Grounding Archives - gettectonic.com
Google and Salesforce Expand Partnership

Google and Salesforce Expand Partnership

Google and Salesforce Expand Partnership to Enhance AI Agent Capabilities Google and Salesforce are deepening their collaboration to provide customers with greater flexibility in AI agent deployment. This expanded partnership will integrate Google Gemini within Salesforce’s Agentforce platform, enabling AI agents to process images, audio, and video with advanced multimodal capabilities. Enhanced AI Functionality with Gemini Through this integration, AI agents will gain access to Gemini’s powerful models, allowing them to handle complex tasks with extended context windows and leverage real-time insights from Google Search via Vertex AI. This collaboration aims to empower businesses with AI solutions that are not limited to a single model provider, offering crucial flexibility in AI customization. Srini Tallapragada, Salesforce’s President and Chief Engineering and Customer Success Officer, emphasized that the integration offers customers the ability to choose the applications and models that best suit their needs. “Salesforce offers a complete enterprise-grade agentic AI platform that makes it easy to deploy new capabilities quickly and realize business value fast. Google Cloud is a pioneer in enterprise agentic AI, offering some of the most powerful models, agents, and AI development tools on the planet. Together, we are creating the best place for businesses to scale with digital labor.” Key Benefits of the Integration The partnership is set to deliver significant advantages for businesses, as outlined in the official announcement: Thomas Kurian, CEO of Google Cloud, highlighted the benefits of this collaboration: “Our mutual customers have asked for seamless integration across Salesforce and Google Cloud. This expanded partnership enables them to accelerate AI transformations with state-of-the-art AI models, agentic AI, and advanced data analytics.” Strengthening Customer Service Integrations The partnership will also enhance the connection between Salesforce Service Cloud and Google Cloud’s Customer Engagement Suite, providing AI-driven improvements to customer support. Key upcoming features include: Expanding AI-Powered Decision-Making Beyond Gemini, Agentforce will integrate Google Search through Vertex AI, leveraging secure connections between Salesforce Data Cloud and Google BigQuery. This will enable AI agents to access real-time information for improved accuracy and decision-making. For example, in supply chain management, AI can track shipments, monitor inventory in Salesforce Commerce Cloud, and anticipate disruptions using real-time data on weather, port congestion, and geopolitical events. Additionally, joint customers will be able to utilize Salesforce’s unified platform—including Agentforce, Data Cloud, and Customer 360—on Google Cloud’s AI-optimized infrastructure. This integration ensures enhanced security through dynamic grounding, zero data retention, and toxicity detection via the Einstein Trust Layer. Businesses will also soon have the option to purchase Salesforce products via the Google Cloud Marketplace. More AI Innovations from Google and Salesforce Google recently announced the development of a personalized AI-powered chatbot that will be integrated into its devices, including smartphones, laptops, and tablets. This tool will automatically answer calls, process requests, and respond on behalf of users. Meanwhile, Salesforce’s Service Assistant—formerly known as Salesforce Service Planner—has launched on Service Cloud. Designed to support live agents, it generates step-by-step plans for resolving customer inquiries by analyzing intent, case history, and customer context. For optimal performance, Salesforce recommends integrating it with Data Cloud and the contact center knowledge base. With this expanded partnership, Google and Salesforce are setting the stage for businesses to leverage cutting-edge AI technology, driving innovation and operational efficiency across industries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
salesforce service assistant

Salesforce Service Assistant

Salesforce Service Assistant is an AI-powered tool that helps service representatives resolve cases faster. It’s available on Service Cloud and is designed to save time for agents. How it works Benefits Helps agents resolve cases faster, Saves time for service representatives, Grounded in the organization’s knowledge base and data, and Adheres to company policies. Additional information Alongside agent guidance, the Service Assistant provides two other notable features. The first enables agents to create conversation summaries with “just a click” after using the solution to complete a case. The second allows agents to request that the assistant auto-crafts a new knowledge article when its guidance proved insufficient, based on how they resolved the query. Thanks to this second feature, the Service Assistant may get better with time, aiding agent proficiency, customer satisfaction, and – ultimately – average handling time (AHT). However, despite this capability, Salesforce has pledged to advance the solution further. Indeed, during a recent webinar, Kevin Qi, Associate Product Manager at Salesforce, teased what will come in June. Pointing to Service Cloud’s Summer ‘25 release wave, Qi said: The next phase of Service Assistant involves actionable plans. So, not only will it help guide the service rep, but it’ll also take actions to automate various steps, so it can look up orders, check eligibilities, and more to help speed up the efficiency of tackling that case. Beyond the summer, Salesforce plans to have the Assistant blend modalities, guiding customer conversations across channels to further streamline the interaction. “The Service Assistant will become even more adaptive, support more channels, including messaging and voice, being able to adapt to changes in case context,” concluded Qi. The Latest AI Solutions on Service Cloud Alongside the Service Assistant, Salesforce has released several other AI and Agentforce capabilities, embedded across Service Cloud. Qi picked out the “Freeform Instructions in Service Email Assistant” feature for special reference. “If the agent doesn’t have a template already made for a particular instance, they can type – in natural language – the sort of email they’d want to generate and have Agentforce create that email in the flow of work,” he said. That capability may prove highly beneficial in helping agents piece their thoughts together when resolving a tricky case. After all, they can note some key points – in natural language – and the feature will create a coherent customer response. Alongside this comes a solution to quickly summarize case activity for wrap-up in beta. Yet, most new features focus on improving the knowledge that feeds into AI solutions, like the Service Assistant. For starters, there’s a flow orchestrator in beta that helps contact center leaders build a process for approving new knowledge articles and updates. Additionally, there’s an “Update Knowledge Content with AI” feature. This ingests prompts and – as it says on the tin – updates the tone, style, and length of particular knowledge articles. Last comes the “Knowledge Sync to Data Cloud” tool that pulls contact center knowledge into the Salesforce customer data platform (CDP). Not only does this democratize service insights, but it also supports contact centers in grounding the Service Assistant and other AI agents. Both of these final knowledge capabilities are now generally available. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Growing Role of AI in Cloud Management

Introducing TACO

Advancing Multi-Modal AI with TACO: A Breakthrough in Reasoning and Tool Integration Developing effective multi-modal AI systems for real-world applications demands mastering diverse tasks, including fine-grained recognition, visual grounding, reasoning, and multi-step problem-solving. However, current open-source multi-modal models fall short in these areas, especially when tasks require external tools like OCR or mathematical calculations. These limitations largely stem from the reliance on single-step datasets that fail to provide a coherent framework for multi-step reasoning and logical action chains. Addressing these shortcomings is crucial for unlocking multi-modal AI’s full potential in tackling complex challenges. Challenges in Existing Multi-Modal Models Most existing multi-modal models rely on instruction tuning with direct-answer datasets or few-shot prompting approaches. Proprietary systems like GPT-4 have demonstrated the ability to effectively navigate CoTA (Chains of Thought and Actions) reasoning, but open-source models struggle due to limited datasets and tool integration. Earlier efforts, such as LLaVa-Plus and Visual Program Distillation, faced barriers like small dataset sizes, poor-quality training data, and a narrow focus on simple question-answering tasks. These limitations hinder their ability to address complex, multi-modal challenges requiring advanced reasoning and tool application. Introducing TACO: A Multi-Modal Action Framework Researchers from the University of Washington and Salesforce Research have introduced TACO (Training Action Chains Optimally), an innovative framework that redefines multi-modal learning by addressing these challenges. TACO introduces several advancements that establish a new benchmark for multi-modal AI performance: Training and Architecture TACO’s training process utilized a carefully curated CoTA dataset of 293K instances from 31 sources, including Visual Genome, offering a diverse range of tasks such as mathematical reasoning, OCR, and visual understanding. The system employs: Benchmark Performance TACO demonstrated significant performance improvements across eight benchmarks, achieving an average accuracy increase of 3.6% over instruction-tuned baselines and gains as high as 15% on MMVet tasks involving OCR and mathematical reasoning. Key findings include: Transforming Multi-Modal AI Applications TACO represents a transformative step in multi-modal action modeling by addressing critical deficiencies in reasoning and tool-based actions. Its innovative approach leverages high-quality synthetic datasets and advanced training methodologies to unlock the potential of multi-modal AI in real-world applications, from visual question answering to complex multi-step reasoning tasks. By bridging the gap between reasoning and action integration, TACO paves the way for AI systems capable of tackling intricate scenarios with unprecedented accuracy and efficiency. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
salesforce end to end

Salesforce and Google Announcement

Salesforce (NYSE:CRM) has entered into a deal with Google (NASDAQ:GOOGL) to offer its customer relations management software, Agentforce artificial intelligence assistants, and Data Cloud offerings through Google Cloud, the companies announced today. Google and Salesforce already have many of the same clients, and this new deal will allow for more product integration between Google Workspace and Salesforce’s customer relationship management and AI offerings. Salesforce already uses Amazon (AMZN) Web Services for much of its cloud computing. “Our mutual customers have asked us to be able to work more seamlessly across Salesforce and Google Cloud, and this expanded partnership will help them accelerate their AI transformations with agentic AI, state-of-the-art AI models, data analytics, and more,” said Thomas Kurian, CEO of Google Cloud. The deal is expected to total $2.5B over the next seven years, according to a report by Bloomberg. Salesforce and Google today announced a major expansion of their strategic partnership, delivering choice in the models and capabilities businesses use to build and deploy AI-powered agents. In today’s constantly evolving AI landscape, innovations like autonomous agents are emerging so quickly that businesses struggle to keep pace. This expanded partnership provides crucial flexibility, empowering customers to develop tailored AI solutions that meet their specific needs, rather than being locked into a single model provider. Google Cloud is at the forefront of enterprise AI innovation with millions of developers building with Google’s cutting-edge Gemini models and on Google Cloud’s AI-optimized infrastructure. This expanded partnership will empower Salesforce customers to build Agentforce agents using Gemini and to deploy Salesforce on Google Cloud. This is an expansion of the existing partnership that allows customers to use data from Data Cloud and Google BigQuery bi-directionally via zero-copy technology—further equipping customers with the data, AI, trust, and actions they need to bring autonomous agents into their businesses. Additionally, this integration empowers Agentforce agents with the ability to reference up-to-the-minute data, news, current events, and credible citations, substantially enhancing their contextual awareness and ability to deliver accurate, evidence-backed responses. For example, in supply chain management and logistics, an agent built with Agentforce could track shipments and monitor inventory levels in Salesforce Commerce Cloud and proactively identify potential disruptions using real-time data from Google Search, including weather conditions, port congestion, and geopolitical events. Availability is expected in the coming months. AI: Unlocking the Power of Choice and Flexibility with Gemini and Agentforce Businesses need the freedom to choose the best models for their needs rather than be locked into one vendor. In 2025, Google’s Gemini models will also be available for prompt building and reasoning directly within Agentforce. With Gemini and Agentforce, businesses will benefit from: For example, an insurance customer can submit a claim with photos of the damage and an audio voicemail from a witness. Agentforce, using Gemini, can then help the insurance provider deliver better customer experiences by processing all these inputs, assessing the claim’s validity, and even using text-to-speech to contact the customer with a resolution, streamlining the traditionally lengthy claims process. Availability is expected this year. Trust: Salesforce Platform deployed on Google Cloud Customers will be able to use Salesforce’s unified platform (Agentforce, Data Cloud, Customer 360) on Google Cloud’s highly secure, AI-optimized infrastructure, benefiting from features like dynamic grounding, zero data retention, and toxicity detection provided by the Einstein Trust Layer. Once Salesforce products are available on Google Cloud, customers will also have the ability to procure Salesforce offerings through the Google Cloud Marketplace, opening up new possibilities for global businesses to optimize their investments across Salesforce and Google Cloud and benefiting thousands of existing joint customers. Action: Enhanced Employee Productivity and Customer Service with AI-Powered Integrations Millions use Salesforce and Google Cloud daily. This partnership prioritizes choice and flexibility, enabling seamless cross-platform work. New and deeper connections between platforms like Salesforce Service Cloud and Google Cloud’s Customer Engagement Suite, as well as Slack and Google Workspace, will empower AI agents and service representatives with unified data access, streamlined workflows, and advanced AI capabilities, regardless of platform. Salesforce and Google Cloud are deeply integrating their customer service platforms—Salesforce Service Cloud and Google Cloud’s Customer Engagement Suite—to create a seamless and intelligent support experience. Expected later this year, this unified approach empowers AI agents in Service Cloud with: Salesforce and Google Cloud are also exploring deeper integrations between Slack and Google Workspace, boosting productivity and creating a more cohesive digital workspace for teams and organizations. The companies are currently exploring use cases such as: Expanding Partnership Capabilities and Integrations This partnership goes beyond core product integrations to deliver a more connected and intelligent data foundation for businesses. Expected availability throughout 2025: This landmark partnership between Salesforce and Google represents a strategic paradigm shift in enterprise AI deployment, emphasizing infrastructure innovation, AI capability enhancement, and enterprise value. The integration of Google Search grounding provides a unique competitive advantage, offering real-time, factual responses backed by the world’s most comprehensive search engine. The companies are committed to ongoing innovation and deeper collaboration to empower businesses with even more powerful solutions. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
ai trust layer

