ERP Archives - gettectonic.com
data cloud and data silos

Unify Your Data Silos

Unify Your Data Silos: Deliver Connected, Personalized Experiences 🔹 65% of customers expect businesses to tailor experiences to their evolving needs. (State of Data and Analytics Report, 2023) Have you ever received a marketing promotion for something you just bought? Or had to repeat your purchase history before getting help from customer service? These disjointed experiences frustrate customers and result from data silos that prevent a unified view of the customer journey. With enterprises using over 1,000 applications on average, data ecosystems are highly complex. Many businesses attempt to centralize data in lakes, warehouses, or lakehouses, yet 73% of enterprise data remains unused for analytics (Forrester). Why? Because much of this data stays locked in backend systems, failing to power the real-time applications and workflows that drive customer engagement and business success. Break Down Data Silos to Create Seamless Customer Experiences By unifying your data, you can personalize every interaction—from online reviews and service records to browsing history and purchases. And by securely activating this data within your CRM and AI-driven workflows, you can deliver smarter, faster, and more impactful customer experiences. Unlock Business Growth with Unified Data When your teams have access to a complete, real-time customer profile, they can turn insights into action across every touchpoint: ✅ Sales Teams receive real-time guidance during calls, offering tailored recommendations based on customer behavior.✅ Service Agents proactively address issues with instant alerts and AI-powered resolutions.✅ Marketers deliver personalized, cross-channel messaging, adapting dynamically to customer actions.✅ Retailers optimize shopping experiences by responding in real time to cart abandonment and browsing patterns.✅ IT Teams build real-time apps to detect fraud, assess economic trends, and enhance security. Checklist: Build a 360° View of Your Customer ✅ Basic Data: Demographics, job title, email, and IP address.✅ Interaction Data: Email opens, website visits, CTRs, customer service calls, and social media activity.✅ Behavioral & Attitudinal Data: Purchase history, order values, survey feedback, and online reviews. Turn Raw Data Into Actionable Insights with Data Cloud Data Cloud transforms fragmented data into a single, trusted source of truth, deeply integrated with the Salesforce Platform. It enables organizations to: ✔ Connect and unify all customer data without complex data pipelines.✔ Activate insights in real-time across sales, service, and marketing workflows.✔ Power trusted AI solutions using all enterprise data for better decision-making. See How Formula 1 Uses Data to Drive Fan Engagement 📺 Watch how F1 personalizes fan experiences “With over 500 million fans worldwide, we needed personalized journeys and always-on capabilities.”— Matthew Kemp, Senior CRM & Customer Operations Manager, F1 Checklist: Unite Your Data for Better Customer Experiences ✔ Make data easy to store, manage, and analyze from any source.✔ Think holistically about behavioral, interaction, and attitudinal data.✔ Use a platform that transforms raw data into actionable insights.✔ Audit your systems for data silos causing disconnected experiences.✔ Ensure data is accessible in everyday workflows with trusted solutions like Data Cloud. 📊 Data-driven businesses don’t just manage customer experiences—they revolutionize them. 🚀 Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
itsm

Salesforce Move Into IT Service Management

Salesforce CEO Marc Benioff Signals Bold Move into IT Service Management (ITSM)Salesforce CEO Marc Benioff has once again made headlines, this time with a bold announcement about the company’s expansion into IT Service Management (ITSM). During a recent appearance on the Motley Fool podcast, Benioff revealed that Salesforce is “building new apps, like ITSM.” This follows a subtle hint he dropped during an earnings call, where he teased, “At our TrailheadDX event… You might get a glimpse of the new ITSM product that’s coming if you look hard.” While the ITSM product didn’t take center stage at the event, Salesforce’s intentions to make significant strides in the ITSM space are clear. This move is particularly intriguing given the evolving dynamics between the ITSM and CRM markets, where Salesforce and ServiceNow are increasingly encroaching on each other’s territories. ServiceNow’s CRM Ambitions: A Challenge to Salesforce ServiceNow, the dominant player in the ITSM market, has been making bold moves into CRM, a domain where Salesforce has long been the leader. In fact, Salesforce outsells its closest competitor, Microsoft, by nearly four-to-one in the CRM space. However, ServiceNow is determined to carve out a significant share of the CRM market. Earlier this week, ServiceNow announced its agreement to acquire Moveworks for $2.8 billion. In an interview with CNBC, ServiceNow CEO Bill McDermott emphasized that this acquisition would strengthen the company’s front-office capabilities and bolster its ambition to become “the market leader” in CRM. Unlike traditional CRM competitors who often compete on price, ServiceNow offers a unique value proposition. Its CRM solution integrates with middle- and back-office workflows, encompassing order management, inventory, invoicing, and more. This end-to-end approach provides a more data-rich CRM experience, setting ServiceNow apart from Salesforce. While Salesforce still holds an edge in ease-of-implementation and core CRM functionality—particularly as ServiceNow relies on partners for marketing CRM capabilities—ServiceNow’s differentiated approach poses a long-term threat. Its strong foothold among IT teams, who are increasingly influencing customer-facing technology decisions, adds to its competitive advantage. Salesforce’s ITSM Push: A Strategic Countermove? Benioff’s announcement about Salesforce’s ITSM ambitions could be seen as a strategic countermeasure to ServiceNow’s CRM expansion. Over the years, the two tech giants have steadily encroached on each other’s markets, leveraging their respective strengths to diversify their offerings. As the lines between enterprise technologies continue to blur, the competition between Salesforce and ServiceNow is heating up. With the rise of AI and data platforms, businesses are seeking more integrated and innovative solutions, setting the stage for a fascinating battle of innovation and market dominance. Benioff Takes Aim at Microsoft—Again Adding another layer to this competitive narrative, Benioff didn’t miss the opportunity to critique Microsoft during the podcast. While he expressed amazement at the rapid advancements in AI over the past two years, he also took a jab at Microsoft’s offerings. “I think a lot of our customers have been very disappointed with a lot of the solutions that have been given to them—or even shoved at them,” Benioff said. “Even Microsoft has really disappointed so many of our customers. Copilot has a dozen copilots across its product lines, none of which are connected. It’s not one source of data or one piece of enterprise code.” This isn’t the first time Benioff has targeted Microsoft. He has previously expressed skepticism about its approach to AI, even comparing its Copilot feature to the infamous “Clippy” assistant from the past. A High-Stakes Battle of Innovation As the tech industry continues to evolve, the competition between Salesforce, ServiceNow, and Microsoft is intensifying. With Salesforce venturing into ITSM, ServiceNow pushing into CRM, and Benioff’s recurring critiques of Microsoft, the coming months promise to bring even more innovation—and perhaps a few more pointed remarks. The battle lines are drawn, and the stakes are high. As these tech giants vie for dominance, businesses stand to benefit from the wave of innovation and competition driving the industry forward. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Captivates the World

AI vs Human Intelligence

Artificial Intelligence vs. Human Intelligence: Key Differences Explained Artificial intelligence (AI) often mimics human-like capabilities, but there are fundamental differences between natural human intelligence and artificial systems. While AI has made remarkable strides in replicating certain aspects of human cognition, it operates in ways that are distinct from how humans think, learn, and solve problems. Below, we explore three key areas where AI and human intelligence diverge. Defining Intelligence Human IntelligenceHuman intelligence is often described using terms like smartness, understanding, brainpower, reasoning, sharpness, and wisdom. These concepts reflect the complexity of human cognition, which has been debated for thousands of years. At its core, human intelligence is a biopsychological capacity to acquire, apply, and adapt knowledge and skills. It encompasses not only logical reasoning but also emotional understanding, creativity, and social interaction. Artificial IntelligenceAI refers to machines designed to perform tasks traditionally associated with human intelligence, such as learning, problem-solving, and decision-making. Over the past few decades, AI has advanced rapidly, particularly in areas like machine learning and generative AI. However, AI lacks the depth and breadth of human intelligence, operating instead through algorithms and data processing. Human Intelligence: What Humans Do Better Humans excel in areas that require empathy, judgment, intuition, and creativity. These qualities are deeply rooted in our evolution as social beings. For example: These capabilities make human intelligence uniquely suited for tasks that involve emotional connection, ethical decision-making, and creative thinking. Artificial Intelligence: What AI Does Better AI outperforms humans in several areas, particularly those involving data processing, pattern recognition, and speed: However, AI’s strengths are limited to the data it is trained on and the algorithms it uses, lacking the adaptability and contextual understanding of human intelligence. 3 Key Differences Between AI and Human Intelligence AI and Human Intelligence: Working Together The future lies in human-AI collaboration, where the strengths of both are leveraged to address complex challenges. For example: While some may find the idea of integrating AI into decision-making unsettling, the scale of global challenges—from climate change to healthcare—demands the combined power of human and artificial intelligence. By working together, humans and AI can amplify each other’s strengths while mitigating weaknesses. Conclusion AI and human intelligence are fundamentally different, each excelling in areas where the other falls short. Human intelligence is unparalleled in creativity, empathy, and ethical reasoning, while AI dominates in data processing, pattern recognition, and speed. The key to unlocking the full potential of AI lies in human-AI collaboration, where the unique strengths of both are harnessed to solve the world’s most pressing problems. As we move forward, this partnership will likely become not just beneficial but essential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Sales Engagement for Nonprofits

Salesforce Sales Engagement for Nonprofits

Supercharge Your Nonprofit’s Donor Outreach with Salesforce Sales Engagement It’s time for the annual donor campaign. The fundraising team is juggling hundreds—if not thousands—of emails, phone calls, and follow-ups. The budget depends on surpassing last year’s donations, but with limited staff and time, reaching every potential donor feels impossible. The executive director asks, “How can we maximize donor engagement without increasing headcount—or at least focus our resources on the most likely givers?” Sound familiar? Every nonprofit faces the challenge of doing more with less. Fortunately, Salesforce offers a solution to keep your team organized, on task, and working smarter: Salesforce Sales Engagement. What Is Salesforce Sales Engagement? Salesforce Sales Engagement acts as a high-powered assistant for fundraising, membership, or program teams. This productivity hub, embedded within Salesforce, streamlines daily activities through automation, organization, and AI-powered insights. Key benefits include:✅ Cadences & Work Queues – Ensure no email, call, or task slips through the cracks.✅ Centralized Outreach – Keep all donor interactions in one place for seamless engagement.✅ AI-Driven Optimization – Analyze performance and refine strategies based on data. Previously known as High-Velocity Sales, Sales Engagement accelerates development cycles and scales outreach efforts effortlessly. By prioritizing critical tasks and automating others, your team can focus on building meaningful relationships and securing commitments faster. Engagement Cadences: Your Fundraising Playbook in Action Cadences serve as step-by-step roadmaps, guiding teams on how and when to engage with donors, members, or program participants. Whether you’re running a donor drive, promoting event registrations, or managing renewals, cadences ensure consistency and efficiency. Two Types of Cadences: 1️⃣ Standard Cadences – A structured sequence of touchpoints (emails, calls, LinkedIn messages) over time, such as a 30-day donor onboarding journey.2️⃣ Quick Cadences – A single, repeatable action, like automatically sending a thank-you email after a donation. With Cadence Builder, customizing workflows for different donor segments is fast and easy. Actions dynamically adjust based on engagement—so if a donor opens an email, they might receive a follow-up call; if they don’t, a reminder email is sent instead. Best of all, your team doesn’t have to track or remember each step—Sales Engagement assigns tasks automatically to individual work queues, ensuring nothing gets missed. Data-Driven Decision-Making with Built-In Analytics To improve outreach, you need to measure it. Sales Engagement provides powerful dashboards and reports to evaluate performance and optimize your approach. ✅ Track email open rates, call response rates, and donor engagement trends.✅ Identify successful messaging and refine underperforming campaigns.✅ Tie engagement metrics to fundraising goals to measure real impact. Unlike basic email tracking, Sales Engagement helps nonprofits connect data-driven insights with mission outcomes—empowering smarter decision-making without complex process changes. Already Using Salesforce Flows for Outreach? If your nonprofit relies on Salesforce Flow for outreach, you may wonder if Sales Engagement is necessary. The answer? Yes—if you want to do more with less effort. While flows are great for automation, Sales Engagement goes further with built-in call scripts, AI-powered task prioritization, and adaptable cadences. It offers a more intuitive, flexible approach to donor engagement, reducing manual work and boosting efficiency. Ready to Transform Your Fundraising Strategy? Salesforce Sales Engagement isn’t just for corporations—it’s a game-changer for nonprofits, helping teams increase donations, memberships, and event participation with less effort and greater impact. Are you ready to work smarter, engage better, and raise more? Let’s get started. Contact Tectonic today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Energy and Utilities Cloud Explained

Salesforce Energy and Utilities Cloud Explained

Salesforce Energy and Utilities Cloud is a specialized industry solution built on the Salesforce platform, designed to meet the unique needs of energy and utility companies. It helps these organizations manage customer relationships, streamline operations, and drive digital transformation in an increasingly complex and regulated industry. The cloud solution provides tools for customer engagement, field service management, and regulatory compliance, among other functionalities. Key Features of Salesforce Energy and Utilities Cloud: Benefits of Salesforce Energy and Utilities Cloud: Use Cases: Implementation Considerations: In summary, Salesforce Energy and Utilities Cloud is a comprehensive solution designed to help energy and utility companies enhance customer engagement, streamline operations, and achieve regulatory compliance. By leveraging advanced technologies and industry-specific functionalities, utilities can drive digital transformation and improve overall performance. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

The Evolving Role of AI Agents in Key Industries

Legal Services The future of AI in the legal field lies in deeper collaboration between human lawyers and AI systems. AI agents will handle routine document processing, contract analysis, and compliance checks, while legal professionals focus on strategy, negotiation, and final validation. This approach ensures efficiency without compromising accuracy or legal accountability. Finance The financial sector has been an early adopter of AI agents, leveraging them for market analysis, trading, and risk management. 1. Market Analysis & Research 2. Trading & Investment 3. Risk Management Current Limitations: While results are promising, financial AI applications require strict risk management and regulatory oversight. Most firms start with narrowly scoped use cases—such as single-asset trading—before expanding into complex portfolio management. Research & Science AI agents are transforming scientific research by accelerating discovery while maintaining rigorous methodology. A multi-agent approach is proving valuable throughout the research lifecycle: This framework has already shown success in chemistry, where AI agents have identified novel catalysts and reaction pathways. With Google’s Gemini Deep Research, AI-driven knowledge synthesis is expanding beyond specialized fields to broader scientific domains. Challenges & Considerations: The key to success is integrating AI agents into existing research methodologies while preserving scientific rigor. Emerging AI Agent Trends Across industries, three core patterns define the evolution of AI agents: While AI agents hold immense potential, most industries remain in an experimental phase of adoption. Many organizations start with Retrieval-Augmented Generation (RAG) before advancing to fully autonomous agents. The Challenge of Implementation Adopting AI agents requires careful evaluation of their benefits vs. complexity: Organizations must balance innovation, security, and operational efficiency to maximize the impact of AI agents in their industries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Financial Services Sector

Future of Financial Services

The Future of Financial Services: AI Agents, Consumer Trust, and Digital Transformation Fewer than half of consumers are fully satisfied with the service they receive from banks, insurance providers, and wealth management advisors. This underscores the urgent need for financial service institutions (FSIs) to prioritize standout customer experiences—both human and digital—leveraging AI agents to enhance personalization, efficiency, and responsiveness. Why Customer Experience is Key Consumer loyalty has long been driven by competitive pricing, fees, and interest rates. However, with declining rates making promotional incentives less feasible, FSIs are refocusing on customer service as a key differentiator. AI-powered digital experiences provide an opportunity to exceed customer expectations, offering speed, convenience, and hyper-personalization at scale. A significant portion of consumers are willing to stay with an institution that offers an exceptional experience, even if it raises its rates or fees. For instance, 46% of consumers—and 55% of high earners in the U.S. (households making over $100,000 per year)—value experience over pricing alone. Digital self-service is a primary component of this enhanced experience, with many consumers preferring to complete tasks online rather than through traditional phone or in-branch interactions. Institutions like Credit Unions are already meeting this demand by deploying self-service tools that provide instant resolutions, 24/7. AI Agents: Transforming the FSI Landscape AI agents represent a major leap forward in customer service, automating interactions and resolving issues without human intervention. However, trust in these AI-driven systems remains a work in progress. Only 41% of wealth management clients report being fully satisfied with their institution’s speed and effectiveness, and satisfaction levels are even lower among banking and insurance customers. Despite some skepticism, AI adoption is accelerating. Half of consumers expect AI to significantly impact their financial relationships, a belief even more pronounced among Millennials and Gen Z. The percentage of customers anticipating AI-driven transaction speed improvements has risen from 46% in 2023 to 65% today. Yet, consumer education on AI’s capabilities remains a challenge. AI agents have the potential to act as financial advisors, enhancing financial literacy, optimizing savings, and even increasing earnings. Salesforce’s Agentforce aims to bridge this gap, offering digital financial assistants that can answer questions like, “Am I saving enough for retirement?” or “Can I afford this vacation?”—delivering expert insights instantly and at scale. Building Trust in AI-Powered Finance Despite AI’s promise, trust issues persist. While 54% of consumers express confidence in AI agents, only 10% fully trust them. This skepticism is fueled by concerns over data privacy, security, and transparency. Many consumers are wary of how FSIs handle their personal information and are seeking greater clarity on AI’s role in financial decision-making. A Salesforce study revealed that 73% of consumers want to know when they’re interacting with AI, highlighting the importance of transparency in AI implementation. “For AI to succeed in financial services, trust and compliance must be built into the foundation,” said Eran Agrios, SVP & GM of Financial Services at Salesforce. “FSIs need to ensure their AI strategies are not only effective but also worthy of customer confidence.” AI in Action: Case Studies in Financial Services Financial institutions leveraging Agentforce are already seeing tangible benefits: Integrating Agentforce with ERP for Maximum Impact To maximize the potential of AI agents, FSIs must integrate them seamlessly into their broader enterprise ecosystems. Best practices for integration include: The Next Two Years: Defining the Future of AI in Finance As AI continues to disrupt the financial sector, FSIs that embrace AI-first strategies will outperform competitors in efficiency, security, and customer experience. Here’s what the future holds: The Takeaway Financial institutions that invest in AI-driven experiences today will define the future of finance. By adopting transparent, compliant, and consumer-centric AI strategies, FSIs can build trust, drive efficiency, and deliver exceptional customer experiences that set them apart in an increasingly AI-powered world. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Why Its Good to be Data-Driven

