Trigger - gettectonic.com

Ushering in the Era of AI-Driven Workforces

Agentforce: Ushering in the Era of AI-Driven Workforces “Agentforce is redefining what’s possible in business and beyond, ushering in a new era of AI abundance and limitless workforces that augment every employee, build deeper customer relationships, and drive unprecedented growth and profitability.”— Marc Benioff, Salesforce CEO Key Features and Takeaways Out-of-the-Box AI Agents Agentforce introduces pre-built, customizable agents that are deployable with low-code or no-code tools, working tirelessly across any channel. Its first generally available solution, the Agentforce Service Agent, surpasses traditional chatbots by handling a diverse range of tasks—from simple inquiries to complex scenarios. Key capabilities include: Seamless Integration with Salesforce Platform Agentforce eliminates the complexity of building AI solutions from scratch. Unlike other platforms that demand intricate data integration and custom automation, Agentforce is fully embedded within the Salesforce ecosystem. With Agentforce, businesses can: Always-On Automation Agentforce operates independently of human intervention. Agents can be triggered by changes in data, predefined business rules, or pre-built automations, ensuring uninterrupted workflows. This blend of autonomous operation and human collaboration creates a symbiotic relationship between people and AI, enhancing productivity and customer satisfaction. A Competitive Edge in the AI Space Salesforce emphasizes that Agentforce goes beyond chatbots and copilots, setting a new benchmark for enterprise AI. In a strategic swipe at competitors, Marc Benioff likened rival offerings—like Microsoft’s Dynamics 365 AI agents—to “Clippy 2.0,” critiquing their inaccuracies and risks of corporate data leaks. By contrast, Agentforce builds on Salesforce’s proven Einstein AI platform, ensuring reliability, scalability, and secure integration. Redefining Customer Success Agentforce isn’t just about automation—it’s about driving outcomes. By enabling businesses to automate complex processes, deepen customer relationships, and scale operations, it paves the way for limitless growth in the age of AI. Ready to transform your workforce? With Agentforce, the future of AI-driven business is already here. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
MoEngage Unveils New Tools to Help Marketers Adapt to Consumer Trends

MoEngage Unveils New Tools to Help Marketers Adapt to Consumer Trends

MoEngage, a leading cross-channel customer engagement platform, has launched new features designed to help marketers quickly adapt to shifting consumer behaviors. These updates, introduced at the bi-annual MoEngage NEXT event, include Connected Apps for seamless data integration, a Salesforce CRM integration for streamlined data exchange, and Coupons for managing single-use discounts. “Our new capabilities reinforce our commitment to empowering marketers with tools to understand and adapt to evolving consumer expectations,” said Raviteja Dodda, CEO and Co-Founder of MoEngage. “These innovations enable our clients to scale personalized engagement based on individual preferences and behaviors.” Tackling Fragmented Engagement Tools Marketers often struggle to deliver personalized experiences due to disconnected engagement tools and data silos. To bridge this gap, MoEngage introduced Connected Apps, a low-code framework that integrates data across messaging platforms, advertising channels, IVR systems, data warehouses, and chatbots. Enhanced Integration with Salesforce CRM The new bi-directional native integration with Salesforce CRM simplifies data exchange between the two platforms. Marketers can now trigger real-time personalized campaigns without needing costly custom integrations. This integration not only improves efficiency but also reduces operational costs. Streamlining Coupon Management To enhance customer engagement, MoEngage launched Coupons, a feature that helps marketers allocate and manage single-use discount codes from a centralized dashboard. The tool includes real-time updates on coupon status, alerts for shortages and expiration dates, and ingestion tracking, ensuring smooth campaign execution while optimizing costs. Driving Scalable and Personalized Engagement With these innovations, MoEngage continues to solidify its position as a go-to platform for marketers seeking to adapt quickly to consumer trends. By addressing common pain points like data fragmentation and inefficient tools, MoEngage enables marketers to deliver meaningful, personalized customer experiences at scale. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Agentforce Custom AI Agents

Salesforce Introduces Agentforce: A New AI Platform to Build Custom Digital Agents Salesforce has unveiled Agentforce, its latest AI platform designed to help companies build and deploy intelligent digital agents to automate a wide range of tasks. Building on Salesforce’s generative AI advancements, Agentforce integrates seamlessly with its existing tools, enabling businesses to enhance efficiency and decision-making through automation. Agentforce Custom AI Agents. With applications like generating reports from sales data, summarizing Slack conversations, and routing emails to the appropriate departments, Agentforce offers businesses unprecedented flexibility in automating routine processes. The Problem Agentforce Solves Salesforce’s journey in AI began in 2016 with the launch of Einstein, a suite of AI tools for its CRM software. While Einstein automated some tasks, its capabilities were largely predefined and lacked the flexibility to handle complex, dynamic scenarios. The rapid evolution of generative AI opened new doors for improving natural language understanding and decision-making. This led to innovations like Einstein GPT and later Einstein Copilot, which laid the foundation for Agentforce. With Agentforce, businesses can now create prebuilt or fully customizable agents that adapt to unique business needs. Agentforce Custom AI Agents “We recognized that our customers want to extend the agents we provide or build their own,” said Tyler Carlson, Salesforce’s Vice President of Business Development. How Agentforce Works At the heart of Agentforce is the Atlas Reasoning Engine, a proprietary technology developed by Salesforce. It leverages advanced techniques like ReAct prompting, which allows AI agents to break down problems into steps, reason through them, and iteratively refine their actions until they meet user expectations. Key Features: Ensuring Security and Compliance Given the potential risks of integrating third-party LLMs, Salesforce has implemented robust safeguards, including: AI in Action: Real-World Applications One notable use case of Agentforce is its collaboration with Workday to develop an AI Employee Service Agent. This agent helps employees find answers to HR-related questions using a company’s internal policies and documents. Another example involves agents autonomously managing general email inboxes by analyzing message intent and forwarding emails to relevant teams. “These agents are not monolithic or tied to a single LLM,” Carlson explained. “Their versatility lies in combining different models and technologies for better outcomes.” Measuring Success Salesforce gauges Agentforce’s success through client outcomes and platform adoption. For example, some users report that Agentforce resolves up to 90% of customer inquiries autonomously. Looking ahead, Salesforce aims to expand the Agentforce ecosystem significantly. “By next year, we want thousands of agent skills and topics available for customers to leverage,” Carlson added. A Platform for the Future of AI Agentforce represents Salesforce’s vision of creating autonomous AI agents that empower businesses to work smarter, faster, and more efficiently. With tools like Agentbuilder and integrations across its ecosystem, Salesforce is positioning Agentforce as a cornerstone of AI-led innovation, helping businesses stay ahead in a rapidly evolving technological landscape. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Agentforce to the Team

Salesforce has officially launched Agentforce

Agentforce goes beyond traditional chatbots and copilots, leveraging advanced reasoning to perform tasks like resolving customer issues, qualifying leads, and optimizing marketing campaigns—all without human intervention. Triggered by data changes, business rules, automations, or API signals, Agentforce executes actions independently. Companies like OpenTable, Saks, and Wiley are already harnessing Agentforce to enhance employee productivity, expand their workforce, and elevate customer experiences.

Read More
Tools to Liberate Salesforce Data

Salesforce Chose a Human-First Approach to Promote AI

Why Salesforce Chose a Human-First Approach to Promote AI Salesforce won Gold in the Use of GenAI category at The Drum Awards for Advertising by creatively addressing AI-related concerns while demonstrating the power of responsible AI adoption. Here’s a look at the award-winning campaign. Salesforce Chose a Human-First Approach to Promote AI. The Challenge The rapid adoption of AI last year triggered widespread anxiety. Many professionals felt their jobs were at risk, and concerns grew over AI’s trustworthiness, ethical implications, and potential to replace human talent. Businesses needed to address this apprehension while showcasing the transformative potential of AI in a responsible manner. The Strategy Amid the rising uncertainty, Salesforce saw an opportunity to lead the conversation by aligning the campaign with one of its core values: innovation. Rather than positioning AI as an independent solution, Salesforce sought to show that its true power lies in the hands of creative humans who apply it thoughtfully. The campaign aimed to demonstrate that AI isn’t inherently good or bad—it’s a tool, and its impact depends on how it’s used. Salesforce’s creative and production teams integrated generative AI as an assistant, ensuring that AI enhanced human creativity rather than replacing it. This approach positioned Salesforce as a leader in responsible AI adoption, both within the creative industry and across broader business applications. The Campaign Execution Salesforce embraced a “walk the walk” approach to responsible AI by using generative AI tools to assist, not replace, its human creatives. The result was a campaign that resonated deeply with Salesforce’s target audience of business decision-makers, sparking conversations around trust and innovation. The Results The Ask More of AI campaign achieved exceptional outcomes across various metrics: Salesforce Chose a Human-First Approach to Promote AI By adopting a balanced approach—leveraging AI to enhance human creativity without replacing it—Salesforce successfully addressed AI-related fears while positioning itself as a trusted innovator. The campaign not only elevated Salesforce’s brand but also set a benchmark for responsible AI use in marketing. Through “Ask More of AI,” Salesforce demonstrated that trust and purpose are the cornerstones of unlocking AI’s potential. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Project Planning by Workflows

Salesforce Flow Tests

Salesforce Flow Tests: What Are the Limitations? Salesforce Flow Tests are essential for ensuring automation reliability, but they aren’t without their constraints. Recognizing these limitations is key to refining your automation strategy and avoiding potential roadblocks. Here’s an overview of common challenges, along with insights into how you can navigate them to maximize the effectiveness of your testing processes. The Role of Flow Tests in Automation Automated processes in Salesforce are powerful, but they don’t optimize themselves. Proper setup and rigorous testing are essential to ensure that your automations run smoothly. While Salesforce Flow Tests help verify functionality, they have inherent limitations that, if misunderstood, could lead to inefficiencies or rework. By understanding these boundaries, you can make informed decisions to strengthen your overall approach to testing and automation. Key Limitations of Salesforce Flow Tests Final Thoughts Mastering Salesforce Flow Tests means leveraging their strengths while acknowledging their constraints. Optimized automations require careful planning, robust testing, and a clear understanding of the tools’ boundaries. Have questions about improving your Salesforce Flows or testing strategy? Let’s chat and explore ways to fine-tune your automations! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Where LLMs Fall Short

LLM Economies

Throughout history, disruptive technologies have been the catalyst for major social and economic revolutions. The invention of the plow and irrigation systems 12,000 years ago sparked the Agricultural Revolution, while Johannes Gutenberg’s 15th-century printing press fueled the Protestant Reformation and helped propel Europe out of the Middle Ages into the Renaissance. In the 18th century, James Watt’s steam engine ushered in the Industrial Revolution. More recently, the internet has revolutionized communication, commerce, and information access, shrinking the world into a global village. Similarly, smartphones have transformed how people interact with their surroundings. Now, we stand at the dawn of the AI revolution. Large Language Models (LLMs) represent a monumental leap forward, with significant economic implications at both macro and micro levels. These models are reshaping global markets, driving new forms of currency, and creating a novel economic landscape. The reason LLMs are transforming industries and redefining economies is simple: they automate both routine and complex tasks that traditionally require human intelligence. They enhance decision-making processes, boost productivity, and facilitate cost reductions across various sectors. This enables organizations to allocate human resources toward more creative and strategic endeavors, resulting in the development of new products and services. From healthcare to finance to customer service, LLMs are creating new markets and driving AI-driven services like content generation and conversational assistants into the mainstream. To truly grasp the engine driving this new global economy, it’s essential to understand the inner workings of this disruptive technology. These posts will provide both a macro-level overview of the economic forces at play and a deep dive into the technical mechanics of LLMs, equipping you with a comprehensive understanding of the revolution happening now. Why Now? The Connection Between Language and Human Intelligence AI did not begin with ChatGPT’s arrival in November 2022. Many people were developing machine learning classification models in 1999, and the roots of AI go back even further. Artificial Intelligence was formally born in 1950, when Alan Turing—considered the father of theoretical computer science and famed for cracking the Nazi Enigma code during World War II—created the first formal definition of intelligence. This definition, known as the Turing Test, demonstrated the potential for machines to exhibit human-like intelligence through natural language conversations. The test involves a human evaluator who engages in conversations with both a human and a machine. If the evaluator cannot reliably distinguish between the two, the machine is considered to have passed the test. Remarkably, after 72 years of gradual AI development, ChatGPT simulated this very interaction, passing the Turing Test and igniting the current AI explosion. But why is language so closely tied to human intelligence, rather than, for example, vision? While 70% of our brain’s neurons are devoted to vision, OpenAI’s pioneering image generation model, DALL-E, did not trigger the same level of excitement as ChatGPT. The answer lies in the profound role language has played in human evolution. The Evolution of Language The development of language was the turning point in humanity’s rise to dominance on Earth. As Yuval Noah Harari points out in his book Sapiens: A Brief History of Humankind, it was the ability to gossip and discuss abstract concepts that set humans apart from other species. Complex communication, such as gossip, requires a shared, sophisticated language. Human language evolved from primitive cave signs to structured alphabets, which, along with grammar rules, created languages capable of expressing thousands of words. In today’s digital age, language has further evolved with the inclusion of emojis, and now with the advent of GenAI, tokens have become the latest cornerstone in this progression. These shifts highlight the extraordinary journey of human language, from simple symbols to intricate digital representations. In the next post, we will explore the intricacies of LLMs, focusing specifically on tokens. But before that, let’s delve into the economic forces shaping the LLM-driven world. The Forces Shaping the LLM Economy AI Giants in Competition Karl Marx and Friedrich Engels argued that those who control the means of production hold power. The tech giants of today understand that AI is the future means of production, and the race to dominate the LLM market is well underway. This competition is fierce, with industry leaders like OpenAI, Google, Microsoft, and Facebook battling for supremacy. New challengers such as Mistral (France), AI21 (Israel), and Elon Musk’s xAI and Anthropic are also entering the fray. The LLM industry is expanding exponentially, with billions of dollars of investment pouring in. For example, Anthropic has raised $4.5 billion from 43 investors, including major players like Amazon, Google, and Microsoft. The Scarcity of GPUs Just as Bitcoin mining requires vast computational resources, training LLMs demands immense computing power, driving a search for new energy sources. Microsoft’s recent investment in nuclear energy underscores this urgency. At the heart of LLM technology are Graphics Processing Units (GPUs), essential for powering deep neural networks. These GPUs have become scarce and expensive, adding to the competitive tension. Tokens: The New Currency of the LLM Economy Tokens are the currency driving the emerging AI economy. Just as money facilitates transactions in traditional markets, tokens are the foundation of LLM economics. But what exactly are tokens? