating Officer at PHI, highlighted the importance of partnering with a data analytics leader. “COTA’s strong clinical knowledge in oncology allowed them to identify data gaps and recommend improvements,” she said. This partnership is yielding significant results, including a high data attrition rate of 87%—far surpassing the industry average of 50% for similar projects. The Role of AI in Cancer Care AI tools like CAILIN are helping PHI and COTA refine data curation processes by: Brisbin likened the role of AI to sorting images: “If you’re looking for German shepherds, AI will narrow the search but might include similar images, like wolves or huskies. Experts are still needed to validate and refine the results.” Building the Foundation for Better Outcomes The integration of high-quality RWD into analytics efforts is reshaping precision medicine. While clinical trial data offers valuable insights, it often lacks the variability seen in real-world scenarios. Adding RWD to these datasets helps expand the scope of research and ensure broader applicability. For instance, cancer care guidelines developed with RWD can account for diverse patient populations and treatment approaches. COTA’s work with PHI underscores the value of collaborative data curation, with AI streamlining processes and human experts ensuring accuracy. The Future of AI in Precision Medicine As healthcare organizations invest in data-driven innovation, AI will play an increasingly pivotal role in enabling precision medicine. However, challenges remain. Wang noted that gaps in EHR data, such as missing survival metrics, can undermine oncological outcomes research. Advances in interoperability and external data sources will be key to addressing these issues. “The foundation of our partnership is built on leveraging data insights to enhance care quality and improve operational efficiency,” Wang said. Through AI-powered tools and meaningful partnerships, precision medicine is poised to deliver transformative results, empowering providers to offer tailored treatments that improve patient outcomes at scale. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Value-Based Care Technologies

Value-Based Care Technologies

Essential Technologies for Value-Based Care Success As healthcare providers increasingly adopt value-based care, they must invest in the right technologies and resources to succeed in this model, which incentivizes high-quality, cost-effective care. Value-Based Care Technologies tie reimbursement to care quality, making providers accountable for patient outcomes while providing resources to enhance care. As of 2021, nearly 60% of healthcare payments were already tied to value-based models, according to the Health Care Payment Learning and Action Network (HCP LAN). While partnerships can initiate value-based care, providers must invest in the right technology to fully achieve the intended outcomes. Health Information Exchange (HIE) A robust health information exchange (HIE) is fundamental to value-based care, as it enables providers and payers to access high-quality data seamlessly. HIE allows healthcare professionals to share patients’ medical information electronically across organizations, promoting care coordination by giving providers a comprehensive view of patient needs. For patients, HIE enables more informed involvement in their care by making their health data accessible across specialists, labs, and pharmacies. While joining an HIE may involve new technology investments and workflow adjustments, it ultimately enhances provider access to critical health data. Population Health Management Tools Population health management tools help providers assess health outcomes within groups rather than focusing on individuals alone. These tools aggregate and analyze data, allowing practices to identify high-risk patients and create targeted interventions. This not only enhances health outcomes but can also reduce costs by avoiding expensive treatments. Patient engagement tools, such as telehealth and remote patient monitoring, are essential in population health management, especially for monitoring high-risk patients when in-person care is not feasible. Digital surveys integrated within patient portals can provide insights into social determinants of health, adding a broader context to patient needs. Data Analytics Data analytics transform healthcare data into actionable insights across four types: descriptive, diagnostic, predictive, and prescriptive. Providers can use these analytics to reduce hospital readmissions, predict diseases, and identify chronic illnesses. Data integration and risk stratification capabilities are especially valuable in value-based care, enabling providers to track patient health outcomes effectively and prioritize high-risk cases. Artificial Intelligence & Machine Learning AI and machine learning support many data analytics functions, helping identify patient needs and easing administrative burdens. Given staffing shortages and burnout—reported by 63% of physicians in 2021, according to the American Medical Association (AMA)—AI can automate tasks like documentation, charting, and scheduling, allowing providers to focus more on patient care. Additionally, AI-driven automation in revenue cycle management tasks, such as billing and coding, can reduce the administrative workload associated with value-based care. Price Transparency Technology Price transparency empowers patients to seek cost-effective care, a core principle of value-based models. When providers comply with transparency regulations, patients can better understand their costs and make informed decisions. For providers, leveraging price transparency tools ensures compliance and facilitates partnerships with payers by enabling more effective negotiation, which supports the overall goals of value-based care. As healthcare continues shifting to value-based models, investing in these technologies is critical for providers aiming for long-term success. While these tools rdo equire substantial investment, they are essential for improving patient outcomes, optimizing care quality, and ensuring sustainability in value-based care. When evaluating and choosing healthcare technology tools, contact Tectonic for help. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Data Analytics for Disease Management

Data Analytics for Disease Management

Healthcare IT advancements, especially electronic health records (EHRs), have made it easier to gather and store data, which, in turn, fuels population health initiatives and improves patient outcomes. The Agency for Healthcare Research and Quality highlights that using health IT tools can significantly enhance chronic disease management by promoting efficient care delivery, information-sharing, and patient education. However, selecting and adopting the right analytics tools remains challenging. Here are five essential data analytics tools that healthcare providers can leverage for effective chronic disease management.

