Neo4j Archives - gettectonic.com
Shift From AI Agents to AI Agent Tool Use

Building Scalable AI Agents

Building Scalable AI Agents: Infrastructure, Planning, and Security The key building blocks of AI agents—planning, tool integration, and memory—demand sophisticated infrastructure to function effectively in production environments. As the technology advances, several critical components have emerged as essential for successful deployments. Development Frameworks & Architecture The ecosystem for AI agent development has matured, with several key frameworks leading the way: While these frameworks offer unique features, successful agents typically share three core architectural components: Despite these strong foundations, production deployments often require customization to address high-scale workloads, security requirements, and system integrations. Planning & Execution Handling complex tasks requires advanced planning and execution flows, typically structured around: An agent’s effectiveness hinges on its ability to: ✅ Generate structured plans by intelligently combining tools and knowledge (e.g., correctly sequencing API calls for a customer refund request).✅ Validate each task step to prevent errors from compounding.✅ Optimize computational costs in long-running operations.✅ Recover from failures through dynamic replanning.✅ Apply multiple validation strategies, from structural verification to runtime testing.✅ Collaborate with other agents when consensus-based decisions improve accuracy. While multi-agent consensus models improve accuracy, they are computationally expensive. Even OpenAI finds that running parallel model instances for consensus-based responses remains cost-prohibitive, with ChatGPT Pro priced at $200/month. Running majority-vote systems for complex tasks can triple or quintuple costs, making single-agent architectures with robust planning and validation more viable for production use. Memory & Retrieval AI agents require advanced memory management to maintain context and learn from experience. Memory systems typically include: 1. Context Window 2. Working Memory (State Maintained During a Task) Key context management techniques: 3. Long-Term Memory & Knowledge Management AI agents rely on structured storage systems for persistent knowledge: Advanced Memory Capabilities Standardization efforts like Anthropic’s Model Context Protocol (MCP) are emerging to streamline memory integration, but challenges remain in balancing computational efficiency, consistency, and real-time retrieval. Security & Execution As AI agents gain autonomy, security and auditability become critical. Production deployments require multiple layers of protection: 1. Tool Access Control 2. Execution Validation 3. Secure Execution Environments 4. API Governance & Access Control 5. Monitoring & Observability 6. Audit Trails These security measures must balance flexibility, reliability, and operational control to ensure trustworthy AI-driven automation. Conclusion Building production-ready AI agents requires a carefully designed infrastructure that balances:✅ Advanced memory systems for context retention.✅ Sophisticated planning capabilities to break down tasks.✅ Secure execution environments with strong access controls. While AI agents offer immense potential, their adoption remains experimental across industries. Organizations must strategically evaluate where AI agents justify their complexity, ensuring that they provide clear, measurable benefits over traditional AI models. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
LLMs Turn CSVs into Knowledge Graphs

