SSO - gettectonic.com - Page 2
Generative AI Energy Consumption Rises

AI for the Ho-Ho-Holidays

The Holiday Rush and AI’s Growing Role in Retail The holiday season is approaching quickly, with fewer days between Thanksgiving and Christmas this year than at any time since 2019. This condensed timeline makes Salesforce’s latest State of the Connected Customer report—this year titled State of the AI Connected Customer—particularly timely. The report, based on insights from over 15,000 consumers worldwide, focuses on the growing role of artificial intelligence (AI), specifically AI agents, in transforming customer experiences. With Salesforce’s recent launch of Agentforce, AI agents have taken center stage. According to Michael Affronti, SVP and General Manager of Commerce Cloud at Salesforce, the retail sector is already exploring this technology: “Retailers that we talk to are starting to implement AI agents. Unlike chatbots, AI agents can analyze customer data to make proactive recommendations and even take action. For consumers, AI agents create smoother checkout experiences, streamline returns, and deliver personalized shopping that feels like working with an incredible in-store associate. For retailers, AI agents drive higher margins and customer retention by delivering exceptional service. As we like to say, ‘There’s an agent for that.’” Rebuilding Trust with AI One of the most compelling use cases for AI agents, according to Affronti, lies in addressing declining consumer trust. Salesforce’s research highlights alarming trends: AI agents present an opportunity to rebuild trust by delivering reliable and transparent experiences. While consumer expectations for personalized service remain high, Salesforce data suggests that 30% of consumers would work with AI agents if it meant faster service. However, skepticism persists—curiosity is the top emotion associated with AI, followed closely by suspicion and anxiety. Transparency is crucial, as 40% of consumers are more likely to trust AI agents when their logic is explained, and there’s an option to escalate to a human. “Most people just want to know it’s AI, and then they’ll be comfortable,” Affronti notes. “Clarity about what the agent is doing, combined with the ability to talk to a real person, builds trust.” Three Opportunities for Retailers Affronti outlines three key strategies for retailers to embrace AI agents effectively this holiday season: Experimentation and Preparing for the Future For retailers not yet leveraging AI, Affronti advises starting small but experimenting now. For example, large brands like Saks are already piloting AI agents such as “Sophie,” which handles tasks like order management and learns new capabilities based on customer feedback. However, smaller businesses can also benefit from AI tools, such as generative AI for writing product descriptions or automating promotions, regardless of scale. “One of the great things about AI today is how democratized it has become,” Affronti explains. “Small businesses using Salesforce’s Commerce Cloud can leverage AI for tasks like creating product descriptions or automating translations, even if their catalog is limited.” Looking Ahead While this holiday season may not see a widespread rollout of AI-driven retail solutions, early adopters are already showcasing what’s possible. Retailers that embrace experimentation and lay the groundwork for AI-powered experiences today will likely see significant results by the 2025 holiday season. The key takeaway: now is the time to build the foundation for the future of AI in retail. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Gamification in Experience Cloud

Gamification in Experience Cloud

Setting Up Gamification in Salesforce Experience Cloud to Boost Engagement When someone mentions “gamification,” many think of “games,” “fun,” and “entertainment.” While this is true, in the context of Salesforce, it takes on new dimensions. Here, it’s not just about fun; it’s about enhancing user engagement, productivity, and overall experience. Keep reading as we explore the intricacies of implementing gamification in Salesforce Experience Cloud and how you can leverage this game-changing experience for your organization (pun intended). Gamification, Fully Explained Gamification employs game-like mechanics to motivate users while they interact with your website, application, or service through engaging content. The essence of gamification lies in rewarding users with points and badges for completing specific actions. Examples include: A prime example of gamification in Salesforce is Trailhead, where users earn badges and points for completing various trails and modules. As a proud Triple Star Ranger with 566 badges, 162,075 points, and 89 trails completed, I’m a trailblazing fool. Time to put in the work! Using Gamification in Salesforce Experience Cloud: Common Benefits When implemented correctly, gamification can significantly enhance user engagement and experience. Here are some common advantages of using gamification in Salesforce Experience Cloud: Main Gamification Functionality in Salesforce Gamification in Salesforce Experience Cloud revolves around three key pillars: Recognition Badges, Missions, and Reputation Leaderboards. Before exploring the setup, let’s understand these key elements: How to Set Gamification Up in Salesforce Experience Cloud: Your Step-by-Step Tutorial Now that we’ve covered the basics, let’s walk through the process of implementing gamification in a Salesforce Experience Cloud site. Follow these simple steps—it’s straightforward! Step 1: Locating Gamification in the Experience Builder Step 2: Turning the Thanks Settings On Step 3: Creating a Recognition Badge Step 4: Creating a Mission Badge Step 5: Enabling Reputation on an Experience Cloud Site Step 6: Adjusting Reputation Levels and Points Step 7: Assembling Gamification Components on the Site’s Layout Step 8: Enjoying Gamification from a User’s Perspective Final Thoughts Implementing gamification in Salesforce Experience Cloud is straightforward. While it involves several steps, the benefits are well worth the effort. A couple of tips as you embark on your gamification journey: Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

AI’s Impact on Future Information Ecosystems

AI’s Impact on Future Information Ecosystems The proliferation of generative AI technology has ignited a renewed focus within the media industry on how to strategically adapt to its capabilities. Media professionals are now confronted with crucial questions: What are the most effective ways to leverage this technology for efficiency in news production and to enhance audience experiences? Conversely, what threats do these technological advancements pose? Is legacy media on the brink of yet another wave of disintermediation from its audiences? Additionally, how does the evolution of technology impact journalism ethics? AI’s Impact on Future Information Ecosystems. In response to these challenges, the Open Society Foundations (OSF) launched the AI in Journalism Futures project earlier this year. The first phase of this ambitious initiative involved an open call for participants to develop future-oriented scenarios that explore the potential driving forces and implications of AI within the broader media ecosystem. The project sought to answer questions about what might transpire among various stakeholders in 5, 10, or 15 years. As highlighted by Nick Diakopoulos, scenarios are a valuable method for capturing a diverse range of perspectives on complex issues. While predicting the future is not the goal, understanding a variety of plausible alternatives can significantly inform current strategic thinking. Ultimately, more than 800 individuals from approximately 70 countries contributed short scenarios for analysis. The AI in Journalism Futures project subsequently utilized these scenarios as a foundation for a workshop, which refined the ideas outlined in their report. Diakopoulos emphasizes the importance of examining this broad set of initial scenarios, which OSF graciously provided in anonymized form. This analysis specifically explores (1) the various types of impacts identified within the scenarios, (2) the associated timeframes for these impacts—whether they are short, medium, or long-term, and (3) the global differences in focus across regions, highlighting how different parts of the world emphasized distinct types of impacts. While many additional questions could be explored regarding this data—such as the drivers of impacts, final outcomes, severity, stakeholders involved, or technical capabilities emphasized—this analysis focuses primarily on impacts. Refining the Data The initial pool of 872 scenarios underwent a rigorous process of cleaning, filtering, transformation, and verification before analysis. Firstly, scenarios shorter than 50 words were excluded from consideration, resulting in 852 scenarios for analysis. Additionally, 14 scenarios that were not written in English were translated using Google Sheets. To enable geographic and temporal analysis, the country of origin for each scenario writer was mapped to their respective continents, and the free-text “timeframe” field was converted into numerical representations of years. Next, impacts were extracted from each scenario using an LLM (GPT-4 in this case). The prompts for the LLM were refined through iteration, with a clear definition established for what constitutes an “impact.” Diakopoulos defined an impact as “a significant effect, consequence, or outcome that an action, event, or other factor has in the scenario.” This definition encompasses not only the ultimate state of a scenario but also intermediate outcomes. The LLM was instructed to extract distinct impacts, with each impact represented by a one-sentence description and a short label. For instance, one impact could be described as, “The proliferation of flawed AI systems leads to a compromised information ecosystem, causing a general doubt in the reliability of all information,” labeled as “Compromised Information Ecosystem.” To ensure the accuracy of this extraction process, a random sample of five scenarios was manually reviewed to validate the extracted impacts against the established definition. All extracted impacts passed the checks, leading to confidence in scaling the analysis across the entire dataset. This process resulted in the identification of 3,445 impacts from the 852 scenarios. AI’s Impact on Future Information Ecosystems A typology of impact types was developed based on the 3,445 impact descriptions, utilizing a novel method for qualitative thematic analysis from a Stanford University study. This approach clusters input texts, synthesizes concepts that reflect abstract connections, and produces scoring definitions to assess the relevance of each original text. For example, a concept like “AI Personalization” might be defined by the question, “Does the text discuss how AI personalizes content or enhances user engagement?” Each impact description was then scored against these concepts to tabulate occurrence frequencies. Impacts of AI on Media Ecosystems Through this analytical approach, 19 impact themes emerged, along with their corresponding scoring definitions: Interestingly, many scenarios articulated themes around how AI intersects with fact-checking, trust, misinformation, ethics, labor concerns, and evolving business models. Although some concepts may not be entirely distinct, this categorization offers a meaningful overview of the key ideas represented in the data. Distribution of Impact Themes Comparing these findings with those in the OSF report reveals some discrepancies. For instance, while the report emphasizes personalization and misinformation, these themes were less prevalent in the analyzed scenarios. Moreover, themes such as the rise of AI agents and audience fragmentation were mentioned but did not cluster significantly in the analysis. To capture potentially interesting but less prevalent impacts, the clustering was rerun with a smaller minimum cluster size. This adjustment yielded hundreds more concept themes, revealing insights into longer-tail issues. Positive visions for generative AI included reduced language barriers and increased accessibility for marginalized audiences, while concerns about societal fragmentation and privacy were also raised. Impacts Over Time and Around the World The analysis also explored how the impacts varied based on the timeframe selected by writers and their geographic locations. Using a Chi-Squared test, it was determined that “AI Personalization” trends towards long-term implications, while both “AI Fact-Checking” and “AI and Misinformation” skew toward shorter-term issues. This suggests that scenario writers perceive misinformation impacts as imminent threats, likely reflecting ongoing developments in the media landscape. When examining the distribution of impacts by region, it was found that “AI Fact-Checking” was more frequently noted by writers from Africa and Asia, while “AI and Misinformation” was less prevalent in scenarios from African writers but more so in those from Asian contributors. This indicates a divergence in perspectives on AI’s role in the media ecosystem.

Read More
Customer Service Week

Customer Service Week

Engage Your Customer Service Team All Year — With Appreciation Recognizing your customer service team during National Customer Service Week (the first full week of October) is a great opportunity to show appreciation. But why limit it to one week, or to simple gestures like pastries or catered lunches? Your team works hard all year long! Here are four ways to show your customer service reps that you value their dedication and well-being every day. Why Customer Service Week Matters Customer Service Week is ainternational event dedicated to recognizing the essential role customer service reps play in delivering excellent customer experiences. With growing demands on reps, including handling more products and increasingly complex cases, it’s important to show appreciation and support. Our research shows that 69% of service leaders say rep attrition is a significant challenge, and more than half of reps experience burnout. Investing in your team can reduce turnover, prevent burnout, and improve overall customer satisfaction. Everyone deserves to be recognized for the contributions. Customer Service Week, Administrative Assistants Day, Best Boss Day — they all offer opportunities to focus on the good someone is doing in your organization and provide praise beyond a comment in a review or an attaboy. Here are four ways to make sure your reps feel supported during Customer Service Week—and all year long: 1. Foster Community Involvement Customer service reps often work around the clock to solve problems and assist customers. Connecting them with a supportive community can make all the difference, especially as AI continues to transform the customer service landscape. Encourage your reps to join Salesforce’s Serviceblazer Community, where they can gain new skills, connect with industry peers, and grow their careers. By fostering these connections, you show that you’re invested in their professional growth. As Serviceblazer Shonnah Hughes, VP at Salesforce, notes: “Your community helps you stay updated with the latest technology and enhances your skills, leading to career opportunities and personal growth.” Sean Lewis, principal solution consultant for Vicasso, shares that creating a dedicated Slack channel for best practices has improved customer service issue resolution and created a culture of gratitude. 2. Offer Professional Development Opportunities Invest in your team’s future by providing paid learning opportunities. Platforms like Salesforce’s Trailhead offer self-paced learning on a variety of topics, from communication skills to AI in customer service. Additionally, consider sponsoring team members for training courses, seminars, or workshops. This not only builds their skill sets but also shows you’re invested in their long-term success within the organization. You don’t have to send everyone to Dreamforce. But some of the smaller events might require less travel and more learning. If there isn’t a customer service Salesforce focused Meetup locally, sponsor one. Encourage networking. This might be where your next great employee is found. 3. Promote Skills Exchange Sessions Encourage skill-sharing among team members to build camaraderie and promote peer learning. Regularly schedule sessions where team members can teach one another valuable skills, such as how to leverage AI for writing customer responses or best practices for resolving complex cases. These sessions help create a collaborative work environment and enable the team to continuously improve. Record the sessions and add them to your Knowledge Base. Encourage staff to learn new skills to share. 4. Prioritize Health and Wellness Initiatives Supporting your team’s physical and mental health is key to maintaining productivity and morale. Consider introducing initiatives like fitness challenges, yoga sessions, or mental health workshops to reduce burnout and promote well-being. Offering access to wellness resources, gym memberships, or wellness stipends can also demonstrate your commitment to their overall health. Not only does the team appreciate these gestures, but helps them feel better all year long. 🔔🔔 Follow us on LinkedIn 🔔🔔 Ready to Put These Ideas into Action? A valued team is a highly motivated team. By implementing these four strategies—community involvement, professional development, skills exchanges, and wellness initiatives—you can show your customer service reps how much they mean to your organization. And the best part? You can engage and support them not just during Customer Service Week, but every day of the year—whether or not there are donuts involved. Salesforce provides a wide array of tools to help you with these four strategies. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
healthcare Can prioritize ai governance

Healthcare Can Prioritize AI Governance

As artificial intelligence gains momentum in healthcare, it’s critical for health systems and related stakeholders to develop robust AI governance programs. AI’s potential to address challenges in administration, operations, and clinical care is drawing interest across the sector. As this technology evolves, the range of applications in healthcare will only broaden.

Read More
Where LLMs Fall Short

Where LLMs Fall Short

Large Language Models (LLMs) have transformed natural language processing, showcasing exceptional abilities in text generation, translation, and various language tasks. Models like GPT-4, BERT, and T5 are based on transformer architectures, which enable them to predict the next word in a sequence by training on vast text datasets. How LLMs Function LLMs process input text through multiple layers of attention mechanisms, capturing complex relationships between words and phrases. Here’s an overview of the process: Tokenization and Embedding Initially, the input text is broken down into smaller units, typically words or subwords, through tokenization. Each token is then converted into a numerical representation known as an embedding. For instance, the sentence “The cat sat on the mat” could be tokenized into [“The”, “cat”, “sat”, “on”, “the”, “mat”], each assigned a unique vector. Multi-Layer Processing The embedded tokens are passed through multiple transformer layers, each containing self-attention mechanisms and feed-forward neural networks. Contextual Understanding As the input progresses through layers, the model develops a deeper understanding of the text, capturing both local and global context. This enables the model to comprehend relationships such as: Training and Pattern Recognition During training, LLMs are exposed to vast datasets, learning patterns related to grammar, syntax, and semantics: Generating Responses When generating text, the LLM predicts the next word or token based on its learned patterns. This process is iterative, where each generated token influences the next. For example, if prompted with “The Eiffel Tower is located in,” the model would likely generate “Paris,” given its learned associations between these terms. Limitations in Reasoning and Planning Despite their capabilities, LLMs face challenges in areas like reasoning and planning. Research by Subbarao Kambhampati highlights several limitations: Lack of Causal Understanding LLMs struggle with causal reasoning, which is crucial for understanding how events and actions relate in the real world. Difficulty with Multi-Step Planning LLMs often struggle to break down tasks into a logical sequence of actions. Blocksworld Problem Kambhampati’s research on the Blocksworld problem, which involves stacking and unstacking blocks, shows that LLMs like GPT-3 struggle with even simple planning tasks. When tested on 600 Blocksworld instances, GPT-3 solved only 12.5% of them using natural language prompts. Even after fine-tuning, the model solved only 20% of the instances, highlighting the model’s reliance on pattern recognition rather than true understanding of the planning task. Performance on GPT-4 Temporal and Counterfactual Reasoning LLMs also struggle with temporal reasoning (e.g., understanding the sequence of events) and counterfactual reasoning (e.g., constructing hypothetical scenarios). Token and Numerical Errors LLMs also exhibit errors in numerical reasoning due to inconsistencies in tokenization and their lack of true numerical understanding. Tokenization and Numerical Representation Numbers are often tokenized inconsistently. For example, “380” might be one token, while “381” might split into two tokens (“38” and “1”), leading to confusion in numerical interpretation. Decimal Comparison Errors LLMs can struggle with decimal comparisons. For example, comparing 9.9 and 9.11 may result in incorrect conclusions due to how the model processes these numbers as strings rather than numerically. Examples of Numerical Errors Hallucinations and Biases Hallucinations LLMs are prone to generating false or nonsensical content, known as hallucinations. This can happen when the model produces irrelevant or fabricated information. Biases LLMs can perpetuate biases present in their training data, which can lead to the generation of biased or stereotypical content. Inconsistencies and Context Drift LLMs often struggle to maintain consistency over long sequences of text or tasks. As the input grows, the model may prioritize more recent information, leading to contradictions or neglect of earlier context. This is particularly problematic in multi-turn conversations or tasks requiring persistence. Conclusion While LLMs have advanced the field of natural language processing, they still face significant challenges in reasoning, planning, and maintaining contextual accuracy. These limitations highlight the need for further research and development of hybrid AI systems that integrate LLMs with other techniques to improve reasoning, consistency, and overall performance. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
lightning web picker in salesforce

Lightning Record Picker in Salesforce

The lightning-record-picker component enhances the record selection process in Salesforce applications, offering a more intuitive and flexible experience for users. With its ability to handle larger datasets, customizable fields, and strong validation features, it is a powerful tool for developers to incorporate into their Salesforce applications.

Read More
Road for AI Regulation

Road for AI Regulation

The concept of artificial intelligence, or synthetic minds capable of thinking and reasoning like humans, has been around for centuries. Ancient cultures often expressed ideas and pursued goals similar to AI, and in the early 20th century, science fiction brought these notions to modern audiences. Works like The Wizard of Oz and films such as Metropolis resonated globally, laying the groundwork for contemporary AI discussions.

Read More
Pitfall of Process Optimization

Pitfall of Process Optimization

In 1963, Peter Drucker wrote one of the most influential articles on business, Managing for Business Effectiveness. Much like Fred Brooks’ 1975 classic, The Mythical Man-Month, it has profound lessons. However, through today’s lens of AI and automation, it seems we may have misinterpreted Drucker’s insights, inadvertently industrializing the problem rather than solving it. Pitfall of process optimization. Pitfalls of process optimization. One pivotal point from Drucker’s essay (highlighted by Dave Duggal) is: “The major problem is the confusion between effectiveness and efficiency. There is nothing more useless than doing efficiently what should not be done at all. Yet our tools — especially accounting concepts and data — all focus on efficiency. What we need is a way to identify areas of effectiveness and a method to concentrate on them.” While Drucker emphasized focusing on results and making data-driven decisions, his warning that “our data and accounting focus on efficiency” has been largely overlooked. Instead of addressing this, businesses have industrialized the pursuit of efficiency at the expense of effectiveness. The Efficiency Trap Drucker’s assertion that “there is nothing more useless than doing with great efficiency what should not be done at all” remains true, yet much of the business and IT landscape has fixated on eliminating steps, even if the return on this effort is minimal. He warned that too much focus is placed on problems rather than opportunities and on areas where even exceptional performance yields little impact. This mirrors many process optimization efforts, where the goal is often to remove unnecessary steps, focusing on efficiency rather than true effectiveness. The Pitfall of Process Optimization Entire business methodologies were built around simplifying processes and eliminating redundant steps. Companies created cultures centered on optimization, believing that by cutting out inefficiencies, they would achieve success. Yet, as Drucker noted, this focus on efficiency has often resulted in neglecting broader opportunities. Poor Data, Poor Outcomes Drucker’s concerns about tools and data have proven strangely prophetic. Instead of focusing on effectiveness, many organizations now face data problems, often rooted in over-optimized processes. Some of the firms most dedicated to process optimization are the very ones known for slow responses to market changes, as their data fails to keep pace with business needs. Focusing on Process, Missing the Bigger Picture When businesses focus narrowly on processes, they overlook key information needed downstream. This might improve micro-level efficiency, but it often damages macro-level outcomes. For instance, optimizing an order submission process may mean critical data isn’t captured, leading to issues further along in the supply chain. This process-driven thinking fosters data silos—disconnected systems that, while progressing individual steps, fail to offer the necessary insights for broader business decisions. Effectiveness Requires Understanding Reality AI amplifies these challenges. To fully leverage AI, businesses must shift from process-centric to reality-based thinking. Companies that can manage their digital reality, enabling AI to make smart, outcome-driven decisions, will outperform those stuck in outdated process mentalities. AI won’t just optimize individual steps like restocking inventory; it will manage complex tasks such as provisioning networks, negotiating with suppliers, or resolving customer complaints. To support this, businesses must move beyond step-based optimization and embrace new approaches that focus on multi-dimensional KPIs and AI-driven outcomes. A Shift from Process to Reality The future of business optimization will require understanding KPIs in a multi-dimensional way, embedding AI into operations, and allowing it to drive business outcomes. This will necessitate a shift in data architecture, with a focus on operational reality rather than reporting. The Dangers of Ignoring the Shift Businesses that cling to process thinking may find isolated success with AI but risk falling behind competitors that embrace a broader transformation. Like retailers who tried to compete with Amazon by merely launching websites without addressing underlying fulfillment challenges, companies may see short-term gains but falter in the long run. The Cultural Challenge of Transformation Switching from process-focused thinking to a reality-based approach will be difficult. Since Drucker’s 1963 essay, the industrialization of step-elimination has become deeply ingrained in business culture. Processes are comfortable; they allow for focused problem-solving in isolated areas. Moving to a mindset that prioritizes operational reality, dependencies, and cross-functional collaboration is a significant cultural shift. Embracing the Change However, the businesses that make this transition will gain a competitive advantage. Those that recognize the scale of change required—making cultural, organizational, and architectural shifts—will operate in a different league than those who don’t. By shifting from efficiency-driven processes to reality-based effectiveness, organizations can unlock the full potential of AI, ensuring not just operational improvements but transformational business success. You can avoid the pitfalls of process optimization. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Connected Assets