Gen AI Trust Layers

Addressing the Generative AI Production Gap with Trust Layers Despite the growing excitement around generative AI, only a small percentage of projects have successfully moved into production. A key barrier is the persistent concern over large language models (LLMs) generating hallucinations—responses that are inconsistent or completely disconnected from reality. To address these issues, organizations are increasingly adopting AI trust layers to enhance reliability and mitigate risk. Understanding the Challenge Generative AI models, like LLMs, are powerful tools trained on vast amounts of unstructured data, enabling them to answer questions and complete tasks based on text, documents, recordings, images, and videos. This capability has revolutionized the creation of chatbots, co-pilots, and even semi-autonomous agents. However, these models are inherently non-deterministic, meaning they don’t always produce consistent outputs. This lack of predictability leads to the infamous phenomenon of hallucination—what the National Institute of Standards and Technology (NIST) terms “confabulation.” While hallucination is a byproduct of how generative models function, its risks in mission-critical applications cannot be ignored. Implementing AI Trust Layers To address these challenges, organizations are turning to AI trust layers—frameworks designed to monitor and control generative AI behavior. These trust layers vary in implementation: Galileo: Building AI Trust from the Ground Up Galileo, founded in 2021 by Yash Sheth, Atindriyo Sanyal, and Vikram Chatterji, has emerged as a leader in developing AI trust solutions. Drawing on his decade of experience at Google building LLMs for speech recognition, Sheth recognized early on that non-deterministic AI systems needed robust trust frameworks to achieve widespread adoption in enterprise settings. The Need for Trust in Mission-Critical AI “Sheth explained: ‘Generative AI doesn’t give you the same answer every time. To mitigate risk in mission-critical tasks, you need a trust framework to ensure these models behave as expected in production.’ Enterprises, which prioritize privacy, security, and reputation, require this level of assurance before deploying LLMs at scale. Galileo’s Approach to Trust Layers Galileo’s AI trust layer is built on its proprietary foundation model, which evaluates the behavior of target LLMs. This approach is bolstered by metrics and real-time guardrails to block undesirable outcomes, such as hallucinations, data leaks, or harmful outputs. Key Products in Galileo’s Suite Sheth described the underlying technology: “Our evaluation foundation models are dependable, reliable, and scalable. They run continuously in production, ensuring bad outcomes are blocked in real time.” By combining these components, Galileo provides enterprises with a trust layer that gives them confidence in their generative AI applications, mirroring the reliability of traditional software systems. From Research to Real-World Impact Unlike vendors who quickly adapted traditional machine learning frameworks for generative AI, Galileo spent two years conducting research and developing its Generative AI Studio, launched in August 2023. This thorough approach has started to pay off: A Crucial Moment for AI Trust Layers As enterprises prepare to move generative AI experiments into production, trust layers are becoming essential. These frameworks address lingering concerns about the unpredictable nature of LLMs, allowing organizations to scale AI while minimizing risk. Sheth emphasized the stakes: “When mission-critical software starts becoming infused with AI, trust layers will define whether we progress or regress to the stone ages of software. That’s what’s holding back proof-of-concepts from reaching production.” With Galileo’s innovative approach, enterprises now have a path to unlock the full potential of generative AI—responsibly, securely, and at scale. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
From Chatbots to Agentic AI

From Chatbots to Agentic AI

The transition from LLM-powered chatbots to agentic systems, or agentic AI, can be summed up by the old saying: “Less talk, more action.” Keeping up with advancements in AI can be overwhelming, especially when managing an existing business. The speed and complexity of innovation can make it feel like the first day of school all over again. This insight offers a comprehensive look at AI agents, their components, and key characteristics. The introductory section breaks down the elements that form the term “AI agent,” providing a clear definition. After establishing this foundation, we explore the evolution of LLM applications, particularly the shift from traditional chatbots to agentic systems. The goal is to understand why AI agents are becoming increasingly vital in AI development and how they differ from LLM-powered chatbots. By the end of this guide, you will have a deeper understanding of AI agents, their potential applications, and their impact on organizational workflows. For those of you with a technical background who prefer to get hands-on, click here for the best repository for AI developers and builders. What is an AI Agent? Components of AI Agents To understand the term “AI agent,” we need to examine its two main components. First, let’s consider artificial intelligence, or AI. Artificial Intelligence (AI) refers to non-biological intelligence that mimics human cognition to perform tasks traditionally requiring human intellect. Through machine learning and deep learning techniques, algorithms—especially neural networks—learn patterns from data. AI systems are used for tasks such as detection, classification, and prediction, with content generation becoming a prominent domain due to transformer-based models. These systems can match or exceed human performance in specific scenarios. The second component is “agent,” a term commonly used in both technology and human contexts. In computer science, an agent refers to a software entity with environmental awareness, able to perceive and act within its surroundings. A computational agent typically has the ability to: In human contexts, an agent is someone who acts on behalf of another person or organization, making decisions, gathering information, and facilitating interactions. They often play intermediary roles in transactions and decision-making. To define an AI agent, we combine these two perspectives: it is a computational entity with environmental awareness, capable of perceiving inputs, acting with tools, and processing information using foundation models backed by both long-term and short-term memory. Key Components and Characteristics of AI Agents From LLMs to AI Agents Now, let’s take a step back and understand how we arrived at the concept of AI agents, particularly by looking at how LLM applications have evolved. The shift from traditional chatbots to LLM-powered applications has been rapid and transformative. Form Factor Evolution of LLM Applications Traditional Chatbots to LLM-Powered Chatbots Traditional chatbots, which existed before generative AI, were simpler and relied on heuristic responses: “If this, then that.” They followed predefined rules and decision trees to generate responses. These systems had limited interactivity, with the fallback option of “Speak to a human” for complex scenarios. LLM-Powered Chatbots The release of OpenAI’s ChatGPT on November 30, 2022, marked the introduction of LLM-powered chatbots, fundamentally changing the game. These chatbots, like ChatGPT, were built on GPT-3.5, a large language model trained on massive datasets. Unlike traditional chatbots, LLM-powered systems can generate human-like responses, offering a much more flexible and intelligent interaction. However, challenges remained. LLM-powered chatbots struggled with personalization and consistency, often generating plausible but incorrect information—a phenomenon known as “hallucination.” This led to efforts in grounding LLM responses through techniques like retrieval-augmented generation (RAG). RAG Chatbots RAG is a method that combines data retrieval with LLM generation, allowing systems to access real-time or proprietary data, improving accuracy and relevance. This hybrid approach addresses the hallucination problem, ensuring more reliable outputs. LLM-Powered Chatbots to AI Agents As LLMs expanded, their abilities grew more sophisticated, incorporating advanced reasoning, multi-step planning, and the use of external tools (function calling). Tool use refers to an LLM’s ability to invoke specific functions, enabling it to perform more complex tasks. Tool-Augmented LLMs and AI Agents As LLMs became tool-augmented, the emergence of AI agents followed. These agents integrate reasoning, planning, and tool use into an autonomous, goal-driven system that can operate iteratively within a dynamic environment. Unlike traditional chatbot interfaces, AI agents leverage a broader set of tools to interact with various systems and accomplish tasks. Agentic Systems Agentic systems—computational architectures that include AI agents—embody these advanced capabilities. They can autonomously interact with systems, make decisions, and adapt to feedback, forming the foundation for more complex AI applications. Components of an AI Agent AI agents consist of several key components: Characteristics of AI Agents AI agents are defined by the following traits: Conclusion AI agents represent a significant leap from traditional chatbots, offering greater autonomy, complexity, and interactivity. However, the term “AI agent” remains fluid, with no universal industry standard. Instead, it exists on a continuum, with varying degrees of autonomy, adaptability, and proactive behavior defining agentic systems. Value and Impact of AI Agents The key benefits of AI agents lie in their ability to automate manual processes, reduce decision-making burdens, and enhance workflows in enterprise environments. By “agentifying” repetitive tasks, AI agents offer substantial productivity gains and the potential to transform how businesses operate. As AI agents evolve, their applications will only expand, driving new efficiencies and enabling organizations to leverage AI in increasingly sophisticated ways. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce prompt builder

