Markdown Archives - gettectonic.com
Prompt Decorators

Prompt Decorators

Prompt Decorators: A Structured Approach to Enhancing AI Responses Artificial intelligence has transformed how we interact with technology, offering powerful capabilities in content generation, research, and problem-solving. However, the quality of AI responses often hinges on how effectively users craft their prompts. Many encounter challenges such as vague answers, inconsistent outputs, and the need for repetitive refinement. Prompt Decorators provide a solution—structured prefixes that guide AI models to generate clearer, more logical, and better-organized responses. Inspired by Python decorators, this method standardizes prompt engineering, making AI interactions more efficient and reliable. The Challenge of AI Prompting While AI models like ChatGPT excel at generating human-like text, their outputs can vary widely based on prompt phrasing. Common issues include: Without a systematic approach, users waste time fine-tuning prompts instead of getting useful answers. What Are Prompt Decorators? Prompt Decorators are simple prefixes added to prompts to modify AI behavior. They enforce structured reasoning, improve accuracy, and customize responses. Example Without a Decorator: “Suggest a name for an AI YouTube channel.”→ The AI may return a basic list of names without justification. Example With +++Reasoning Decorator: “+++Reasoning Suggest a name for an AI YouTube channel.”→ The AI first explains its naming criteria (e.g., clarity, memorability, relevance) before generating suggestions. Key Prompt Decorators & Their Uses Decorator Function Example Use Case +++Reasoning Forces AI to explain logic before answering “+++Reasoning What’s the best AI model for text generation?” +++StepByStep Breaks complex tasks into clear steps “+++StepByStep How do I fine-tune an LLM?” +++Debate Presents pros and cons for balanced discussion “+++Debate Is cryptocurrency a good investment?” +++Critique Evaluates strengths/weaknesses before suggesting improvements “+++Critique Analyze the pros and cons of online education.” +++Refine(N) Iteratively improves responses (N = refinement rounds) “+++Refine(3) Write a tagline for an AI startup.” +++CiteSources Includes references for claims “+++CiteSources Who invented the printing press?” +++FactCheck Prioritizes verified information “+++FactCheck What are the health benefits of coffee?” +++OutputFormat(FMT) Structures responses (JSON, Markdown, etc.) “+++OutputFormat(JSON) List top AI trends in 2024.” +++Tone(STYLE) Adjusts response tone (formal, casual, etc.) “+++Tone(Formal) Write an email requesting a deadline extension.” Why Use Prompt Decorators? Real-World Applications The Future of Prompt Decorators As AI evolves, Prompt Decorators could: Conclusion Prompt Decorators offer a simple yet powerful way to enhance AI interactions. By integrating structured directives, users can achieve more reliable, insightful, and actionable outputs—reducing frustration and unlocking AI’s full potential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
ChatGPT Memory Announced

OpenAI ChatGPT Prompt Guide

Mastering AI Prompting: OpenAI’s Guide to Optimal Model Performance The Art of Effective AI Communication OpenAI has unveiled essential guidelines for optimizing interactions with their reasoning models. As AI systems grow more sophisticated, the quality of user prompts becomes increasingly critical in determining output quality. This guide distills OpenAI’s latest recommendations into actionable strategies for developers, business leaders, and researchers seeking to maximize their AI results. Core Principles for Superior Prompting 1. Clarity Over Complexity Best Practice: Direct, uncomplicated prompts yield better results than convoluted instructions. Example Evolution: Why it works: Modern models possess sophisticated internal reasoning – trust their native capabilities rather than over-scripting the thought process. 2. Rethinking Step-by-Step Instructions New Insight: Explicit “think step by step” prompts often reduce effectiveness rather than enhance it. Example Pair: Pro Tip: For explanations, request the answer first then ask “Explain your calculation” as a follow-up. 3. Structured Inputs with Delimiters For Complex Queries: Use clear visual markers to separate instructions from content. Implementation: markdown Copy Compare these two product descriptions: — [Description A] — [Description B] — Benefit: Reduces misinterpretation by 37% in testing (OpenAI internal data). 4. Precision in Retrieval-Augmented Generation Critical Adjustment: More context ≠ better results. Be surgical with reference materials. Optimal Approach: 5. Constraint-Driven Prompting Formula: Action + Domain + Constraints = Optimal Output Example Progression: 6. Iterative Refinement Process Workflow Strategy: Case Study: Advanced Techniques for Professionals For Developers: python Copy # When implementing RAG systems: optimal_context = filter_documents( query=user_query, relevance_threshold=0.85, max_tokens=1500 ) For Business Analysts: Dashboard Prompt Template:“Identify [X] key trends in [dataset] focusing on [specific metrics]. Format as: 1) Trend 2) Business Impact 3) Recommended Action” For Researchers: “Critique this methodology [paste abstract] focusing on: 1) Sample size adequacy 2) Potential confounding variables 3) Statistical power considerations” Performance Benchmarks Prompt Style Accuracy Score Response Time Basic 72% 1.2s Optimized 89% 0.8s Over-engineered 65% 2.1s Implementation Checklist The Future of Prompt Engineering As models evolve, expect: Final Recommendation: Regularly revisit prompting strategies as model capabilities progress. What works today may become suboptimal in future iterations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Why Build a General-Purpose Agent?

A general-purpose LLM agent serves as an excellent starting point for prototyping use cases and establishing the foundation for a custom agentic architecture tailored to your needs. What is an LLM Agent? An LLM (Large Language Model) agent is a program where execution logic is governed by the underlying model. Unlike approaches such as few-shot prompting or fixed workflows, LLM agents adapt dynamically. They can determine which tools to use (e.g., web search or code execution), how to use them, and iterate based on results. This adaptability enables handling diverse tasks with minimal configuration. Agentic Architectures Explained:Agentic systems range from the reliability of fixed workflows to the flexibility of autonomous agents. For instance: Your architecture choice will depend on the desired balance between reliability and flexibility for your use case. Building a General-Purpose LLM Agent Step 1: Select the Right LLM Choosing the right model is critical for performance. Evaluate based on: Model Recommendations (as of now): For simpler use cases, smaller models running locally can also be effective, but with limited functionality. Step 2: Define the Agent’s Control Logic The system prompt differentiates an LLM agent from a standalone model. This prompt contains rules, instructions, and structures that guide the agent’s behavior. Common Agentic Patterns: Starting with ReAct or Plan-then-Execute patterns is recommended for general-purpose agents. Step 3: Define the Agent’s Core Instructions To optimize the agent’s behavior, clearly define its features and constraints in the system prompt: Example Instructions: Step 4: Define and Optimize Core Tools Tools expand an agent’s capabilities. Common tools include: For each tool, define: Example: Implementing an Arxiv API tool for scientific queries. Step 5: Memory Handling Strategy Since LLMs have limited memory (context window), a strategy is necessary to manage past interactions. Common approaches include: For personalization, long-term memory can store user preferences or critical information. Step 6: Parse the Agent’s Output To make raw LLM outputs actionable, implement a parser to convert outputs into a structured format like JSON. Structured outputs simplify execution and ensure consistency. Step 7: Orchestrate the Agent’s Workflow Define orchestration logic to handle the agent’s next steps after receiving an output: Example Orchestration Code: pythonCopy codedef orchestrator(llm_agent, llm_output, tools, user_query): while True: action = llm_output.get(“action”) if action == “tool_call”: tool_name = llm_output.get(“tool_name”) tool_params = llm_output.get(“tool_params”, {}) if tool_name in tools: try: tool_result = tools[tool_name](**tool_params) llm_output = llm_agent({“tool_output”: tool_result}) except Exception as e: return f”Error executing tool ‘{tool_name}’: {str(e)}” else: return f”Error: Tool ‘{tool_name}’ not found.” elif action == “return_answer”: return llm_output.get(“answer”, “No answer provided.”) else: return “Error: Unrecognized action type from LLM output.” This orchestration ensures seamless interaction between tools, memory, and user queries. When to Consider Multi-Agent Systems A single-agent setup works well for prototyping but may hit limits with complex workflows or extensive toolsets. Multi-agent architectures can: Starting with a single agent helps refine workflows, identify bottlenecks, and scale effectively. By following these steps, you’ll have a versatile system capable of handling diverse use cases, from competitive analysis to automating workflows. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI-Ready Text Data

AI-Ready Text Data

Large language models (LLMs) are powerful tools for processing text data from various sources. Common tasks include editing, summarizing, translating, and extracting text. However, one of the key challenges in utilizing LLMs effectively is ensuring that your data is AI-ready. This insight will explain what it means to have AI-Ready Text Data and present a few no-code solutions to help you achieve this. What Does AI-Ready Mean? We are surrounded by vast amounts of unstructured text data—web pages, PDFs, emails, organizational documents, and more. These unstructured documents hold valuable information, but they can be difficult to process using LLMs without proper preparation. Many users simply copy and paste text into a prompt, but this method is not always effective. Consider the following challenges: To be AI-ready, your data should be formatted in a way that LLMs can easily interpret, such as plain text or Markdown. This ensures efficient and accurate text processing. Plain Text vs. Markdown Plain text (.txt) is the most basic file type, containing only raw characters without any stylization. Markdown files (.md) are a type of plain text but include special characters to format the text, such as using asterisks for italics or bolding. LLMs are adept at processing Markdown because it provides both content and structure, enhancing the model’s ability to understand and organize information. Markdown’s simple syntax for headers, lists, and links allows LLMs to extract additional meaning from the document’s structure, leading to more accurate interpretations. Markdown is widely supported across various platforms (e.g., Slack, Discord, GitHub, Google Docs), making it a versatile option for preparing AI-ready text. Tools for AI-Ready Data Here are some essential tools to help you manage Markdown and integrate it into your LLM workflows: Recommended Tools for Managing AI-Ready Data Obsidian: Save and Store Plain Text Obsidian is a great tool for saving and organizing Markdown files. It’s a free text editor that supports plain-text workflows, making it an excellent choice for storing content extracted from PDFs or web pages. Jina AI Reader: Convert Web Pages to Markdown Jina AI Reader is an easy-to-use tool for converting web pages into Markdown. Simply add https://r.jina.ai/ before a webpage URL, and it will return the content in Markdown format. This method streamlines the process of extracting relevant text without the clutter of formatting. LlamaParse: Extract Plain Text from Documents Highly formatted documents like PDFs can present unique challenges when working with LLMs. LlamaParse, part of LlamaIndex’s suite, helps strip away formatting to focus on the content. By using LlamaParse, you can extract plain text or Markdown from documents and ensure only the relevant sections are processed. Our Thoughts Preparing text data for AI involves strategies to convert, store, and process content efficiently. While this may seem daunting at first, using the right tools will streamline your workflow and allow you to maximize the power of LLMs for your specific tasks. Tectonic is ready to assist. Contact us today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Slack and Salesforce

Flow Core Actions for Slack: Send Slack Message

Effortlessly send messages to Slack channels, direct messages, or the Messages tab of a Slack app using the Send Slack Message Flow Core Action. Required Editions Prerequisite: Ensure Salesforce for Slack integrations are enabled before using this action. Steps to Send a Slack Message in Flow 1. Add an Action to the Flow Set Connection Values for Slack Input Parameter Description Slack App Required. Specify the Slack app to execute the action. Only Slack apps installed in your org are available. The input value corresponds to the Slack app ID. Slack Workspace Required. Identify the Slack workspace where the app is installed. You can select a value or resource. The input value corresponds to the Slack workspace ID. Execute Action As Specify the entity executing the action: Set Slack Message Details Input Parameter Description Slack Conversation ID Required. The ID of the Slack channel, direct message, or user to send the message. Store Output Values Output Parameter Description Slack Message Timestamp The timestamp of the sent message. Use this for starting threads or as a resource in subsequent actions. Usage Notes By configuring the Send Slack Message Flow Core Action, you can streamline communication workflows and enhance collaboration directly from Salesforce to Slack. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com