Enterprise AI Archives - gettectonic.com
Data Governance for the AI Enterprise

A Strategic Approach to Governing Enterprise AI Systems

The Imperative of AI Governance in Modern Enterprises Effective data governance is widely acknowledged as a critical component of deploying enterprise AI applications. However, translating governance principles into actionable strategies remains a complex challenge. This article presents a structured approach to AI governance, offering foundational principles that organizations can adapt to their needs. While not exhaustive, this framework provides a starting point for managing AI systems responsibly. Defining Data Governance in the AI Era At its core, data governance encompasses the policies and processes that dictate how organizations manage data—ensuring proper storage, access, and usage. Two key roles facilitate governance: Traditional data systems operate within deterministic governance frameworks, where structured schemas and well-defined hierarchies enable clear rule enforcement. However, AI introduces non-deterministic challenges—unstructured data, probabilistic decision-making, and evolving models—requiring a more adaptive governance approach. Core Principles for Effective AI Governance To navigate these complexities, organizations should adopt the following best practices: Multi-Agent Architectures: A Governance Enabler Modern AI applications should embrace agent-based architectures, where multiple AI models collaborate to accomplish tasks. This approach draws from decades of distributed systems and microservices best practices, ensuring scalability and maintainability. Key developments facilitating this shift include: By treating AI agents as modular components, organizations can apply service-oriented governance principles, improving oversight and adaptability. Deterministic vs. Non-Deterministic Governance Models Traditional (Deterministic) Governance AI (Non-Deterministic) Governance Interestingly, human governance has long managed non-deterministic actors (people), offering valuable lessons for AI oversight. Legal systems, for instance, incorporate checks and balances—acknowledging human fallibility while maintaining societal stability. Mitigating AI Hallucinations Through Specialization Large language models (LLMs) are prone to hallucinations—generating plausible but incorrect responses. Mitigation strategies include: This mirrors real-world expertise—just as a medical specialist provides domain-specific advice, AI agents should operate within bounded competencies. Adversarial Validation for AI Governance Inspired by Generative Adversarial Networks (GANs), AI governance can employ: This adversarial dynamic improves quality over time, much like auditing processes in human systems. Knowledge Management: The Backbone of AI Governance Enterprise knowledge is often fragmented, residing in: To govern this effectively, organizations should: Ethics, Safety, and Responsible AI Deployment AI ethics remains a nuanced challenge due to: Best practices include: Conclusion: Toward Responsible and Scalable AI Governance AI governance demands a multi-layered approach, blending:✔ Technical safeguards (specialized agents, adversarial validation).✔ Process rigor (knowledge certification, human oversight).✔ Ethical foresight (bias mitigation, risk-aware automation). By learning from both software engineering and human governance paradigms, enterprises can build AI systems that are effective, accountable, and aligned with organizational values. The path forward requires continuous refinement, but with strategic governance, AI can drive innovation while minimizing unintended consequences. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Absorbs AI Recruitment Startup Moonhub

Salesforce Absorbs AI Recruitment Startup Moonhub

Salesforce Absorbs AI Recruitment Startup Moonhub in Talent Acquisition Push Salesforce has effectively acquired Moonhub, an AI-powered recruitment startup, though the financial terms remain undisclosed. The move follows Salesforce’s recent $8 billion deal for Informatica and its purchase of Convergence.ai, signaling aggressive expansion in enterprise AI. Moonhub, a Menlo Park-based firm founded in 2022 by ex-Meta engineer Nancy Xu, announced on its website that its team would transition to Salesforce, an early investor. While Salesforce clarified to TechCrunch that this does not constitute a formal acquisition (Moonhub will cease operations), key personnel will join the tech giant to bolster its AI initiatives, including Agentforce, Salesforce’s AI agent ecosystem. Why Moonhub? Moonhub specialized in AI-driven talent sourcing, automating candidate discovery, outreach, onboarding, and payroll. Its clients included Fortune 500 companies, and it had raised $14.4 million from backers like Khosla Ventures, GV (Google Ventures), and Salesforce Ventures. Xu emphasized cultural alignment, stating: “Salesforce shares our core values—customer trust and a belief in AI’s role in global innovation. Together, we’ll accelerate this mission.” The Bigger Picture: AI’s HR Takeover The deal reflects the rapid adoption of AI in HR, with 93% of Fortune 500 CHROs already deploying such tools (Gallup). However, reactions remain mixed as automation reshapes recruitment. What’s Next? With Moonhub’s team now inside Salesforce, expect tighter integration of AI agents into Salesforce’s talent solutions. Meanwhile, the startup’s standalone product will sunset, marking another example of Big Tech absorbing innovative AI ventures. Key Takeaways:✅ Moonhub’s team joins Salesforce (no formal acquisition, but a strategic absorption).🤖 Focus on AI recruitment tools (automated hiring, onboarding, payroll).📈 Part of Salesforce’s broader AI push (following Informatica, Convergence.ai deals).💡 HR AI adoption is booming—but not without controversy. Update: Clarified acquisition status per Salesforce’s statement. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Paradox of Jagged Intelligence in AI

The Paradox of Jagged Intelligence in AI

AI systems are breaking records on complex benchmarks, yet they falter on simpler tasks humans handle intuitively—a phenomenon dubbed jagged intelligence. This ainsight explores this uneven capability, tracing its evolution in frontier models and the impact of reasoning models. We introduce SIMPLE, a new public benchmark with easy reasoning tasks solvable by high schoolers, vital for enterprise AI where reliability trumps advanced math skills. Since ChatGPT’s 2022 debut, foundation models have been marketed as chat interfaces. Now, reasoning models like OpenAI’s o3 and DeepSeek’s R1 leverage extra inference-time computation for step-by-step internal reasoning, boosting performance in math, engineering, and coding. This shift to scaling inference compute arrives as pretraining gains may be plateauing. Benchmarking the Gaps Traditional AI benchmarks measure peak performance on tough tasks, like graduate exams or complex code, creating new challenges as old ones are mastered. However, they overlook reliability and worst-case performance on basic tasks, masking jaggedness in “solved” areas. Modern models outshine humans on some challenges but stumble unpredictably on others, unlike specialized tools (e.g., calculators or photo editors). Despite advances in modeling and training, this inconsistent jaggedness persists. SIMPLE targets easy problems where AI still lags, offering insights into jaggedness trends. Evolution of Jaggedness Will jaggedness shrink or grow as models advance? This question shapes enterprise AI success. Lacking jaggedness benchmarks, we created SIMPLE—a dataset of 225 simple questions, each solvable by at least 10% of high schoolers. Example Questions from SIMPLE Performance Trends Evaluating current and past top models on SIMPLE traces jaggedness over time. Green tasks are high school-level; blue are expert-level. School-level benchmarks saturated by 2023-2024, shifting focus to harder tasks. SIMPLE, using the best of gpt-4, gpt-4-turbo, gpt-4o, o1, and o3-mini, scores lowest on school-level questions. Yet, reasoning models show a ~30% improvement, suggesting they reduce jaggedness by double-checking work, linking reasoning to better simple-task performance. Case Study Insights and Implications Reasoning models transfer top-line gains to simple tasks to some extent, but SIMPLE remains unsaturated. Jaggedness persists, with top-line progress outpacing worst-case improvements. This mirrors computing’s history: excelling in narrow domains, outpacing human limits once applied, yet always facing new challenges. Jaggedness may not just define AI—it could be computation’s inherent nature. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentic AI is Here

How IT Leaders Are Deploying Agentic AI to Transform Business Workflows

The next wave of enterprise AI isn’t just about chatbots—it’s about autonomous agents that execute complex workflows end-to-end. Leading CIOs and CTOs are now embedding agentic AI across sales, customer service, finance, and IT operations to drive efficiency, accuracy, and scalability. “We’re not just automating tasks—we’re reimagining how work gets done,” says Kellie Romack, CDIO at ServiceNow. The momentum is undeniable: So where are the biggest impacts? Here’s how forward-thinking execs are deploying AI agents today. 🚀 Top Use Cases for Agentic AI 1. Supercharging Sales & Pipeline Growth “Agentic AI helps sales teams focus on high-potential clients while automating routine follow-ups.” — Jay Upchurch, CIO, SAS 2. Hyper-Personalized Customer Experiences “We cut student research time from 35 minutes to under 3—freeing advisors for deeper mentorship.” — Siva Kumari, CEO, College Possible 3. Self-Healing IT & Security Operations Gartner predicts AI will reduce manual data integration work by 60%. 4. Frictionless Back-Office Automation “We’re targeting repetitive, rules-based workflows first—like finance and procurement.” — Milind Shah, CTO, Xerox 🔑 Key Implementation Insights What’s Working ✅ Start with high-volume, repetitive tasks (e.g., ticket routing, data entry)✅ Prioritize workflows with clean, structured data✅ Use AI for augmentation—not replacement Biggest Challenges ⚠️ Data integration hurdles (55% of leaders cite this as #1 blocker)⚠️ Governance & compliance risks⚠️ Testing non-deterministic AI outputs “The real breakthrough comes when AI agents collaborate across systems—not just operate in silos.” — Kellie Romack, ServiceNow 🔮 The Future: From Assistants to Autonomous Decision-Makers Early adopters see agentic AI evolving in three phases: Salesforce, Microsoft, and IBM are already rolling out agentic frameworks—but only 11% of enterprises have full-scale adoption today. “Soon, thousands of AI agents will work in the background like a digital workforce—always on, always improving.” — Romack Your Move Where could agentic AI eliminate bottlenecks in your workflows? The most successful implementations: The question isn’t if you’ll deploy AI agents—but where they’ll drive the most value first. How is your organization experimenting with agentic AI? Share your insights below! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Salesforce Tackles Enterprise AI Reliability with Enterprise General Intelligence (EGI)

As businesses increasingly adopt AI, a critical challenge has emerged: inconsistent performance in real-world applications. Salesforce calls this phenomenon “jagged intelligence”—where AI excels in controlled environments but falters under dynamic enterprise demands. To address this, Salesforce is pioneering Enterprise General Intelligence (EGI), a new framework designed to ensure AI is not just powerful but reliable, consistent, and safe for business use. Why Enterprise AI Needs a New Approach Traditional AI benchmarks often fail to reflect real-world enterprise needs. Issues like: …have made many companies hesitant to fully deploy AI at scale. Salesforce’s EGI rethinks AI alignment for enterprises, prioritizing:✔ Consistency – Reliable performance across diverse business cases✔ Specialization – Task-specific AI models over generic LLMs✔ Safety & Governance – Built-in guardrails for compliance Key Innovations Powering EGI 1. SIMPLE: Measuring AI Consistency Salesforce’s SIMPLE dataset (225 reasoning questions) evaluates how AI performs under varying conditions—helping identify and fix inconsistencies before deployment. 2. CRMArena: Real-World AI Testing This benchmarking framework simulates authentic CRM scenarios (service agents, analysts, managers) to ensure AI adapts to real business needs—not just lab conditions. 3. SFR-Embedding: Smarter Enterprise AI A new embedding model (ranked #1 on MTEB’s 56-dataset benchmark) enhances AI’s ability to understand complex business data, improving decision-making in Salesforce Data Cloud. 4. xLAM V2: AI That Takes Action Unlike text-only LLMs, Large Action Models (xLAM V2) predict and execute enterprise tasks—optimizing everything from inventory management to financial forecasting with high precision. 5. SFR-Guard & ContextualJudgeBench: AI Safety Co-Innovation: Doubling AI Accuracy with Customer Feedback Salesforce’s customer-driven development has already doubled AI accuracy in key applications. Itai Asseo, Senior Director of Incubation & Brand Strategy at Salesforce: “By working directly with enterprises, we’ve refined AI to outperform competitors in real-world use cases—boosting both performance and trust.” The Future of Enterprise AI Salesforce’s EGI framework is setting a new standard: AI that works as reliably in business as it does in theory. For telecom and tech leaders, this means:✅ Fewer AI surprises – Consistent, predictable outputs✅ Higher ROI – Specialized models for key workflows✅ Stronger compliance – Built-in governance & safety As AI evolves, Salesforce is ensuring enterprises don’t just adopt AI—they can depend on it. Next Steps: The era of reliable enterprise AI is here. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Autonomous AI Service Agents

The AI Agent Revolution

The AI Agent Revolution: How Tectonic is Unifying Disparate AI Systems for Enterprises AI agents are proliferating at breakneck speed—embedded in platforms, deployed as standalone apps, and built on proprietary or open-source SDKs. Yet as these intelligent systems multiply, enterprises face a critical challenge: getting them to communicate, collaborate, and scale effectively across complex IT environments. Recent moves by Tectonic, Salesforce, and Google Cloud highlight the next frontier of enterprise AI: seamless, cross-platform agent orchestration. We’ve reached an inflection point where human-AI synergy can transform business operations—but only if organizations can unify their agent ecosystems. The AI Agent Collaboration Challenge Today’s enterprises use AI agents for:✔ Salesforce’s Agentforce (CRM automation)✔ Google’s Agentspace (cloud-based workflows)✔ Custom agents (built on Vertex AI, OpenAI, or open-source models) But without interoperability, these agents operate in silos—limiting their potential. Tectonic bridges this gap with secure, enterprise-grade agent orchestration, enabling businesses to: Tectonic and Supported Agent OS: The Glue Holding AI Ecosystems Together Tectonic and Agent Operating Systems (OS) are business-focused platform for orchestrating AI agents across enterprise environments. An “agent operating system” (AOS) is a type of operating system designed to facilitate the development, deployment, and management of AI agents, which are software systems that can act autonomously to achieve goals. AOS systems aim to provide a platform for AI agents to operate efficiently and effectively, offering features like resource management, context switching, and tool integration. AIOS, for example, is a particular implementation of this concept that aims to address the challenges of managing large language model (LLM)-based AI agents How It Works Real-World Use Cases 1. Salesforce + Google Gemini: Smarter CRM Salesforce’s Agentforce now integrates Google Gemini, enabling:🔹 Better RAG (Retrieval-Augmented Generation) for faster, more accurate customer responses🔹 Predictive trend analysis embedded directly in CRM workflows Tectonic’s Role: Deploys multi-agent solutions that turn AI insights into actionable items—like auto-recommending next steps for sales teams. 2. Retail: Unified Customer Experiences A retailer combines: Result: Customers get instant, accurate updates on orders—no manual backend checks required. 3. Financial Services: AI-Powered Risk Analysis Banks use: Outcome: Suspicious transactions trigger automated compliance workflows without leaving Salesforce. Tectonic’s AI Activation Path: From Pilot to Production For enterprises ready to scale AI agents, Tectonic offers a rapid deployment framework:✅ Discovery and Road Mapping – Co-design high-impact use cases✅ Rapid Implementation – Deploy working agents in sandbox environments✅ Pre-Built Industry Libraries – Accelerate time-to-value The Future: Harmonized AI Ecosystems The biggest barrier to AI adoption isn’t technology—it’s fragmentation. With the Agent OS in place, businesses can finally:✔ Break down silos between Salesforce, Google Cloud, and custom AI✔ Automate complex workflows end-to-end✔ Scale AI responsibly with enterprise-grade governance The bottom line? AI agents are powerful alone—but unstoppable when unified. Ready to orchestrate your AI ecosystem?Discover how Tectonic’s Agentforce approach can transform your enterprise AI strategy. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Salesforce Research Pioneers Enterprise-Grade AI Reliability

Bridging the Gap Between AI Potential and Business Reality Salesforce AI Research has unveiled groundbreaking work to solve one of enterprise AI’s most persistent challenges: the “jagged intelligence” phenomenon that makes AI agents unreliable for business tasks. Their latest findings, published in the inaugural Salesforce AI Research in Review report, introduce three critical innovations to make AI agents truly enterprise-ready. The Jagged Intelligence Problem “Today’s AI can solve advanced calculus but might fail at basic customer service queries. This inconsistency is what we call ‘jagged intelligence’ – and it’s the biggest barrier to enterprise adoption.”— Shelby Heinecke, Senior AI Research Manager Key Findings: Three Pillars of Enterprise AI Reliability 1. SIMPLE Benchmark: Testing What Actually Matters 225 real-world business questions that reveal an AI’s true operational readiness: Why it matters: Unlike academic benchmarks, SIMPLE evaluates:✅ Practical reasoning✅ Consistency across repetitions✅ Business context understanding Early Results: Top models score 89% on coding tests but just 62% on SIMPLE. 2. ContextualJudgeBench: Fixing the AI Judge Problem When AIs evaluate other AIs, how do we know the judges are reliable? Salesforce’s solution: Evaluation Criteria Traditional Benchmarks ContextualJudgeBench Assessment Depth Single-score output 2,000+ response pairs Bias Detection None Measures rater consistency Enterprise Focus General knowledge Business decision-making Impact: Reduces “hallucinated” evaluations by 40% in testing. 3. CRMArena: The First AI Agent Proving Ground A specialized framework testing AI agents on real CRM tasks: Test Categories Sample Results: python Copy Download { “Agent”: “Einstein_Service_Pro”, “Task”: “Prioritize 50 support cases”, “Accuracy”: 92%, “Speed”: 3.2 sec/case, “Consistency”: 88% } Enterprise Benefit: Finally answers “Which AI agent actually works for my sales team?” Under-the-Hood Breakthroughs SFR-Embedding v2 SFR-Guard AI watchdog models that monitor:🔒 Toxicity🔒 Prompt injections🔒 Data leakage xLAM Updates TACO Models Generates chains of thought-and-action for complex workflows like: Why This Matters for Businesses “These aren’t flashy demos—they’re the industrial-grade foundations for AI that actually works in your ERP, CRM, and service systems,” explains Chief Scientist Silvio Savarese. Immediate Applications: What’s Next:Salesforce will open-source SIMPLE and expand CRMArena to 50+ industry-specific tasks by EOY 2024. “We’re not chasing artificial general intelligence—we’re building enterprise general intelligence: AI that’s boringly reliable where it matters most.”— Salesforce AI Research Team Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Agentforce: Modernizing 311 and Case Management

Join Tectonic for an informational webinar on Salesforce Agentforce, Modernizing 311 services, and Case management. In this webinar you will hear: For more information fill out the contact us form below or reach out to the Public Sector team PublicSector@GetTectonic.com Get ready for the Next Frontier in Enterprise AI: Shaping Public Policies for Trusted AI Agents! AI agents are a technological revolution – the third wave of artificial intelligence after predictive and generative AI. They go beyond traditional automation, being capable of searching for relevant data, analyzing it to formulate a plan, and then putting the plan into action. Users can configure agents with guardrails that specify what actions they can take and when tasks should be handed off to humans. For the past 25 years, Salesforce has led their customers through every major technological shift: from cloud, to mobile, to predictive and generative AI, and, today, agentic AI. We are at the cusp of a pivotal moment for enterprise AI that has the opportunity to supercharge productivity and change the way we work forever. This will require governments working together with industry, civil society, and all stakeholders to ensure responsible technological advancement and workforce readiness. We look forward to continuing our contributions to the public policy discussions on trusted enterprise AI agents. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce’s AI Evolution

Salesforce’s AI Evolution:

Salesforce’s AI Evolution: Efficiency, Expansion, and What Comes Next Salesforce isn’t just a CRM giant anymore—it’s becoming a central hub for AI-driven enterprise automation. Its Agentforce platform, already in use by over 3,000 customers, is proving its worth, both for clients and internally. The company has automated 380,000 support requests with an 84% resolution rate without human intervention, while sales productivity has jumped 7% thanks to AI-generated leads. But the bigger story might be how Salesforce is changing the way businesses pay for AI. Moving toward consumption-based pricing—charging based on how much companies use AI agents and data—means revenue might fluctuate, but it also aligns with how modern tech scales. And with $37.9 billion in FY25 revenue (up 9% YoY) and net income surging 50%, Salesforce has the financial muscle to experiment. What’s Driving the AI Growth? The Risks: Unpredictability in the Shift The move to usage-based pricing means revenue could swing with customer adoption rates. If businesses are slow to ramp up AI usage, growth could stall. But if adoption accelerates—as it has internally, where AI has boosted engineering productivity by 30%—this model could pay off big. The Bottom Line Salesforce is betting that AI will make it indispensable to enterprises. With strong financials, a growing AI customer base, and smart partnerships, it’s well-positioned—but the real test will be whether businesses fully embrace AI agents at scale. If they do, Salesforce could become far more than a CRM. (Originally published on wdstock, April 2025) Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
enterprise ai rag

Enterprise AI RAG

Retrieval-Augmented Generation (RAG): Enhancing AI with External Knowledge Large language models (LLMs) can answer nearly any question—but their responses aren’t always based on verified or up-to-date information. Retrieval-augmented generation (RAG) bridges this gap by enabling AI applications to access external knowledge sources, making it invaluable for enterprises leveraging proprietary data. By integrating RAG into their AI strategy, organizations can deliver accurate, secure, and compliant AI-powered solutions grounded in real-time, internal knowledge. To get started, explore RAG’s architecture, benefits, and challenges, then follow a six-step best practices checklist for enterprise adoption. How RAG Works In a standard LLM, responses are generated solely from pre-trained data, limiting accuracy to the model’s training cutoff date and excluding proprietary business knowledge. RAG enhances this process in three stages: Why Enterprises Need RAG RAG overcomes three key LLM limitations: Challenges to Address: 6 Best Practices for Implementing RAG Integrating RAG into Your AI Roadmap Start with high-impact use cases like customer support, internal knowledge bases, or compliance documentation. Take a phased approach, building expertise in data preparation, embeddings, and prompt engineering. Complement RAG with fine-tuning and supervised learning for a robust, enterprise-ready AI solution. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Google Data Studio and Salesforce

What Does the Salesforce Google Cloud Partnership Mean?

Salesforce and Google Cloud Expand AI Partnership: What It Means for Your Business Enterprise AI is evolving at an unprecedented pace. This week, Salesforce and Google Cloud announced a major expansion of their strategic partnership, promising to give businesses greater flexibility, power, and choice in building AI-driven customer experiences and data strategies. This collaboration isn’t just about new technology—it’s about reimagining how businesses engage customers, unlock insights, and drive efficiency with AI. But what does that mean in practical terms? Let’s break down the top key opportunities. Why This Matters for Your Business In today’s business arena, AI isn’t just an advantage—it’s a necessity. With this partnership, businesses can: ✅ Unify Data Seamlessly – Break down silos with a zero-copy architecture, eliminating data fragmentation.✅ Leverage AI Flexibility – Choose predictive, generative, and multi-modal AI models without vendor lock-in.✅ Ensure Trust & Security – Use bias detection, explainability tools, and enterprise-grade security.✅ Streamline Workflows – Automate processes across Salesforce, Google Cloud, and other key platforms. This partnership isn’t just about adding AI—it’s about creating an intelligent, unified ecosystem that connects data, applications, and AI models. AI in Action: How Businesses Can Benefit 1️⃣ Smarter, Faster Customer Support with AI Agents With Salesforce Agentforce powered by Google Gemini AI, businesses can deploy multi-modal AI agents that handle text, images, audio, and video, creating more natural and intelligent customer interactions. 🔹 AI-Powered Insurance ClaimsA customer submits an insurance claim by uploading images of car damage and leaving an audio voicemail. Agentforce can:✔️ Analyze both the image and audio to assess the claim.✔️ Cross-check details using real-time Google Search grounding.✔️ Generate a claim recommendation in seconds, reducing wait times. 🔹 AI-Driven Contact CentersSupport agents struggle to gauge frustration over the phone. With Google Cloud AI in Service Cloud, businesses can:✔️ Analyze tone and sentiment in real time.✔️ Escalate calls automatically when frustration is detected.✔️ Provide AI coaching to help agents respond effectively. 2️⃣ Proactive Business Insights: AI That Thinks Ahead AI doesn’t just respond to customer needs—it anticipates them. By integrating Salesforce Data Cloud with Google BigQuery and Vertex AI, businesses can predict and prevent issues before they arise. 🔹 AI-Powered Supply Chain Risk DetectionA global retailer can:✔️ Monitor real-time risks (weather, port congestion, geopolitical issues).✔️ Predict delays before they happen.✔️ Automatically adjust supply routes to minimize disruptions. 🔹 AI-Driven Sales Forecasting & Lead ScoringWith Gemini AI inside Agentforce, sales teams can:✔️ Predict lead conversion rates with AI-driven analytics.✔️ Analyze customer intent from emails, calls, and social interactions.✔️ Get AI-powered recommendations to optimize outreach. 3️⃣ Hyper-Personalized Customer Experiences Customers expect brands to know them. With Salesforce Data Cloud + Google AI, businesses can deliver personalized experiences at scale. 🔹 AI-Powered Shopping AssistantsA luxury e-commerce brand can:✔️ Let customers upload a photo of an item they love.✔️ Use AI to identify similar products and make recommendations.✔️ Incorporate real-time sentiment analysis to refine suggestions. 🔹 AI-Driven Dynamic Pricing & PromotionsA travel company using Salesforce Data Cloud + Vertex AI can:✔️ Analyze real-time demand, competitor pricing, and customer behavior.✔️ Dynamically adjust pricing and offer personalized promotions.✔️ Deploy A/B tests to optimize revenue strategies. 4️⃣ A Unified Data Strategy for Smarter Decisions The biggest advantage of this partnership? Seamless connectivity between Salesforce Data Cloud, Vertex AI, BigQuery, Tableau, and Looker, creating AI-powered business intelligence. 🔹 AI-Powered Business DashboardsA global enterprise with multiple CRM and ERP systems can:✔️ Consolidate real-time data without duplication.✔️ Use AI-powered insights to surface key trends.✔️ Automate predictive analytics dashboards for proactive decision-making. 🔹 AI-Driven Revenue IntelligenceA SaaS company can:✔️ Analyze churn risk and upsell opportunities.✔️ Use AI-driven insights to optimize sales and marketing.✔️ Deploy custom Vertex AI models directly in Salesforce workflows. The Takeaway The Salesforce-Google Cloud partnership brings unmatched AI and data capabilities to businesses, enabling: ✅ Seamless data unification for smarter decision-making.✅ AI-powered automation to reduce workload and drive efficiency.✅ Advanced AI models for hyper-personalized customer experiences. As AI adoption accelerates, businesses that invest in the right strategy today will lead tomorrow. With Salesforce Data Cloud and Google Vertex AI, companies can embrace AI confidently, break down data silos, and drive transformation like never before. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentforce to the Team

Redefining AI-Driven Customer Service

Salesforce’s Agentforce: Redefining AI-Driven Customer Service Salesforce has made major strides in AI-powered customer service with Agentforce, its agentic AI platform. The CRM leader now resolves 85% of customer queries without human intervention—an achievement driven by three key factors: Speaking at the Agentforce World Tour, Salesforce Co-Founder & CTO Parker Harris emphasized the platform’s role in handling vast volumes of customer interactions. The remaining 15% of queries are escalated to human agents for higher-value interactions, ensuring complex issues receive the necessary expertise. “We’re all shocked by the power of these LLMs. AI has truly hit a tipping point over the past two years,” Harris said. Currently, Agentforce manages 30,000 weekly conversations for Salesforce, proving its growing impact. Yet, the journey to adoption wasn’t without its challenges. From Caution to Acceleration: Agentforce’s Evolution Initially, Salesforce approached the Agentforce rollout with caution, concerned about AI hallucinations and accuracy. However, the company ultimately embraced a learn-by-doing approach. “So, we went for it!” Harris recalled. “We put it out there and improved it every hour. Every interaction helped us refine it.” This iterative process led to significant advancements, with Agentforce now seamlessly handling a high volume of inquiries. Expanding Beyond Customer Support Agentforce’s impact extends beyond customer service—it’s also revolutionizing sales operations at Salesforce. The platform acts as a virtual sales coach for 25,000 sales representatives, offering real-time guidance without the social pressures of a human supervisor. “Salespeople aren’t embarrassed to ask an AI coach questions, which makes them more effective,” Harris noted. This AI-driven coaching has enhanced sales efficiency and confidence, allowing teams to perform at a higher level. Real-World Impact and Competitive Edge Salesforce isn’t just promoting Agentforce—it’s using it to prove its value. Harris shared success stories, including reMarkable, which automated 35% of its customer service inquiries, reducing workload by 7,350 queries per month. Salesforce CEO Marc Benioff highlighted this competitive edge during the launch of Agentforce 2.0, pointing out that while many companies talk about AI adoption, few truly implement it at scale. “When you visit their websites, you still find a lot of forms and FAQs—but not a lot of AI agents,” Benioff said. He specifically called out Microsoft, stating: “If you look for Co-Pilot on their website, or how they’re automating support, it’s the same as it was two years ago.” Microsoft pushed back on Benioff’s critique, sparking a war of words between the tech giants. What’s Next for Salesforce? Beyond AI-driven service and sales, Salesforce is making bold moves in IT Service Management (ITSM), positioning itself against competitors like ServiceNow. During a recent Motley Fool podcast, Benioff hinted at Salesforce’s ITSM ambitions, stating: “We’re building new apps, like ITSM.” At the TrailheadDX event, Salesforce teased this new product, signaling its expansion into enterprise IT management—a move that could shake up the ITSM landscape. With AI agents redefining work across industries, Salesforce’s aggressive push into automation and ITSM underscores its vision for the future of enterprise AI. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
salesforce end to end