Salesforce Prompt Builder

Salesforce Prompt Builder: Field Generation Prompt Template What is a Prompt? A prompt is a set of detailed instructions designed to guide a Large Language Model (LLM) in generating relevant and high-quality output. Just like chefs fine-tune their recipes through testing and adjustments, prompt design involves iterating on instructions to ensure that the LLM delivers accurate, actionable results. Effective prompt design involves “grounding” your prompts with specific data, such as business context, product details, and customer information. By tailoring prompts to your particular needs, you help the LLM provide responses that align with your business goals. Like a well-crafted recipe, an effective prompt consists of both ingredients and instructions that work together to produce optimal results. A great prompt offers clear directions to the LLM, ensuring it generates output that meets your expectations. But what does an ideal prompt template look like? Here’s a breakdown: What is a Field Generation Prompt Template? The Field Generation Prompt Template is a tool that integrates AI-powered workflows directly into fields within Lightning record pages. This template allows users to populate fields with summaries or descriptions generated by an LLM, streamlining interactions and enhancing productivity during customer conversations. Let’s explore how to set up a Field Generation Prompt Template by using an example: generating a summary of case comments to help customer service agents efficiently review a case. Steps to Create a Field Generation Prompt Template 1. Create a New Rich Text Field on the Case Object 2. Enable Einstein Setup 3. Create a Prompt Template with the Field Generation Template Type 4. Configure the Prompt Template Workspace Optional: You can also use Flow or Apex to incorporate additional merge fields. 5. Preview the LLM’s Response Example Prompt: Scenario:You are a customer service representative at a company called ENForce.com, and you need a quick summary of a case’s comments. Record Merge Fields: Instructions: vbnetCopy codeFollow these instructions precisely. Do not add information not provided. – Refer to the “contact” as “client” in the summary. – Use clear, concise, and straightforward language in the active voice with a friendly, informal, and informative tone. – Include an introductory sentence and closing sentence, along with several bullet points. – Use a variety of emojis as bullet points to make the list more engaging. – Limit the summary to no more than seven sentences. – Do not include any reference to missing values or incomplete data. 6. Add the “Case Summary” Field to the Lightning Record Page 7. Generate the Summary By following these steps, you can leverage Salesforce’s Prompt Builder to enhance case management processes and improve the efficiency of customer service interactions through AI-assisted summaries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Agentforce Integration