Salesforce Connected Assets

Salesforce has unveiled Connected Assets, a robust suite of capabilities in Manufacturing Cloud, designed to offer manufacturers a comprehensive, real-time perspective on connected asset data. This includes data on service history, asset status, customer records, and telematics, allowing manufacturers to monitor asset health and performance while proactively addressing maintenance needs to reduce downtime and boost customer satisfaction. Enhanced AI Capabilities for Connected AssetsConnected Assets integrates Salesforce’s advanced AI to empower teams with actionable insights. Sales, customer service, and field teams can now receive real-time alerts and quickly access asset history and health, enabling faster, data-driven support and the delivery of more personalized offers. AI-driven insights and recommendations based on asset condition, service history, and performance data enhance the ability of manufacturers to predict maintenance needs and provide proactive support, including on-site recommendations to field technicians. Innovative Features for Optimized Asset Management Salesforce PerspectiveAchyut Jajoo, SVP and GM of Manufacturing and Automotive, states, “The manufacturing industry is embracing a historic transformation toward AI-enabled modernization. Connected Assets and our sector-specific AI tools in Manufacturing Cloud empower our customers to lead with improved customer experiences, optimized asset performance, and new revenue-generating services. With Agentforce, our customers will soon be able to leverage autonomous agents to monitor connected asset data at scale, enabling them to focus on strategic, high-value initiatives.” Real-World ApplicationKawasaki Engines exemplifies Connected Assets in action, using Manufacturing Cloud to enhance customer relationships by offering proactive support and minimizing equipment downtime. “Salesforce’s Connected Assets will enable us to deliver exceptional service, keeping our customers satisfied and our products operating efficiently,” says Tony Gondick, Senior Manager of IT Business Strategy at Kawasaki Engines. Extending Across IndustriesBeyond Manufacturing Cloud, Connected Assets is also being introduced to Salesforce’s other industry clouds, such as Energy & Utilities, Communications, and Media, allowing a wide range of sectors to tap into the benefits of connected asset management, minimize downtime, and generate new value. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Flow Tests

Salesforce Flow Tests

Deploying Salesforce Flow tests is not just about hitting “go” and hoping for the best. It requires more than simply moving automations from a Sandbox environment to production. Successful deployment demands thoughtful planning and attention to detail. In this post, we’ll dive deeper into deploying Flow tests effectively, covering key factors like independent testing and ensuring environment consistency. Building on our ongoing series, we’ll provide practical insights to help you achieve smooth deployments and reliable test execution. Key Considerations for Deploying Flow Tests Steps to Deploy Flow Tests Using Change Sets Final Thoughts Deploying Flow tests effectively is critical for maintaining the integrity of your automations across environments. Skipping the testing phase is like driving with a blindfold—one mistake could disrupt your workflows and cause chaos in critical processes. By following these guidelines, particularly focusing on independent testing and post-deployment checks, you can help ensure your Salesforce Flows continue to operate smoothly. Stay tuned for future insights for Flownatics where we’ll dive into more advanced aspects of Flow tests, helping you further optimize your Salesforce automation processes. Need more advice on testing your automations in Salesforce? Let’s chat! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
What Should Enterprises Build with Agentic AI?

What Should Enterprises Build with Agentic AI?

The rise of agentic AI has dominated recent discussions in enterprise technology, sparking debates over its transformative potential and practical applications. Just weeks ago, few had heard of the term. Now, every tech vendor is racing to stake their claim in this emerging space, positioning agentic AI as the successor to AI co-pilots. While co-pilots assist users with tasks, agentic AI represents the next step: delegating tasks to intelligent agents capable of independent execution, akin to assigning work to a junior colleague. But beyond the buzz, the pressing questions remain: Cutting Through the Hype Recent launches provide a snapshot of how enterprises are beginning to deploy agentic AI. Salesforce’s Agentforce, Asana’s AI Studio, and Atlassian’s Rovo AI Assistant all emphasize the ability of these agents to streamline workflows by interpreting unstructured data and automating complex tasks. These tools promise flexibility over previous rigid, rule-based systems. For example, instead of painstakingly scripting every step, users can instruct an agent to “follow documented policies, analyze data, and propose actions,” reserving human approval for final execution. However, the performance of these agents hinges on data quality and system robustness. Salesforce’s Marc Benioff, for instance, critiques Microsoft’s Copilot for lacking a robust data model, emphasizing Salesforce’s own structured approach as a competitive edge. Similarly, Asana and Atlassian highlight the structured work graphs underpinning their platforms as critical for accurate and reliable outputs. Key Challenges Despite the promise, there are significant challenges to deploying agentic AI effectively: Early Wins and Future Potential Early adopters are seeing value in high-volume, repetitive scenarios such as customer service. For example: However, these successes represent low-hanging fruit. The true promise lies in rethinking how enterprises work. As one panelist at Atlassian’s event noted: “We shouldn’t just use this AI to enhance existing processes. We should ask whether these are the processes we want for the future.” The Path Forward The transformative potential of agentic AI will depend on broader process standardization. Just as standardized shipping containers revolutionized logistics, and virtual containers transformed IT operations, similar breakthroughs in process design could unlock exponential gains for AI-driven workflows. For now, enterprises should: Conclusion Agentic AI holds immense potential, but its real power lies in enabling enterprises to question and redesign how work gets done. While it may still be in its early days, businesses that align their AI investments with strategic goals—and not just immediate fixes—will be best positioned to thrive in this new era of intelligent automation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI That Forgets

AI That Forgets

Salesforce has introduced a generative AI system designed to prioritize data privacy through a unique “forgetting” feature. This innovation allows the AI to process information through large language models (LLMs) without retaining the data, helping companies manage sensitive information more securely. AI That Forgets. As part of the latest wave in generative AI, Salesforce’s solution takes the form of digital “agents”—intelligent systems capable of understanding and responding to customer inquiries autonomously. CEO Marc Benioff has hailed this development as a significant breakthrough for the company, emphasizing its potential to transform customer interactions. AI That Forgets. At a recent event, Patrick Stokes, Salesforce’s EVP of Products and Industries, highlighted how this system supports organizations by reducing the costs and risks associated with building their own AI models. According to Stokes, many companies lack the resources to develop in-house AI sustainably, and Salesforce’s privacy-first approach provides an appealing alternative. Rather than focusing solely on creating the most powerful LLM, Salesforce has built AI agents that connect data and actions securely, addressing privacy concerns that have hindered AI adoption. AI That Forgets Salesforce’s approach integrates privacy-focused safeguards, which Stokes describes as a “trust layer” within the AI system. This feature verifies that data retrieved during an AI query aligns with the user’s access permissions, protecting sensitive information. Stokes notes that unlike traditional AI models that retain data, Salesforce’s LLM processes only the information required for each interaction and then “forgets” it afterward. This zero-retention approach creates a more secure environment, where companies retain governance over data usage and minimize risks associated with long-term data storage. Zahra Bahrololoumi, CEO of Salesforce UK and Ireland, also emphasized that Salesforce’s AI solutions offer users the confidence to adopt generative AI without compromising security. With over 1,000 AI agents already implemented, companies are benefiting from reduced burnout and increased productivity while maintaining data trust and integrity. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Risk Management

AI Risk Management

Organizations must acknowledge the risks associated with implementing AI systems to use the technology ethically and minimize liability. Throughout history, companies have had to manage the risks associated with adopting new technologies, and AI is no exception. Some AI risks are similar to those encountered when deploying any new technology or tool, such as poor strategic alignment with business goals, a lack of necessary skills to support initiatives, and failure to secure buy-in across the organization. For these challenges, executives should rely on best practices that have guided the successful adoption of other technologies. In the case of AI, this includes: However, AI introduces unique risks that must be addressed head-on. Here are 15 areas of concern that can arise as organizations implement and use AI technologies in the enterprise: Managing AI Risks While AI risks cannot be eliminated, they can be managed. Organizations must first recognize and understand these risks and then implement policies to minimize their negative impact. These policies should ensure the use of high-quality data, require testing and validation to eliminate biases, and mandate ongoing monitoring to identify and address unexpected consequences. Furthermore, ethical considerations should be embedded in AI systems, with frameworks in place to ensure AI produces transparent, fair, and unbiased results. Human oversight is essential to confirm these systems meet established standards. For successful risk management, the involvement of the board and the C-suite is crucial. As noted, “This is not just an IT problem, so all executives need to get involved in this.” Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Alphabet Soup of Cloud Terminology As with any technology, the cloud brings its own alphabet soup of terms. This insight will hopefully help you navigate Read more

Read More
gettectonic.com