Salesforce and Google Announcement

Salesforce (NYSE:CRM) has entered into a deal with Google (NASDAQ:GOOGL) to offer its customer relations management software, Agentforce artificial intelligence assistants, and Data Cloud offerings through Google Cloud, the companies announced today. Google and Salesforce already have many of the same clients, and this new deal will allow for more product integration between Google Workspace and Salesforce’s customer relationship management and AI offerings. Salesforce already uses Amazon (AMZN) Web Services for much of its cloud computing. “Our mutual customers have asked us to be able to work more seamlessly across Salesforce and Google Cloud, and this expanded partnership will help them accelerate their AI transformations with agentic AI, state-of-the-art AI models, data analytics, and more,” said Thomas Kurian, CEO of Google Cloud. The deal is expected to total $2.5B over the next seven years, according to a report by Bloomberg. Salesforce and Google today announced a major expansion of their strategic partnership, delivering choice in the models and capabilities businesses use to build and deploy AI-powered agents. In today’s constantly evolving AI landscape, innovations like autonomous agents are emerging so quickly that businesses struggle to keep pace. This expanded partnership provides crucial flexibility, empowering customers to develop tailored AI solutions that meet their specific needs, rather than being locked into a single model provider. Google Cloud is at the forefront of enterprise AI innovation with millions of developers building with Google’s cutting-edge Gemini models and on Google Cloud’s AI-optimized infrastructure. This expanded partnership will empower Salesforce customers to build Agentforce agents using Gemini and to deploy Salesforce on Google Cloud. This is an expansion of the existing partnership that allows customers to use data from Data Cloud and Google BigQuery bi-directionally via zero-copy technology—further equipping customers with the data, AI, trust, and actions they need to bring autonomous agents into their businesses. Additionally, this integration empowers Agentforce agents with the ability to reference up-to-the-minute data, news, current events, and credible citations, substantially enhancing their contextual awareness and ability to deliver accurate, evidence-backed responses. For example, in supply chain management and logistics, an agent built with Agentforce could track shipments and monitor inventory levels in Salesforce Commerce Cloud and proactively identify potential disruptions using real-time data from Google Search, including weather conditions, port congestion, and geopolitical events. Availability is expected in the coming months. AI: Unlocking the Power of Choice and Flexibility with Gemini and Agentforce Businesses need the freedom to choose the best models for their needs rather than be locked into one vendor. In 2025, Google’s Gemini models will also be available for prompt building and reasoning directly within Agentforce. With Gemini and Agentforce, businesses will benefit from: For example, an insurance customer can submit a claim with photos of the damage and an audio voicemail from a witness. Agentforce, using Gemini, can then help the insurance provider deliver better customer experiences by processing all these inputs, assessing the claim’s validity, and even using text-to-speech to contact the customer with a resolution, streamlining the traditionally lengthy claims process. Availability is expected this year. Trust: Salesforce Platform deployed on Google Cloud Customers will be able to use Salesforce’s unified platform (Agentforce, Data Cloud, Customer 360) on Google Cloud’s highly secure, AI-optimized infrastructure, benefiting from features like dynamic grounding, zero data retention, and toxicity detection provided by the Einstein Trust Layer. Once Salesforce products are available on Google Cloud, customers will also have the ability to procure Salesforce offerings through the Google Cloud Marketplace, opening up new possibilities for global businesses to optimize their investments across Salesforce and Google Cloud and benefiting thousands of existing joint customers. Action: Enhanced Employee Productivity and Customer Service with AI-Powered Integrations Millions use Salesforce and Google Cloud daily. This partnership prioritizes choice and flexibility, enabling seamless cross-platform work. New and deeper connections between platforms like Salesforce Service Cloud and Google Cloud’s Customer Engagement Suite, as well as Slack and Google Workspace, will empower AI agents and service representatives with unified data access, streamlined workflows, and advanced AI capabilities, regardless of platform. Salesforce and Google Cloud are deeply integrating their customer service platforms—Salesforce Service Cloud and Google Cloud’s Customer Engagement Suite—to create a seamless and intelligent support experience. Expected later this year, this unified approach empowers AI agents in Service Cloud with: Salesforce and Google Cloud are also exploring deeper integrations between Slack and Google Workspace, boosting productivity and creating a more cohesive digital workspace for teams and organizations. The companies are currently exploring use cases such as: Expanding Partnership Capabilities and Integrations This partnership goes beyond core product integrations to deliver a more connected and intelligent data foundation for businesses. Expected availability throughout 2025: This landmark partnership between Salesforce and Google represents a strategic paradigm shift in enterprise AI deployment, emphasizing infrastructure innovation, AI capability enhancement, and enterprise value. The integration of Google Search grounding provides a unique competitive advantage, offering real-time, factual responses backed by the world’s most comprehensive search engine. The companies are committed to ongoing innovation and deeper collaboration to empower businesses with even more powerful solutions. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Generative AI Prompts with Retrieval Augmented Generation