Agentforce at Work

Agentforce Salesforce Agentforce in Action: A Practical Example of Using Agents in Salesforce Autonomous Agents on the Agentforce Platform Agentforce represents a transformative shift in Salesforce’s strategy, poised to redefine how users engage with their CRM. By introducing both assistive AI—enhanced by generative AI for capabilities like summaries and sales emails—and autonomous AI, which empowers agents to automate actions without human oversight, Agentforce helps users operate more efficiently in Salesforce. Despite the excitement around Agentforce, most blogs and marketing materials focus on AI hype rather than practical applications. This insight focuses on illustrating how these tools work and the tangible value they can provide for your organization’s custom processes. Curious about setting up Agentforce agents using both out-of-the-box actions and custom actions? Let’s dive in. What is Agentforce? Agentforce is Salesforce’s conversational AI tool for CRM. In simple terms, it lets users “talk” to Salesforce. Powered by generative AI and the Atlas Reasoning Engine, Agentforce processes user input to perform tasks like summarizing data from objects, updating fields, and generating content such as emails or knowledge articles. This innovative tool is only at the beginning of its journey, likely setting the stage for a future where CRM interactions may evolve beyond traditional form-based interfaces to more intuitive chatbot-style engagement. Scenario: Managing Sales Pipeline Consider a salesperson with the daily objectives of tracking deals, managing pipeline opportunities, and identifying potential risks. Traditionally, this would require manually navigating numerous Salesforce objects, risking data inconsistencies and user errors. Agentforce’s assistive actions can streamline much of this, automating processes to identify key deals, summarize progress, and track deal risks across the pipeline. Let’s take a closer look at configuring a custom action for a pipeline summary. All powered by Salesforce Agentforce. Step-by-Step Guide to Configuring a Pipeline Summary Action Agentforce Use Cases: Getting Started Agentforce offers powerful tools for implementing AI-based functions within Salesforce, but to realize productivity gains, consider the following: Agentforce’s standard actions are a great starting point, providing immediate productivity impacts that can be enhanced as you customize actions to meet specific needs. For tailored guidance on integrating Agentforce, explore Tectonic’s Salesforce Agentforce Consulting Services. Tectonic’s expertise can support your organization in optimizing user experience, boosting productivity, and training users to responsibly leverage Agentforce’s capabilities across industries and channels. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Cohesity Data Explore

Cohesity has introduced Data Explore, a new feature in its Gaia generative AI platform, aimed at simplifying data search within backups for any employee. The update, launched this week, adds keyword search capabilities and data visualization through topic word clouds, enhancing user access to valuable information. Previously, users could interact with Gaia’s conversational AI interface to ask questions about stored data. Data Explore now extends this by enabling users to browse frequent keywords within data sets and receive search suggestions to help refine their queries. This addition is particularly valuable for users who may not know exactly what to ask when exploring backup data. As part of the update, Gaia’s support for file storage systems has also expanded. Gaia now integrates with both on-premises and cloud-based file servers, such as Dell Technologies’ PowerScale and NetApp systems, in addition to existing support for Microsoft 365 services like Outlook, SharePoint, and OneDrive. This enhanced search functionality reflects a broader trend among backup vendors to deliver greater utility from stored data, according to Simon Robinson of TechTarget’s Enterprise Strategy Group. He noted that tools making data accessible to non-experts bring businesses closer to the goal of actionable insights. “You don’t need to be a corporate librarian to use this stuff,” Robinson said. Data Explore’s semantic indexing, similar to internet search engines, aids users by automatically surfacing keywords, questions, and suggestions, making backup data more searchable and actionable. According to Krista Case, an analyst at Futurum Group, this helps reduce AI hype by grounding Gaia in practical use cases, facilitating faster insights for end users. Since Gaia’s launch as a SaaS add-on for Cohesity Data Cloud, its features have evolved to offer deeper insights beyond simple chatbot interactions. Greg Statton, Cohesity’s VP of AI solutions, shared that the platform aims to be more than a support agent for backup queries. The vision is to provide advanced AI tools that enhance data discovery, flag abnormal events, and reduce alert fatigue, giving IT administrators actionable intelligence that is more contextually aware of their tasks. Ultimately, Cohesity’s Data Explore feature exemplifies generative AI’s potential in unlocking business value from backup data. By making this data accessible and understandable, Cohesity is helping organizations achieve the long-awaited promise of deriving value from stored data – a milestone Robinson believes backup vendors are now on the verge of realizing. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Marketing Cloud and Generative AI

Marketing Cloud and Generative AI

Generative AI and Salesforce: Revolutionizing Digital Marketing with Einstein AI Generative AI is a form of Artificial Intelligence that learns from existing content to generate new, creative outputs. Salesforce has long been at the forefront of AI innovation, primarily through its Einstein assistant, which has evolved to offer increasingly sophisticated solutions over time. Artificial Intelligence: Key Concepts Before diving into Salesforce’s AI capabilities, let’s clarify some foundational concepts. Artificial Intelligence (AI) refers to the creation of intelligent systems that can learn and reason autonomously. Within AI, Machine Learning (ML) plays a crucial role by enabling computers to learn from data and improve over time without explicit programming. ML models fall into two broad categories: Deep Learning and Neural Networks A more advanced subset of ML is Deep Learning, which uses neural networks to process large amounts of data and make autonomous decisions. Deep Learning powers technologies like voice assistants (e.g., Alexa or Siri), which can recognize speech and execute tasks. A specific application within Deep Learning is Generative AI, capable of autonomously creating new content based on learned patterns from vast datasets. Another critical AI system is the Foundational Model, which is trained on enormous amounts of unstructured data from across the web, including text, images, and videos. These models offer a wide range of capabilities, such as generating text, answering questions, creating designs, or solving complex problems. Salesforce Marketing Cloud and AI Salesforce has utilizeded AI through its Einstein platform, which has evolved over time to offer a variety of data-driven tools. For example, Sent Time Optimization uses customer data to determine the best time to send emails to maximize engagement. AI Tools in Salesforce Marketing Cloud Salesforce offers several AI-powered tools for Marketing Cloud to help businesses leverage data for personalization and efficiency: The Einstein Trust Layer: AI in Salesforce CRM Einstein is the first generative AI model integrated into a CRM, and Salesforce refers to its AI process as the Einstein Trust Layer. Here’s how it works: Marketing Applications of Salesforce AI Tools Salesforce’s AI tools can be applied across omnichannel marketing campaigns to hyper-personalize communication, increasing conversion rates and customer engagement. Predictive analytics also allow businesses to optimize cross-selling and upselling, offering tailored product recommendations based on customer behavior. Chatbots powered by AI further enhance productivity by interacting in natural language, collecting leads, suggesting products, and resolving customer inquiries. Salesforce’s Commitment to AI in Digital Marketing Salesforce has been a pioneer in AI, continually expanding its capabilities through Einstein. With the latest AI tools for Marketing Cloud, businesses can now interact with customers more precisely, boost engagement, and optimize purchase predictions—paving the way for a new era in digital marketing. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce AI Evolves with the Generative AI Landscape

Salesforce AI Evolves with the Generative AI Landscape

Salesforce AI: Powering Customer Relationship Management Salesforce is a leading CRM solution that has long delivered cutting-edge cloud technologies to manage customer relationships effectively. In recent months, the platform has further advanced with the integration of generative AI and AI-powered features, primarily through its AI engine, Einstein. Salesforce AI Evolves with the Generative AI Landscape. To explore how AI operates within the Salesforce ecosystem and how various business teams can leverage these innovations, this guide delves into Salesforce’s AI capabilities, products, and features. Salesforce AI: Transforming CRM Capabilities Salesforce remains a top choice in the CRM software market, offering one of the most comprehensive solutions for managing relationships across departments, industries, and initiatives. Through dedicated cloud platforms, Salesforce enables teams to oversee marketing, sales, customer service, e-commerce, and more, with tools focused on delivering enhanced customer experiences supported by powerful data analytics. With the introduction of generative AI, Salesforce has significantly elevated its native automation, workflow management, data analytics, and assistive capabilities for customer lifecycle management. Einstein Copilot exemplifies this innovation, aiding internal users with tasks such as outreach, analysis, and improving external user experiences. What is Salesforce Einstein? Salesforce Einstein is an AI-driven suite of tools integrated natively into various Salesforce Cloud applications, including Sales Cloud, Marketing Cloud, Service Cloud, and Commerce Cloud. It also operates through assistive technologies like Einstein Copilot. Einstein is built on a multitenant platform and incorporates numerous automated machine learning features to unify organizational data with CRM capabilities. Designed to make intelligent, data-driven decisions, Einstein requires no additional installation, offering a seamless user experience when paired with a compatible subscription plan. 7 Key Features of Salesforce Einstein 7 Applications of Salesforce Einstein Future Trends in Salesforce AI Bottom Line: Salesforce AI Evolves with the Generative AI Landscape Salesforce continues to enhance its AI-powered features, keeping pace with advancements in generative and predictive AI. Whether new to the platform or a seasoned user, Salesforce offers innovative, AI-centric solutions to streamline customer relationship management and business operations. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Salesforce and AdvoLogix

SUGAR LAND, Texas, Aug. 12, 2024 /PRNewswire/ — AdvoLogix, a leader in legal technology, is excited to announce its groundbreaking Legal Assistant AI, a comprehensive suite of AI tools designed specifically for the legal industry. Law firms face mounting pressure to deliver exceptional client service while managing rising costs and complexities. This innovative solution seamlessly integrates with Salesforce, automating tasks and leveraging the power of AI to streamline law firm operations while ensuring security with its Trust and Safety Layer. Our AI’s Trust and Safety Layer, ensures that law firms can trust our technology to protect sensitive information. AdvoLogix Legal Assistant AI significantly enhances daily workflows with advanced capabilities such as document automation, financial management, client and matter intake, case management, and workflow optimization. Customizable based on unique data sets, these AI agents can be tailored to meet the specific needs of any legal organization. For example, law firms can create AI agents to address the nuanced requirements of particular clients or specialized areas of practice. The AI’s Trust and Safety Layer ensures secure data retrieval, grounding, prompt defense, and compliance, providing law firms with the confidence that their sensitive information is protected. By embedding these tools directly into the Salesforce platform, AdvoLogix delivers a powerful, integrated solution that leverages the power of AI in the context of daily law firm operations. Leveraging SALI Tags for Enhanced Data Management One of the standout features of the AdvoLogix Legal Assistant AI is its integration with the SALI (Standards Advancement for the Legal Industry) taxonomy. By leveraging Salesforce workflows, attorneys can quickly and accurately tag matters with SALI tags, enabling data-driven insights and improved matter management. This seamless integration ensures that valuable data is captured and utilized effectively to inform strategic decisions. Customizable AI Models for Tailored Legal Support AdvoLogix offers fine-tuned AI models specifically trained for legal activities. These models can be easily integrated into Salesforce workflows to automate tasks such as record and document retrieval, document summarization, and system data queries. Additionally, these AI models have the capability to ask and receive answers to general or specific legal questions on any topic, all from the perspective of an attorney. By leveraging the power of AI within the familiar Salesforce environment, legal professionals can focus on higher-value activities while the AI handles routine tasks. Some features are currently available in controlled release. A Commitment to Security and Accuracy “By embedding our AI capabilities into Salesforce workflows, we’ve developed a robust solution that allows legal professionals to benefit from AI services that are safe and highly efficient during normal work activities. Our AI’s Trust and Safety Layer, featuring secure data retrieval, grounding, prompt defense, and more, ensures that law firms can trust our technology to protect sensitive information. This focus on security, accuracy, and compliance is crucial for modern legal practices,” said Jonathan Reed, CEO of AdvoLogix. Experience the Future of Legal AI at ILTACON 2024 Visit AdvoLogix at Booth #346 to see live demonstrations of our Legal Assistant AI capabilities and discover how they can transform your firm’s operational efficiency. Our experts will be available to answer your questions and provide tailored insights into how our AI solutions can enhance your legal workflows and financial management. About AdvoLogix Founded in 2006, AdvoLogix is a premier provider of AI-driven technology solutions, helping businesses in the legal technology sector and beyond streamline operations, reduce costs, and improve productivity. With a broad range of native integrations that seamlessly integrate with Salesforce, AdvoLogix delivers measurable gains in productivity and efficiency. For more information, visit www.advologix.com and follow AdvoLogix on LinkedIn @AdvoLogix. Media Contact:Marketing [email protected] Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Data Cloud and Integration