Read More
Cool and New AI

Cool and New AI Cool and New AI

AI is revolutionizing the way we work, offering a wide range of tools beyond ChatGPT that can enhance efficiency, creativity, and productivity. Whether you’re working with data, code, marketing, videos, images, AI bots, or research, here are the top AI tools that can transform your workflow. Cool and New AI. Don’t get spooked. There will be a cornucopia more in November. 🌟 Code 1️⃣ GlideTurn spreadsheets into powerful mobile apps without writing a single line of code. Glide makes it easy for non-developers to create professional apps with minimal effort. 2️⃣ BubbleA visual programming platform that allows users to build web applications without any coding knowledge. Ideal for entrepreneurs and startups looking to launch digital products quickly. 3️⃣ AskCodiThis AI coding assistant speeds up coding tasks, offers helpful suggestions, and simplifies debugging for developers, making it a must-have tool for coding professionals. 🌟 Data 1️⃣ BasedLabsA robust data analytics platform designed for scientists and engineers. BasedLabs offers complex data processing and model building with exceptional precision. 2️⃣ Coral AIPerfect for data-driven professionals, Coral AI provides efficient edge AI tools for processing large datasets and delivering insights with on-device intelligence, speeding up tasks. 3️⃣ JuliusAn AI-powered tool for market researchers and data analysts, Julius streamlines data processes and offers powerful insights into market trends. 🌟 Marketing 1️⃣ Sprout SocialThis all-in-one social media management platform leverages AI to help marketers optimize their social presence, engage with audiences, and track detailed analytics. 2️⃣ AdCreative AIEnhance your marketing campaigns with AI-generated ads that convert. AdCreative AI allows marketers to design high-impact, creative ads effortlessly. 3️⃣ Jasper AIA top tool for content creators, Jasper AI assists in crafting high-conversion marketing copy, blogs, and ad texts at scale, making it indispensable for digital marketing. 🌟 Video 1️⃣ SynthesiaCreate professional videos without the need for cameras or actors. Synthesia’s AI avatars enable you to produce multilingual videos, making it ideal for corporate and educational content. 2️⃣ HeygenThis AI tool simplifies video production by allowing users to create AI-generated videos, perfect for marketing campaigns or training materials. 3️⃣ Opus ClipOpus Clip transforms long-form video content into short, engaging clips optimized for social media, helping creators repurpose content easily. 🌟 Image 1️⃣ Getimg.AIAutomate image creation with Getimg.AI, which enhances your visual content by generating high-quality images in minutes, speeding up the design process. 2️⃣ PicsartA versatile image editing and design platform with AI tools that make creating stunning visuals effortless, making it ideal for social media, advertising, and creative projects. 3️⃣ Leonardo AIA powerful AI-driven tool for creators, Leonardo AI helps generate high-quality images, illustrations, and graphics, making it an essential tool for designers and artists. 🌟 AI Bot 1️⃣ LiveChatAn AI-powered live chat solution that integrates seamlessly into websites to provide real-time customer support, enhancing business communication. 2️⃣ LandbotThis tool helps create conversational experiences with AI-powered chatbots for customer support, sales, and lead generation, automating client interactions. 3️⃣ CustomGPTA customizable GPT-powered AI chatbot tailored for specific industries and businesses, perfect for providing personalized customer support. 🌟 Research 1️⃣ ChatPDFTurn PDFs into interactive documents with ChatPDF, allowing users to easily navigate and extract information using an AI-based assistant. 2️⃣ VidIQVidIQ provides AI-powered tools to optimize YouTube content for better engagement and visibility, making it invaluable for content creators. 3️⃣ SemrushAn advanced SEO platform powered by AI, Semrush gives marketers and researchers deep insights into online visibility, helping boost content performance. AI extends far beyond ChatGPT. This diverse range of tools is designed to make your work more efficient and productive, whether you’re coding, marketing, creating content, or conducting research. Embrace these AI tools to unlock new levels of creativity and efficiency. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Enterprise AI

Enterprise AI: Revolutionizing Business Operations for a Competitive Edge Enterprise AI refers to the suite of advanced artificial intelligence technologies—such as machine learning, natural language processing (NLP), robotics, and computer vision—that organizations use to transform operations, enhance efficiency, and gain a competitive advantage. These technologies demand high-quality data, skilled expertise, and adaptability to rapid advancements. Businesses increasingly adopt enterprise AI because of its ability to automate critical processes, reduce costs, optimize operations, and enable data-driven decision-making. According to McKinsey’s 2024 report, 72% of organizations now integrate AI into their operations, a significant increase from 50% just six years ago. However, implementing AI presents challenges, such as employee mistrust, data biases, lack of explainability, and managing AI’s fast evolution. Successful adoption requires aligning AI initiatives with organizational goals, fostering data trust, and building internal expertise. This guide provides a strategic roadmap for embracing enterprise AI, covering foundational concepts, advanced use cases, and ways to navigate common pitfalls. Why AI Matters in the Enterprise Enterprise AI is a transformative force, similar to how the internet revolutionized global businesses. By integrating AI into their operations, organizations can achieve: AI-driven applications are reshaping industries by enabling hyper-personalized customer experiences, optimizing supply chains, and automating repetitive tasks to free employees for higher-value contributions. The rapid pace of AI innovation requires leaders to consistently re-evaluate its alignment with their strategies while maintaining effective data management and staying informed on evolving tools and regulations. AI’s Transformational Impact on Business AI’s potential is as groundbreaking as electrification in the 20th century. Its immediate influence lies in automating tasks and augmenting human workflows. For example: Generative AI tools like ChatGPT and Copilot further accelerate adoption by automating creative and intellectual tasks. Key Benefits of Enterprise AI Challenges of Enterprise AI Despite its benefits, AI adoption comes with hurdles: Ethical concerns, such as workforce displacement and societal impacts, also demand proactive strategies. AI and Big Data: A Symbiotic Relationship AI thrives on large, high-quality datasets, while big data analytics leverage AI to extract deeper insights. The rise of cloud computing amplifies this synergy, enabling scalable, cost-effective AI deployments. Evolving AI Use Cases AI continues to redefine industries, turning complex tasks into routine operations: Future AI Trends to Watch Building the Future with Responsible AI As AI advances, organizations must prioritize responsible AI practices, balancing innovation with ethical considerations. Developing robust frameworks for transparency and governance is essential to maintaining trust and fostering sustainable growth. AI’s future offers vast opportunities for businesses willing to adapt and innovate. By aligning AI initiatives with strategic goals and investing in robust ecosystems, enterprises can unlock new efficiencies, drive innovation, and lead in their industries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce for K-12 and Higher Education

Technology to Showcase the Value of Education

How Can Technology Convince Students of the Value of Higher Education? With fewer high school graduates choosing college, technology has a unique role in reigniting students’ belief in higher education. Imagine a high school student eagerly checking the mail and finding an acceptance letter from their dream college, ready to start a journey filled with opportunities, lifelong friends, and a promising future. Just a couple of decades ago, that was a common story. Today, many high schoolers aren’t looking for acceptance letters at all, uncertain if college is the best or even most practical path to success. Higher education now faces a new challenge: proving its worth to students who are increasingly weighing their options. Universities no longer simply wait for students to apply—they need to actively demonstrate that the investment will pay off. Enrollment Data Signals a Shift Away from College Once seen as a distinctive achievement, college attendance has become less of a given. In 1980, only 49% of high school graduates went on to higher education. By 2009, that number had surged to over 70%, but has since declined; by 2022, just 62% of graduates were heading straight to college. Now, with the “enrollment cliff”—a projected decrease in college-aged students due to lower birth rates—looming, colleges face intense competition to attract students. Personalization Is Key to Connecting with Students The days of “Dear applicant” are over. Today’s digital-native students want a personalized approach that speaks directly to them. If they don’t feel personally addressed through email, text, video, or even traditional mail, they may tune out and explore other options. Universities must build meaningful connections to engage students and keep their attention through every stage of the student journey. Student lifecycle management platforms, like Salesforce’s Education Cloud, have become essential tools for higher education institutions. By tracking and analyzing a student’s data—academic performance, extracurricular interests, and social behaviors—these platforms create personalized experiences that engage students from admission to graduation. Salesforce Education Cloud, for example, uses AI and robust data analytics to create a comprehensive student profile, enabling colleges to send tailored communications, schedule regular check-ins, and even reach out to parents. This personalized approach fosters a sense of connection that encourages students to enroll and stay engaged throughout their academic journey. Comprehensive Lifecycle Management and Student Support Beyond admissions, student lifecycle platforms offer extensive features that address other critical areas, from helping students who are academically struggling to managing alumni relationships and fundraising. With years of experience in supporting institutions nationwide, CDW Education partners with colleges to implement these technologies, strengthening their ability to attract, engage, and retain students. In an era when students have more educational choices than ever, colleges must actively communicate the value of a college degree and make that message resonate with each individual. By investing in technology that personalizes the student experience, higher education institutions can create a compelling case for the unique value they offer. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce AI Evolves with the Generative AI Landscape

Salesforce AI Evolves with the Generative AI Landscape

Salesforce AI: Powering Customer Relationship Management Salesforce is a leading CRM solution that has long delivered cutting-edge cloud technologies to manage customer relationships effectively. In recent months, the platform has further advanced with the integration of generative AI and AI-powered features, primarily through its AI engine, Einstein. Salesforce AI Evolves with the Generative AI Landscape. To explore how AI operates within the Salesforce ecosystem and how various business teams can leverage these innovations, this guide delves into Salesforce’s AI capabilities, products, and features. Salesforce AI: Transforming CRM Capabilities Salesforce remains a top choice in the CRM software market, offering one of the most comprehensive solutions for managing relationships across departments, industries, and initiatives. Through dedicated cloud platforms, Salesforce enables teams to oversee marketing, sales, customer service, e-commerce, and more, with tools focused on delivering enhanced customer experiences supported by powerful data analytics. With the introduction of generative AI, Salesforce has significantly elevated its native automation, workflow management, data analytics, and assistive capabilities for customer lifecycle management. Einstein Copilot exemplifies this innovation, aiding internal users with tasks such as outreach, analysis, and improving external user experiences. What is Salesforce Einstein? Salesforce Einstein is an AI-driven suite of tools integrated natively into various Salesforce Cloud applications, including Sales Cloud, Marketing Cloud, Service Cloud, and Commerce Cloud. It also operates through assistive technologies like Einstein Copilot. Einstein is built on a multitenant platform and incorporates numerous automated machine learning features to unify organizational data with CRM capabilities. Designed to make intelligent, data-driven decisions, Einstein requires no additional installation, offering a seamless user experience when paired with a compatible subscription plan. 7 Key Features of Salesforce Einstein 7 Applications of Salesforce Einstein Future Trends in Salesforce AI Bottom Line: Salesforce AI Evolves with the Generative AI Landscape Salesforce continues to enhance its AI-powered features, keeping pace with advancements in generative and predictive AI. Whether new to the platform or a seasoned user, Salesforce offers innovative, AI-centric solutions to streamline customer relationship management and business operations. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Embedded Salesforce Einstein

Embedded Salesforce Einstein

In a world where data is everything, businesses are constantly seeking ways to better understand their customers, streamline operations, and make smarter decisions. Enter Salesforce Einstein—a powerful AI solution embedded within the Salesforce platform that is revolutionizing how companies operate, regardless of size. By leveraging advanced analytics, automation, and machine learning, Einstein helps businesses boost efficiency, drive innovation, and deliver exceptional customer experiences. Embedded Salesforce Einstein is the answer. Here’s how Salesforce Einstein is transforming business: Imagine anticipating customer needs, market trends, or operational challenges before they happen. While it’s not magic, Salesforce Einstein’s AI-powered insights and predictions come remarkably close. By transforming vast amounts of data into actionable insights, Einstein enables businesses to anticipate future scenarios and make well-informed decisions. Industry insight: In financial services, success hinges on anticipating market shifts and client needs. Banks and investment firms leverage Einstein to analyze historical market data and client behavior, predicting which financial products will resonate next. For example, investment advisors might receive AI-driven recommendations tailored to individual clients, boosting engagement and satisfaction. Manufacturers also benefit from Einstein’s predictive maintenance tools, which analyze data from machinery to anticipate equipment failures. A car manufacturer, for instance, could use these insights to schedule maintenance during off-peak hours, minimizing downtime and preventing costly disruptions. Personalization is now a necessity. Salesforce Einstein elevates personalization by analyzing customer data to offer tailored recommendations, messages, and services. Industry insight: In e-commerce, personalized recommendations are often the key to converting browsers into loyal customers. An online bookstore using Einstein might analyze browsing history and past purchases to suggest new releases in genres the customer loves, driving repeat sales. In healthcare, Einstein’s personalization can improve patient outcomes by providing customized follow-up care. Hospitals can use Einstein to analyze patient histories and treatment data, offering reminders tailored to each patient’s needs, improving adherence to care plans and speeding recovery. Salesforce Einstein’s sales intelligence tools, such as Lead Scoring and Opportunity Insights, enable sales teams to focus on the most promising leads. This targeted approach drives higher conversion rates and more efficient sales processes. Industry insight: In real estate, Einstein helps agents manage numerous leads by scoring potential buyers based on their engagement with property listings. A buyer who repeatedly views homes in a specific area is flagged, prompting agents to prioritize their outreach, accelerating the sales process. In the automotive industry, Einstein identifies leads closer to purchasing by analyzing behaviors such as online vehicle configuration and test drive bookings. This allows sales teams to focus on high-potential buyers, closing deals faster. Automation is at the heart of Salesforce Einstein’s ability to streamline processes and boost productivity. By automating repetitive tasks like data entry and customer inquiries, Einstein frees employees to focus on strategic activities, improving overall efficiency. Industry insight: In insurance, Einstein Bots can handle routine tasks like policy inquiries and claim submissions, freeing up human agents for more complex issues. This leads to faster response times and reduced operational costs. In banking, Einstein-powered chatbots manage routine inquiries such as balance checks or transaction histories. By automating these interactions, banks reduce the workload on call centers, allowing agents to provide more personalized financial advice. Einstein Discovery democratizes data analytics, making it easier for non-technical users to explore data and uncover actionable insights. This tool identifies key business drivers and provides recommendations, making data accessible for all. Industry insight: In healthcare, predictive insights are helping providers identify patients at risk of chronic conditions like diabetes. With Einstein Discovery, healthcare providers can flag at-risk individuals early, implementing targeted care plans that improve outcomes and reduce long-term costs. For energy companies, Einstein Discovery analyzes data from sensors and weather patterns to predict equipment failures and optimize resource management. A utility company might use these insights to schedule preventive maintenance ahead of storms, reducing outages and enhancing service reliability. More Than a Tool – Embedded Salesforce Einstein Salesforce Einstein is more than just an AI tool—it’s a transformative force enabling businesses to unlock the full potential of their data. From predicting trends and personalizing customer experiences to automating tasks and democratizing insights, Einstein equips companies to make smarter decisions and enhance performance across industries. Whether in retail, healthcare, or technology, Einstein delivers the tools needed to thrive in today’s competitive landscape. Tectonic empowers organizations with Salesforce solutions that drive organizational excellence. Contact Tectonic today. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Underwriting Solutions

Salesforce Underwriting Solutions

Merchant Cash Advance Solutions: Enhancing Underwriting with Salesforce In today’s fast-paced financial services industry, efficient and effective underwriting is more crucial than ever. Merchant cash advances (MCAs) have emerged as a popular alternative funding option for businesses that might not qualify for traditional loans. This insight explores how integrating Salesforce with MCA software can streamline underwriting, strengthen lender-borrower relationships, and boost overall operational efficiency. Understanding Merchant Cash Advances Merchant cash advances offer businesses upfront capital in exchange for a portion of future sales. Unlike traditional loans, MCAs are often easier to secure and come with flexible repayment options tied to daily credit card receipts. However, the unique structure of MCAs brings challenges to underwriting, due to the diversity in business models and cash flow patterns. The Role of Underwriting in MCA Underwriting is a vital step in the lending process, assessing the risk associated with providing funds to a borrower. For MCAs, underwriting involves evaluating a business’s revenue streams, creditworthiness, and overall financial health. Traditional underwriting methods can be cumbersome and slow, often causing delays in funding. Challenges in Traditional Underwriting Methods The Power of Salesforce in Streamlining Underwriting Salesforce offers powerful solutions that integrate seamlessly with MCA software, effectively addressing these challenges: Benefits of Integrating MCA Software with Salesforce Key Features to Look for in MCA Software Integrated with Salesforce When choosing an MCA solution integrated with Salesforce, consider features such as: Conclusion Integrating merchant cash advance solutions with Salesforce offers a transformative approach to streamlining underwriting processes in this niche financing sector. By automating workflows, centralizing data management, enhancing communication channels, and improving overall efficiency—all while ensuring compliance—lenders can gain a competitive edge and deliver exceptional service to their clients. If you are searching for a Merchant Cash Advance, Underwriting, or financial services solution contact Tectonic today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
CXM

CXM

XM Software Providers Set to Replace Point Solutions with Multifunction Suites By 2028, Enterprises Will Transition to Comprehensive CXM Solutions, According to New ISG Research According to new research from Information Services Group (ISG) (Nasdaq: III), companies are expected to shift from various customer experience (CX) point solutions to comprehensive, cross-functional suites by 2028. This transition aims to manage CX at the enterprise level more effectively. Keith Dawson, Director of Customer Experience Research at ISG, explains, “Enterprises recognize the need for platforms that manage the entire customer lifecycle. We are witnessing the rise of tools that integrate communication components with analytic assessments of customer value, loyalty, and intent, marking a significant shift in the marketplace.” The ISG Buyers Guide™ for Customer Experience Management (CXM) defines CXM as a suite of applications on a unified platform that provides a comprehensive view of customer activity and enables management of that activity across departments. The report notes that the mix of applications in a software provider’s suite often reflects their historical expertise and origins. CXM addresses the limitations of traditional Customer Resource Management (CRM) software, which has been more departmental and application-centric. In contrast, CXM focuses on the customer journey and interactions across all channels. The report highlights challenges in comparing similar offerings from different providers due to their varied origins and expertise. The range of functionality across CXM products often reflects their diverse components, users, and use cases. ISG identifies five core areas of platform functionality in CXM software: knowledge management, resource management, automation, analytics, and customer journey management. However, CXM software is still developing, and it is uncommon to find a single solution that excels in all five areas. Many providers start with their core strengths and expand their capabilities over time. The ISG Buyers Guide evaluates CXM software providers based on support for analytics, customer journey management, knowledge management, CRM platform support, operational resource management, and process control and optimization. To be included in the CXM Buyers Guide, products must cover at least three of the four areas: resource management, automation, analytics, and customer journey management. Separate guides on Customer Journey Management (CJM) and Knowledge Management (KM) are available for more specific analysis. For its 2024 Buyers Guides, ISG assessed 19 providers, including Adobe, eGain, Emplifi, Freshworks, Genesys, HubSpot, Microsoft, Nextiva, NICE, Oracle, Qualtrics, Salesforce, SAP, ServiceNow, Sprinklr, SugarCRM, Verint, Zendesk, and Zoho. The top three software providers in each category are: Mark Smith, Partner at ISG Software Research, notes, “Managing customer experience is crucial for every organization, yet many lack the technology to orchestrate the customer journey across channels. The Buyers Guide for CXM offers insights to help businesses understand, optimize, and select software providers that move beyond the limitations of traditional CRM systems.” The ISG Buyers Guides for CXM, CJM, and KM are based on over a year of market research. The research is independent and not influenced by software providers, aiming to help enterprises optimize their software investments. For more details, visit the ISG Buyers Guides to read executive summaries and request full reports. About ISG Software Research ISG Software Research, formerly Ventana Research, delivers expert market research and analysis on business and IT software. The firm provides consulting, advisory, research, and education services for enterprises, software and service providers, and investment firms. For more information and to join the community, visit Ventana Research. About ISG ISG (Information Services Group) (Nasdaq: III) is a global technology research and advisory firm specializing in digital transformation services. With a client base of over 900 organizations, ISG helps clients achieve operational excellence and growth. The firm’s expertise spans AI and automation, cloud and data analytics, sourcing advisory, and more. Founded in 2006 and based in Stamford, Conn., ISG employs 1,600 professionals in over 20 countries. For more information, visit ISG. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Transformative Potential of AI in Healthcare

Transformative Potential of AI in Healthcare

Healthcare leaders are increasingly optimistic about the transformative potential of AI and data analytics in the industry, according to a new market research report by Arcadia and The Harris Poll. The report, titled “The Healthcare CIO’s Role in the Age of AI,” reveals that 96% of healthcare executives believe AI adoption can provide a competitive edge, both now and in the future. While one-third of respondents see AI as essential today, 73% believe it will become critical within the next five years. How AI is Being Used in Healthcare The survey found that 63% of healthcare organizations are using AI to analyze large patient data sets, identifying trends and informing population health management. Additionally, 58% use AI to examine individual patient data to uncover opportunities for improving health outcomes. Nearly half of the respondents also reported using AI to optimize the management of electronic health records (EHRs). These findings align with a similar survey conducted by the University of Pittsburgh Medical Center’s Center for Connected Medicine (CCM), which highlighted AI as the most promising emerging technology in healthcare. The focus on AI stems from its ability to break down data silos and make use of the vast amount of clinical data healthcare organizations collect. “Healthcare leaders are preparing to harness AI’s full potential to reform care delivery,” said Aneesh Chopra, Arcadia’s chief strategy officer. “With secure data sharing scaling across the industry, technology leaders are focusing on platforms that can organize fragmented patient records into actionable insights throughout the patient journey.” Supporting Strategic Priorities with AI AI and data analytics are also seen as critical for maintaining competitiveness and resilience, particularly as organizations face digital transformation and financial challenges. In fact, 83% of respondents indicated that data-driven tools could help them stay ahead in these areas. Technology-related priorities, such as adopting an enterprise-wide approach to data analytics (44%) and enhancing decision-making through AI (41%), were top of mind for many healthcare leaders. Improving patient experience (40%), health outcomes (35%), and patient engagement (29%) were also highlighted as key strategic goals that AI could help achieve. Challenges in AI Adoption While most healthcare leaders are confident about adopting AI (96%), they also feel pressure to do so quickly, with the push primarily coming from data and analytics teams (82%), IT teams (78%), and executives (73%). One major obstacle is the lack of talent. Approximately 40% of respondents identified the shortage of skilled professionals as a top barrier to AI adoption. To address this, organizations are seeing increased demand for skills related to data analysis, machine learning, and systems integration. Additionally, 71% of IT leaders emphasized the growing need for data-driven decision-making skills. The Evolving Role of CIOs The rise of AI is reshaping the role of CIOs in healthcare. Nearly 87% of survey respondents see themselves as strategic influencers in setting and refining AI-related strategies, rather than just implementers. However, many CIOs feel constrained by the demands of day-to-day operations, with 58% reporting that tactical execution takes precedence over long-term AI strategy development. Leaders agree that to be effective, CIOs and their teams should focus more on strategic planning, dedicating around 75% of their time to developing and implementing AI strategies. Communication and workforce readiness are also crucial, with 75% of respondents citing poor communication between IT teams and clinical staff as a barrier to AI success, and 40% noting that clinical staff need more support to utilize data analytics effectively. “CIOs and their teams are setting the stage for an AI-driven transformation in healthcare,” said Michael Meucci, president and CEO of Arcadia. “The findings show that a robust data foundation and an evolving workforce are key to realizing AI’s full potential in patient care and healthcare operations.” Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
E-Commerce Platform Improvement

E-Commerce Platform Improvement

Section I: Problem Statement CVS Health is continuously exploring ways to improve its e-commerce platform, cvs.com. One potential enhancement is the implementation of a complementary product bundle recommendation feature on its product description pages (PDPs). For instance, when a customer browses for a toothbrush, they could also see recommendations for related products like toothpaste, dental floss, mouthwash, or teeth whitening kits. A basic version of this is already available on the site through the “Frequently Bought Together” (FBT) section. Traditionally, techniques such as association rule mining or market basket analysis have been used to identify frequently purchased products. While effective, CVS aims to go further by leveraging advanced recommendation system techniques, including Graph Neural Networks (GNN) and generative AI, to create more meaningful and synergistic product bundles. This exploration focuses on expanding the existing FBT feature into FBT Bundles. Unlike the regular FBT, FBT Bundles would offer smaller, highly complementary recommendations (a bundle includes the source product plus two other items). This system would algorithmically create high-quality bundles, such as: This strategy has the potential to enhance both sales and customer satisfaction, fostering greater loyalty. While CVS does not yet have the FBT Bundles feature in production, it is developing a Minimum Viable Product (MVP) to explore this concept. Section II: High-Level Approach The core of this solution is a Graph Neural Network (GNN) architecture. Based on the work of Yan et al. (2022), CVS adapted this GNN framework to its specific needs, incorporating several modifications. The implementation consists of three main components: Section III: In-Depth Methodology Part 1: Product Embeddings Module A: Discovering Product Segment Complementarity Relations Using GPT-4 Embedding plays a critical role in this approach, converting text (like product names) into numerical vectors to help machine learning models understand relationships. CVS uses a GNN to generate embeddings for each product, ensuring that relevant and complementary products are grouped closely in the embedding space. To train this GNN, a product-relation graph is needed. While some methods rely on user interaction data, CVS found that transaction data alone was not sufficient, as customers often purchase unrelated products in the same session. For example: Instead, CVS utilized GPT-4 to identify complementary products at a higher level in the product hierarchy, specifically at the segment level. With approximately 600 distinct product segments, GPT-4 was used to identify the top 10 most complementary segments, streamlining the process. Module B: Evaluating GPT-4 Output To ensure accuracy, CVS implemented a rigorous evaluation process: These results confirmed strong performance in identifying complementary relationships. Module C: Learning Product Embeddings With complementary relationships identified at the segment level, a product-relation graph was built at the SKU level. The GNN was trained to prioritize pairs of products with high co-purchase counts, sales volume, and low price, producing an embedding space where relevant products are closer together. This allowed for initial, non-personalized product recommendations. Part 2: User Embeddings To personalize recommendations, CVS developed user embeddings. The process involves: This framework is currently based on recent purchases, but future enhancements will include demographic and other factors. Part 3: Re-Ranking Scheme To personalize recommendations, CVS introduced a re-ranking step: Section IV: Evaluation of Recommender Output Given that CVS trained the model using unlabeled data, traditional metrics like accuracy were not feasible. Instead, GPT-4 was used to evaluate recommendation bundles, scoring them on: The results showed that the model effectively generated high-quality, complementary product bundles. Section V: Use Cases Section VI: Future Work Future plans include: Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Predictive Analytics