The Power of Data-Driven Decision Making Success in business hinges on the ability to make informed decisions. Every operational aspect, from minor choices like office furniture selection to critical investments such as multi-million-dollar marketing campaigns, is shaped by a series of interrelated decisions. While instinct and intuition may play a role, most business choices rely on relevant data—covering aspects such as objectives, pricing, technology, and potential risks. However, excess irrelevant data can be just as detrimental as insufficient accurate data. Why Its Good to be Data-Driven organization… The Evolution of Data-Driven Decision Making Organizations that prioritize data-driven strategies rely on accurate, relevant, complete, and timely data. Simply amassing large volumes of information does not equate to better decision-making; companies must democratize data access, ensuring it is available to all employees rather than limited to data analysts. The practice of using data to inform business decisions gained traction in the mid-20th century when researchers identified decision-making as dynamic, complex, and often ambiguous. Early techniques like decision trees and prospect theory emerged in the 1970s alongside computer-aided decision-making models. The 1980s saw the rise of commercial decision support systems, and by the early 21st century, data warehousing and data mining revolutionized analytics. However, without clear governance and organizational policies, these vast data stores often fell short of their potential. Today, the goal of data-driven decision-making is to combine automated decision models with human expertise, creativity, and critical thinking. This approach requires integrating data science with business operations, equipping managers and employees with powerful decision-support tools. Characteristics of a Data-Driven Organization A truly data-driven organization understands the value of its data and maximizes its potential through structured alignment with business objectives. To safeguard and leverage data assets effectively, businesses must implement governance frameworks ensuring compliance with privacy, security, and integrity standards. Key challenges in establishing a data-driven infrastructure include: The Benefits of a Data-Driven Approach Businesses recognize that becoming data-driven requires more than just investing in technology; success depends on strategy and execution. According to KPMG, four critical factors contribute to the success of data-driven initiatives: A data-driven corporate culture accelerates decision-making, enhances employee engagement, and increases overall business value. Integrating ethical considerations into data usage is crucial for mitigating biases and maintaining data integrity. Transitioning to a Data-Driven Business With the rapid advancement of generative AI, data-driven organizations are poised to unlock trillions of dollars in economic value. McKinsey estimates that AI-driven decision-making could add between .6 trillion and .4 trillion annually across key sectors, including customer operations, marketing, software engineering, and R&D. To successfully transition into a data-driven organization, companies must: By embracing a data-driven model, organizations enhance their ability to make automated yet strategically sound decisions. With seamless data integration across CRM, ERP, and business applications, companies empower human decision-makers to apply their expertise to high-quality, actionable insights—driving innovation and competitive advantage in a rapidly evolving marketplace. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
agents and copilots

When to Use AI Agents and Copilots

Do Organizations Need AI Agents or Copilots for These Use Cases? Organizations often explore AI solutions for specific operational needs. Three primary AI use cases include: The question arises: Which AI tools best suit these needs? Should an organization invest in a high-end AI subscription, such as ChatGPT Pro with the Operator agent ($200/month), or opt for ChatGPT Plus with the o3-mini reasoning model and copilot features, such as memory and custom GPTs? AI Tool Selection Criteria When evaluating AI agents versus AI copilots, key considerations include: A. The time and effort required to articulate the problem for the AI. B. The level of control preferred in the problem-solving process. C. The importance of achieving the most optimal outcome. Use Case 1: Shopping AI Agents Many existing AI shopping solutions are labeled as agents, but they do not exhibit true autonomy. Instead, they serve as assistants with limited capabilities. For instance, Perplexity’s “Shop Like a Pro” assists with selecting products but depends on vendor integration for completing purchases, rather than executing transactions autonomously. Despite current limitations, some users create their own AI shopping agents by integrating browser-based AI tools with no-code automation platforms like n8n, Zapier, or Make.com. These custom-built agents offer greater autonomy and versatility than off-the-shelf solutions. However, the need for AI agents in shopping remains debatable. The act of shopping often provides a sense of anticipation and engagement, which a fully autonomous AI agent could eliminate. In contrast, AI copilots can enhance the experience by reducing time investment while preserving user involvement. The same applies to vacation planning—while an AI agent could book optimal flights and accommodations, many users prefer a guided approach to maintain a sense of anticipation and control. Moreover, financial transactions should not be fully entrusted to AI agents due to potential risks. AI-powered form-filling can be beneficial, but human oversight remains essential. The decision to use an AI agent for shopping depends on how much involvement users wish to retain in the process. Use Case 2: Executive AI Assistant Many professionals seek AI-driven solutions to handle routine tasks such as scheduling, reminders, and email management. However, current AI assistants lack full autonomy in managing these activities comprehensively. For instance, Google’s Gemini Advanced provides AI-powered features in Google Calendar and Gmail, but its integration remains limited—requiring manual activation and lacking full interconnectivity between tasks. Similarly, Apple Intelligence offers fragmented AI functionalities rather than a seamless assistant experience. Some technically inclined users have developed custom executive assistants using automation tools. However, for the broader market, fully functional, user-friendly AI executive assistants are still in development by major tech companies. When evaluating the necessity of AI agents in routine tasks, the key factors include: Use Case 3: AI Research Deep research AI agents have significantly outperformed traditional search methods in both speed and accuracy, provided sufficient relevant data is available. Advanced AI-driven research tools, such as Perplexity Deep Research and Grok 3 DeepSearch, have demonstrated superior efficiency compared to manual search. Despite their capabilities, these agents often require refinement in their responses. AI-generated reports may focus on irrelevant details without proper guidance. However, many researchers find that leveraging AI significantly enhances the efficiency and breadth of their work. For organizations, the decision to utilize AI agents for research depends on their need for: While AI agents remain imperfect, they are rapidly evolving, particularly in deep research applications. As technology advances, their ability to support decision-making processes will likely continue to expand. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Predictive Analytics for Business Potential

Predictive Analytics for Business Potential

Maximizing Business Potential with Predictive Analytics Every business generates vast amounts of data daily, yet not all leverage it effectively. Predictive analytics transforms raw data into actionable insights, enabling companies to forecast demand, reduce operational costs, and enhance customer engagement. Whether through AI-powered models, machine learning algorithms, or cloud-based analytics, predictive analytics is reshaping business strategies. Organizations that integrate predictive analytics into decision-making can anticipate challenges, seize new opportunities, and outperform competitors. This insight explores the significance of predictive analytics and how businesses can harness its power to gain a competitive edge. The Expanding Influence of Predictive Analytics Predictive analytics is revolutionizing industries, driving innovation, and transforming data into strategic advantages. Transforming Industries with Predictive Analytics Predictive analytics is now a cornerstone of modern industries, facilitating smarter decision-making through data-driven insights. By analyzing historical data, businesses can forecast trends, anticipate customer behaviors, and optimize operations. Sectors such as healthcare, retail, and finance are leveraging predictive tools to maintain competitiveness. For example: As industries adopt these solutions, predictive analytics continues to redefine efficiency and innovation. Key Trends in Predictive Analytics Adoption The widespread adoption of predictive analytics is fueled by advancements in AI, big data, and machine learning. Businesses are capitalizing on these trends to sharpen their competitive edge. Notable developments include: As predictive analytics tools become more sophisticated, they are becoming integral to business strategies, helping companies unlock untapped potential. Overcoming Implementation Challenges Despite its benefits, implementing predictive analytics poses challenges, such as data silos, integration complexities, and skill gaps. To address these issues, organizations should: By overcoming these barriers, businesses can fully harness predictive analytics to drive efficiency, innovation, and growth. Predictive Data Modeling for Smarter Decision-Making Predictive data modeling transforms raw data into strategic insights, improving forecasting and operational decision-making. Understanding Predictive Data Modeling Predictive data modeling employs statistical techniques and machine learning algorithms to analyze historical data and predict future trends. Its core components include: By applying these models, businesses can refine their strategies with data-backed insights, improving efficiency and competitiveness. The Role of Data Quality in Predictive Accuracy The effectiveness of predictive models depends on data quality. Inconsistent or outdated data can lead to unreliable predictions, affecting decision-making. Key steps to ensure high data quality include: High-quality data enhances predictive models, enabling businesses to make informed, confident decisions. Enhancing Forecasting with Predictive Data Modeling Predictive data modeling improves forecasting accuracy by analyzing historical trends and projecting future outcomes. Benefits include: Retailers optimize inventory, while manufacturers align production with demand fluctuations, demonstrating the strategic value of predictive modeling. Driving Business Growth with Predictive Analytics Why Businesses Should Adopt Predictive Analytics Now In today’s competitive landscape, predictive analytics is essential for staying ahead. By leveraging data, algorithms, and machine learning, businesses can anticipate risks and opportunities, optimizing strategies while reducing uncertainty. Retailers, for instance, use predictive insights to forecast seasonal demand spikes, ensuring optimal stock levels. As AI advances, predictive analytics is more accessible than ever, making now the ideal time for adoption. Enhancing Decision-Making and Efficiency Predictive analytics eliminates guesswork, empowering leaders with data-backed decisions. Benefits include: These advantages drive sustainable growth and competitive advantage across industries. Seamlessly Integrating Predictive Analytics into Business Workflows To maximize impact, predictive analytics must integrate into existing workflows. Steps for successful adoption include: By embedding predictive analytics into workflows, businesses enhance agility and decision-making capabilities. AI-Powered Predictive Analytics for Competitive Advantage Why AI Predictive Analytics is Transformative AI-powered predictive analytics delivers insights beyond traditional methods, processing vast datasets rapidly to identify complex patterns and trends. Applications include: With AI continuously learning and refining predictions, businesses gain a dynamic advantage. Enhancing Accuracy with AI AI refines predictions by analyzing diverse data sources, including text, images, and videos. Examples include: Advanced AI techniques, such as natural language processing and neural networks, ensure businesses derive actionable insights, driving smarter strategies and better results. Machine Learning’s Role in Predictive Analytics Machine learning (ML) is foundational to predictive analytics, continuously improving model accuracy. Examples include: By leveraging ML, businesses enhance their predictive capabilities, ensuring long-term competitive success. Enhancing Enterprise Solutions with Predictive Analytics Transforming SAP Systems with Predictive Analytics SAP systems integrated with predictive analytics unlock actionable insights from vast datasets. Benefits include: By embedding predictive capabilities, SAP users can optimize operations and drive proactive decision-making. Empowering Salesforce with Predictive Insights Salesforce predictive analytics enhances decision-making across marketing, sales, and customer service. Key capabilities include: With Salesforce Einstein, businesses can streamline operations, boost performance, and foster deeper customer engagement. Predictive analytics is a game-changer, reshaping industries, optimizing operations, and unlocking new growth opportunities. Businesses that embrace predictive analytics today will be well-positioned to navigate future challenges and lead in the data-driven economy. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Rise of AI Agents