AI Data Cloud and Integration

The enterprise has transitioned from merely speculating about artificial intelligence to actively implementing it. In doing so, companies must determine the optimal combination of ancillary technologies that, when strategically paired with AI, can drive relevant use cases and business outcomes. With AI Data Cloud and Integration, your data-driven decisions happen in real-time. Salesforce Inc. is leveraging a powerful trio — its Data Cloud, automation, and AI — to deliver what it considers transformative outcomes for organizations. “AI has such wonderful capability today from predictive to generative, [but] it’s not new to Salesforce,” said Param Kahlon, executive vice president and general manager at Salesforce. “Salesforce has been doing predictive AI for almost 10 years now. But what is great is that generative AI now gives the ability to process these large language models on large amounts of unstructured, semi-structured content to generate great content that can be used by salespeople to send relevant emails and marketing people to create personalized landing pages.” Kahlon spoke with theCUBE Research Senior Analyst George Gilbert during a recent “The Road to Intelligent Data Apps” podcast series. They discussed how Salesforce is revolutionizing business operations in the digital age by harnessing AI-driven insights, contextualizing data with the company’s Data Cloud, and enabling real-time actions. Gen AI and Data Cloud for Contextualization In today’s business environment, intelligence is the cornerstone of success. Salesforce’s AI platform empowers companies with predictive and generative AI capabilities, enabling them to make insightful decisions and craft personalized experiences for their customers. Businesses can now process vast amounts of unstructured data and generate compelling content. “For this AI to be meaningful and for companies to harness the full value of AI, you want to make sure that you’re grounding the data that’s being used to generate those predictions with some things that are relevant to the current business process, to the current transaction, to the current context of interaction you’re happening with the customer,” Kahlon said. Salesforce’s Data Cloud acts as the AI foundation, enriching existing data models with relevant contextual data tailored to the specific needs of each business and their interactions with customers. “When we talk to our large Salesforce customers, they all tell us that AI is really important for them,” Kahlon said. “That is something that they want to drive, but they’re also saying that the data for them is spread out across the enterprise. Some of them tell us that they have more than 900 different business systems in which data is stored, and they want the ability to bring that data together in a seamless way so it can be processed by AI through Data Cloud.” Automation and Integration for Real-Time Action The combination of AI and Data Cloud generates actionable insights, but these insights alone aren’t enough. Businesses need to act swiftly on these predictions, driving real-time actions to capitalize on opportunities. This is where integration and automation come into play, according to Kahlon. “[Customers are] essentially telling us that data is spread across the enterprise and they want the data in real time to be available to customers,” he said. “With MuleSoft and Salesforce integration capabilities, we’ve focused on the real-time nature of making sure that you can take real-time business transactions in the context of the process that is happening, and that’s what’s differentiated in our approach to making sure that we can collect the data in real time and make actions happen in real time.” Integration is the glue that brings together data from various sources, allowing AI to derive meaningful insights. Salesforce’s integration capabilities, powered by MuleSoft, focus on real-time data processing, ensuring that businesses can act on insights as they occur. This low-latency approach enables not only Salesforce applications but also other third-party applications to contribute to the data ecosystem, Kahlon explained. “We’ve got a very large North American airline that has built their entire customer experience, from booking an airline ticket to checking into your flight and ordering special meals for your flight, all of that on an API-based platform — and we’re able to process that scale of transactions,” he said. “As you get into AI, all of that becomes extremely relevant to drive that real-time throughput, and that’s where our customers are finding value in our technology.” When the customer experience is the driver, the experience is always stellar. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
  • 1
  • 2
gettectonic.com