Predictive Analytics

Industry forecasts predict an annual growth rate of 6% to 7%, fueled by innovations in cloud computing, artificial intelligence (AI), and data engineering. In 2023, the global data analytics market was valued at approximately $41 billion and is expected to surge to $118.5 billion by 2029, with a compound annual growth rate (CAGR) of 27.1%. This significant expansion reflects the growing demand for advanced analytics tools that provide actionable insights. AI has notably enhanced the accuracy of predictive models, enabling marketers to anticipate customer behaviors and preferences with impressive precision. “We’re on the verge of a new era in predictive analytics, with tools like Salesforce Einstein Data Analytics revolutionizing how we harness data-driven insights to transform marketing strategies,” says Koushik Kumar Ganeeb, a Principal Member of Technical Staff at Salesforce Data Cloud and a distinguished Data and AI Architect. Ganeeb’s leadership spans initiatives like AI-powered Salesforce Einstein Data Analytics, Marketing Cloud Connector for Data Cloud, and Intelligence Reporting (Datorama). His expertise includes architecting vast data extraction pipelines that process trillions of transactions daily. These pipelines play a crucial role in the growth strategies of Fortune 500 companies, helping them scale their data operations efficiently by leveraging AI. Ganeeb’s visionary work has propelled Salesforce Einstein Data Analytics into the forefront of business intelligence. Under his guidance, the platform’s advanced capabilities—such as predictive modeling, real-time data analysis, and natural language processing—are now pivotal in transforming how businesses forecast trends, personalize marketing efforts, and make data-driven decisions with unprecedented precision. AI and Machine Learning: The Next Frontier Beginning in 2018, Salesforce Marketing Cloud, a leading engagement platform used by top enterprises, faced challenges in extracting actionable insights and enhancing AI capabilities from rapidly growing data across diverse systems. Ganeeb was tasked with overcoming these hurdles, leading to the development of the Salesforce Einstein Provisioning Process. This process involved the creation of extensive data import jobs and the establishment of standardized patterns based on consumer adoption learning. These automated jobs handle trillions of transactions daily, delivering critical engagement and profile data in real-time to meet the scalability needs of large enterprises. The data flows seamlessly into AI models that generate predictions on a massive scale, such as Engagement Scores and insights into messaging and language usage across the platform. “Integrating AI and machine learning into data analytics through Salesforce Einstein is not just a technological enhancement—it’s a revolutionary shift in how we approach data,” explains Ganeeb. “With our advanced predictive models and real-time data processing, we can analyze vast amounts of data instantly, delivering insights that were previously unimaginable.” This innovative approach empowers organizations to make more informed decisions, driving unprecedented growth and operational efficiency. Real-World Success Stories Under Ganeeb’s technical leadership, Salesforce Einstein Data Analytics has delivered remarkable results across industries by leveraging AI and machine learning to provide actionable insights and enhance business performance. In the past year, leading companies like T-Mobile, Fitbit, and Dell Technologies have reported significant improvements after integrating Einstein. Ganeeb’s proficiency in designing and scaling data engineering solutions has been critical in helping these enterprises optimize performance. “Scalability with Salesforce Einstein Data Analytics goes beyond managing data volumes—it ensures that every data point is converted into actionable insights,” says Ganeeb. His work processing petabytes of data daily underscores his commitment to precision and efficiency in data engineering. Navigating Data Ethics and Quality Despite the rapid growth of predictive analytics, Ganeeb emphasizes the importance of data ethics and quality. “The accuracy of predictive models depends on the integrity of the data,” he notes. Salesforce Einstein Data Analytics addresses this by curating datasets to ensure they are representative and free from bias, maintaining trust while delivering reliable insights. By implementing rigorous data quality checks and ethical considerations, Ganeeb ensures that Einstein Analytics not only delivers actionable insights but also fosters transparency and trust. This balanced approach is key to the responsible use of predictive analytics across various industries. Future Trends in Predictive Analytics The future of predictive analytics looks bright, with AI and machine learning poised to further refine the accuracy and utility of predictive models. “Success lies in embracing technological advancements while maintaining a human touch,” Ganeeb notes. “By combining AI-driven insights with human intuition, businesses can navigate market complexities and uncover new opportunities.” Ganeeb’s contributions to Salesforce Einstein Data Analytics exemplify this balanced approach, integrating cutting-edge technology with human insight to empower businesses to make strategic decisions. His work positions organizations to thrive in a data-driven world, helping them stay agile and competitive in an evolving market. Balancing Benefits and Challenges – Predictive Analytics While predictive analytics offers vast potential, Ganeeb recognizes the challenges. Ensuring data quality, addressing ethical concerns, and maintaining transparency are crucial for its responsible use. “Although challenges remain, the future of AI-based predictive analytics is promising,” Ganeeb asserts. His work with Salesforce Einstein Data Analytics continues to push the boundaries of marketing analytics, enabling businesses to harness the power of AI for transformative growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com