The Rise of AI Agents

The Rise of AI Agents: Salesforce’s Vision for a New Era of Business In just three months, more than 1,000 companies have deployed Salesforce AI agents, unlocking capabilities “they’ve never seen before” and setting the stage for game-changing business outcomes, according to CEO Marc Benioff. That’s a bold prediction—even for a visionary like Benioff, whose track record speaks for itself. But throughout our recent 25-minute conversation for the Cloud Wars CEO Outlook 2025 series, Benioff remained unwavering in his optimism about the AI-powered future. Agentic AI: The Force Driving Business Transformation According to Benioff, AI agents represent the next wave of business transformation, redefining how companies operate, innovate, and compete. “I’ve never been more excited about technology—this is an incredible moment in time,” Benioff said. He described AI agents as the bridge to a future where businesses engage with customers in ways previously thought possible only in science fiction. These AI-driven systems will help organizations operate at lower costs while improving customer relationships and key performance metrics. But Salesforce isn’t just selling this vision to customers—it’s living it. Benioff shared firsthand insights into how the company is leveraging AI to optimize its own operations, revealing lessons that could reshape how enterprises think about productivity and workforce planning. Digital Labor: A Multi-Trillion-Dollar Opportunity One of the most striking takeaways from our conversation was Salesforce’s approach to what Benioff calls “digital labor.” “For 25 years, Salesforce has helped businesses manage data. Now, we’re creating digital workers—AI agents that unlock entirely new ways to operate,” he said. This shift is already making an impact. Salesforce’s Agentforce AI now handles the bulk of the company’s customer support, transforming how its 9,000 service agents manage 36,000 weekly support inquiries: As a result, Salesforce is reallocating 2,000 support professionals to other roles—just one example of how AI is reshaping workforce dynamics. A Radical Rethink: No New Developers in 2025 Perhaps the most surprising revelation? Salesforce is pausing hiring for software engineers in 2025. Benioff explained that despite doubling its engineering team over the past five years, AI has driven a 30% increase in productivity. Rather than hiring more developers, Salesforce is leaning into AI-powered automation to accelerate software development. This shift raises fundamental questions about the future of work: Salesforce vs. Microsoft: Competing Visions for AI Agents AI agents are reshaping enterprise technology, but vendors have differing approaches. Benioff made it clear that Salesforce is taking a unique path—one he believes will ultimately lead the industry. Unlike Microsoft, which is deeply integrating AI within its core applications, Salesforce sees agents as an evolution of its CRM foundation, leveraging the vast 230-petabyte data ecosystem it manages for customers. “The businesses that are closest to their data will win,” Benioff said. “And we’re going to deliver capabilities that our customers have never seen before—ones that will thrill them out of their minds.” The Future: A Billion AI Agents As enterprises race to adopt AI, Benioff predicts an explosion in AI agent deployment. “In the next 12 months, we’ll see thousands of companies deploying up to a billion AI agents. And Salesforce will be the absolute leader in agentic technology for the enterprise,” he said. Benioff’s vision is clear: AI agents aren’t just an enhancement—they are the next frontier of business. And companies that embrace them will lead the way into a new era of efficiency, innovation, and growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Aligning Strategy and Goals

Aligning Strategy and Goals

Aligning Strategy and Goals: Bridging the Gap Between Data and Business Success Aligning data strategy with business goals is critical—but easier said than done. 41% of business leaders report that their data strategy is only partially or not at all aligned with their objectives. Here’s how to close the gap and make data a true driver of business success. 1. Define Your Business Goals Collaboration between business and IT stakeholders is essential. Start by identifying and prioritizing objectives that drive success, such as revenue growth, customer satisfaction, cost reduction, and market expansion. Business Goal How Data Supports It Revenue Growth Use analytics to identify high-value customers and optimize marketing strategies for higher conversions. Customer Satisfaction Leverage trusted customer data to personalize experiences and improve engagement. Cost Reduction Analyze operational data to streamline processes and improve efficiency. Market Expansion Use market and customer insights to identify new growth opportunities. 2. Determine Key Metrics Once goals are clear, define key performance indicators (KPIs) to measure progress. Business Goal Key Metric Revenue Growth Conversion Rate: Measures the percentage of leads converted into paying customers. Customer Satisfaction Retention Rate: Tracks the percentage of returning customers over time. Cost Reduction Operational Efficiency Ratio: Compares operational costs to revenue. Market Expansion Customer Acquisition Rate: Measures the rate of new customer growth. 3. Assess Resources and Budget Evaluate whether you have the systems, tools, and budget needed to support your goals. If customer personalization is a priority, you may need solutions like Data Cloud to unify and leverage customer insights. A strong CRM or data analytics platform may also be required to track specific KPIs. 4. Build a Data-Driven Culture Data maturity is not just about tools—it’s about people. Empower teams with the skills, training, and mindset to leverage data effectively. Change management initiatives and ongoing education will help integrate data into daily decision-making. See how F5 is building a data-driven culture with Tableau:“Data has been transforming our corporate culture right before our eyes. Every day, I wake up learning something new about data.”— Amie Bright, Former RVP of Enterprise Data Strategy and Insights, F5 5. Align Teams for Success Use this handy checklist to ensure alignment across your organization: ✅ Collaborate with business and IT teams to define and prioritize objectives.✅ Develop key data KPIs in partnership with internal stakeholders.✅ Survey team leaders to assess the tools, systems, and budgets needed.✅ Invest in training and change management to build a data-driven culture.✅ Join a data leadership community to gain insights and best practices. Want to accelerate your data strategy? Reach out to Tectonic to get started today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com