AI Prompts for Small Businesses

How AI Prompts Can Help Small Businesses Win More Customers Getting new customers can be a challenge for small businesses. You may be eager to explore artificial intelligence (AI) but unsure where to begin. The answer? AI prompts—a simple yet powerful way to automate and optimize sales efforts. This guide explores five AI prompts designed to enhance your sales process, from personalized outreach to lead generation. Let’s dive in! What Is an AI Prompt? An AI prompt is a specific instruction or question given to an AI tool to generate responses or perform tasks. The more precise the prompt, the better the results. For small businesses, AI prompts can: Why AI Matters for Small Business Sales AI is a game-changer for small business sales. It provides insights into customer behavior, streamlines processes, and enhances decision-making. Unlike enterprise AI applications, SMB-focused AI helps automate repetitive tasks, allowing sales teams to focus on relationship-building and closing deals. A strong starting point? AI-powered CRM tools. Integrating AI with your CRM unlocks predictive analytics, automation, and smarter customer engagement. In fact, small businesses using Salesforce AI have reported: AI Prompts vs. Traditional Sales Methods AI-Powered Prompts Traditional Sales Methods Automated lead generation Manual lead hunting Personalized sales emails Generic mass emails Instant follow-ups Delayed responses AI-generated sales scripts Improvised pitches Smart objection handling Reactive responses 5 AI Prompts to Supercharge Your Sales 1. Lead Generation Prompt Objective: Identify potential leads quickly. AI Prompt: “Generate a list of 10 potential leads based on [industry, location, company size].” How It Helps: AI scans data to find ideal customers, saving time and improving outreach accuracy. Example Output: 2. Sales Email Drafting Prompt Objective: Craft compelling emails that boost click rates. AI Prompt: “Write a persuasive sales email to [target] highlighting our [product/service] and inviting them to a demo.” How It Helps: AI generates tailored emails that resonate with prospects, improving open and response rates. Example Output: Subject: Transform Your Operations with Our CRMHi [First Name],I noticed your business is growing rapidly in [industry]. Our CRM can streamline operations and boost efficiency. Let’s schedule a quick demo this week—let me know your availability![Your Name] 3. Customer Follow-Up Prompt Objective: Keep potential customers engaged. AI Prompt: “Write a follow-up email to [customer] who expressed interest in our [product/service], including a gentle reminder and any new updates.” How It Helps: AI ensures timely, professional follow-ups, maintaining engagement without being pushy. Example Output: Subject: Following Up on Our ConversationHi [First Name],I wanted to check in on our discussion about [product/service]. We recently introduced [new feature], which could be a great fit for you. Let me know if you’d like to reconnect.Thanks,[Your Name] 4. Sales Pitch Script Prompt Objective: Develop a persuasive pitch. AI Prompt: “Create a 2-minute sales pitch for our [product/service] emphasizing key benefits and unique selling points.” How It Helps: A well-structured pitch increases confidence and improves conversion rates. Example Output: “Hello! My name is [Your Name] from [Company Name]. We specialize in [product/service]. What sets us apart is [unique benefit]. Our solution has helped companies like yours achieve [specific results]. Interested in learning more?” 5. Objection Handling Prompt Objective: Overcome sales objections effectively. AI Prompt: “List two common objections about our [product/service] and provide persuasive responses.” How It Helps: Prepares sales teams with effective responses to common objections, increasing deal closures. Example Output: Objection: “It’s too expensive.”Response: “Our solution pays for itself within months through increased efficiency.” Objection: “We’re happy with our current provider.”Response: “That’s great! Many of our clients felt the same until they saw how much more they could achieve with our features.” Unlock Growth with AI-Powered Sales Using AI prompts for sales isn’t just an experiment—it’s a proven way to boost efficiency, personalization, and success. Businesses that embrace AI-driven strategies will outpace competitors and scale faster. Ready to transform your sales game? Start using AI prompts today! Contact Tectonic. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com