LLMs Turn CSVs into Knowledge Graphs

Neo4j Runway and Healthcare Knowledge Graphs Recently, Neo4j Runway was introduced as a tool to simplify the migration of relational data into graph structures. LLMs Turn CSVs into Knowledge Graphs. According to its GitHub page, “Neo4j Runway is a Python library that simplifies the process of migrating your relational data into a graph. It provides tools that abstract communication with OpenAI to run discovery on your data and generate a data model, as well as tools to generate ingestion code and load your data into a Neo4j instance.” In essence, by uploading a CSV file, the LLM identifies the nodes and relationships, automatically generating a Knowledge Graph. Knowledge Graphs in healthcare are powerful tools for organizing and analyzing complex medical data. These graphs structure information to elucidate relationships between different entities, such as diseases, treatments, patients, and healthcare providers. Applications of Knowledge Graphs in Healthcare Integration of Diverse Data Sources Knowledge graphs can integrate data from various sources such as electronic health records (EHRs), medical research papers, clinical trial results, genomic data, and patient histories. Improving Clinical Decision Support By linking symptoms, diagnoses, treatments, and outcomes, knowledge graphs can enhance clinical decision support systems (CDSS). They provide a comprehensive view of interconnected medical knowledge, potentially improving diagnostic accuracy and treatment effectiveness. Personalized Medicine Knowledge graphs enable the development of personalized treatment plans by correlating patient-specific data with broader medical knowledge. This includes understanding relationships between genetic information, disease mechanisms, and therapeutic responses, leading to more tailored healthcare interventions. Drug Discovery and Development In pharmaceutical research, knowledge graphs can accelerate drug discovery by identifying potential drug targets and understanding the biological pathways involved in diseases. Public Health and Epidemiology Knowledge graphs are useful in public health for tracking disease outbreaks, understanding epidemiological trends, and planning interventions. They integrate data from various public health databases, social media, and other sources to provide real-time insights into public health threats. Neo4j Runway Library Neo4j Runway is an open-source library created by Alex Gilmore. The GitHub repository and a blog post describe its features and capabilities. Currently, the library supports OpenAI LLM for parsing CSVs and offers the following features: The library eliminates the need to write Cypher queries manually, as the LLM handles all CSV-to-Knowledge Graph conversions. Additionally, Langchain’s GraphCypherQAChain can be used to generate Cypher queries from prompts, allowing for querying the graph without writing a single line of Cypher code. Practical Implementation in Healthcare To test Neo4j Runway in a healthcare context, a simple dataset from Kaggle (Disease Symptoms and Patient Profile Dataset) was used. This dataset includes columns such as Disease, Fever, Cough, Fatigue, Difficulty Breathing, Age, Gender, Blood Pressure, Cholesterol Level, and Outcome Variable. The goal was to provide a medical report to the LLM to get diagnostic hypotheses. Libraries and Environment Setup pythonCopy code# Install necessary packages sudo apt install python3-pydot graphviz pip install neo4j-runway # Import necessary libraries import numpy as np import pandas as pd from neo4j_runway import Discovery, GraphDataModeler, IngestionGenerator, LLM, PyIngest from IPython.display import display, Markdown, Image Load Environment Variables pythonCopy codeload_dotenv() OPENAI_API_KEY = os.getenv(‘sk-openaiapikeyhere’) NEO4J_URL = os.getenv(‘neo4j+s://your.databases.neo4j.io’) NEO4J_PASSWORD = os.getenv(‘yourneo4jpassword’) Load and Prepare Medical Data pythonCopy codedisease_df = pd.read_csv(‘/home/user/Disease_symptom.csv’) disease_df.columns = disease_df.columns.str.strip() for i in disease_df.columns: disease_df[i] = disease_df[i].astype(str) disease_df.to_csv(‘/home/user/disease_prepared.csv’, index=False) Data Description for the LLM pythonCopy codeDATA_DESCRIPTION = { ‘Disease’: ‘The name of the disease or medical condition.’, ‘Fever’: ‘Indicates whether the patient has a fever (Yes/No).’, ‘Cough’: ‘Indicates whether the patient has a cough (Yes/No).’, ‘Fatigue’: ‘Indicates whether the patient experiences fatigue (Yes/No).’, ‘Difficulty Breathing’: ‘Indicates whether the patient has difficulty breathing (Yes/No).’, ‘Age’: ‘The age of the patient in years.’, ‘Gender’: ‘The gender of the patient (Male/Female).’, ‘Blood Pressure’: ‘The blood pressure level of the patient (Normal/High).’, ‘Cholesterol Level’: ‘The cholesterol level of the patient (Normal/High).’, ‘Outcome Variable’: ‘The outcome variable indicating the result of the diagnosis or assessment for the specific disease (Positive/Negative).’ } Data Analysis and Model Creation pythonCopy codedisc = Discovery(llm=llm, user_input=DATA_DESCRIPTION, data=disease_df) disc.run() # Instantiate and create initial graph data model gdm = GraphDataModeler(llm=llm, discovery=disc) gdm.create_initial_model() gdm.current_model.visualize() Adjust Relationships pythonCopy codegdm.iterate_model(user_corrections=”’ Let’s think step by step. Please make the following updates to the data model: 1. Remove the relationships between Patient and Disease, between Patient and Symptom and between Patient and Outcome. 2. Change the Patient node into Demographics. 3. Create a relationship HAS_DEMOGRAPHICS from Disease to Demographics. 4. Create a relationship HAS_SYMPTOM from Disease to Symptom. If the Symptom value is No, remove this relationship. 5. Create a relationship HAS_LAB from Disease to HealthIndicator. 6. Create a relationship HAS_OUTCOME from Disease to Outcome. ”’) # Visualize the updated model gdm.current_model.visualize().render(‘output’, format=’png’) img = Image(‘output.png’, width=1200) display(img) Generate Cypher Code and YAML File pythonCopy code# Instantiate ingestion generator gen = IngestionGenerator(data_model=gdm.current_model, username=”neo4j”, password=’yourneo4jpasswordhere’, uri=’neo4j+s://123654888.databases.neo4j.io’, database=”neo4j”, csv_dir=”/home/user/”, csv_name=”disease_prepared.csv”) # Create ingestion YAML pyingest_yaml = gen.generate_pyingest_yaml_string() gen.generate_pyingest_yaml_file(file_name=”disease_prepared”) # Load data into Neo4j instance PyIngest(yaml_string=pyingest_yaml, dataframe=disease_df) Querying the Graph Database cypherCopy codeMATCH (n) WHERE n:Demographics OR n:Disease OR n:Symptom OR n:Outcome OR n:HealthIndicator OPTIONAL MATCH (n)-[r]->(m) RETURN n, r, m Visualizing Specific Nodes and Relationships cypherCopy codeMATCH (n:Disease {name: ‘Diabetes’}) WHERE n:Demographics OR n:Disease OR n:Symptom OR n:Outcome OR n:HealthIndicator OPTIONAL MATCH (n)-[r]->(m) RETURN n, r, m MATCH (d:Disease) MATCH (d)-[r:HAS_LAB]->(l) MATCH (d)-[r2:HAS_OUTCOME]->(o) WHERE l.bloodPressure = ‘High’ AND o.result=’Positive’ RETURN d, properties(d) AS disease_properties, r, properties(r) AS relationship_properties, l, properties(l) AS lab_properties Automated Cypher Query Generation with Gemini-1.5-Flash To automatically generate a Cypher query via Langchain (GraphCypherQAChain) and retrieve possible diseases based on a patient’s symptoms and health indicators, the following setup was used: Initialize Vertex AI pythonCopy codeimport warnings import json from langchain_community.graphs import Neo4jGraph with warnings.catch_warnings(): warnings.simplefilter(‘ignore’) NEO4J_USERNAME = “neo4j” NEO4J_DATABASE = ‘neo4j’ NEO4J_URI = ‘neo4j+s://1236547.databases.neo4j.io’ NEO4J_PASSWORD = ‘yourneo4jdatabasepasswordhere’ # Get the Knowledge Graph from the instance and the schema kg = Neo4jGraph( url=NEO4J_URI, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, database=NEO4J_DATABASE ) kg.refresh_schema() print(textwrap.fill(kg.schema, 60)) schema = kg.schema Initialize Vertex AI pythonCopy codefrom langchain.prompts.prompt import PromptTemplate from langchain.chains import GraphCypherQAChain from langchain.llms import VertexAI vertexai.init(project=”your-project”, location=”us-west4″) llm = VertexAI(model=”gemini-1.5-flash”) Create the Prompt Template pythonCopy codeprompt_template = “”” Let’s think step by

Read More
gettectonic.com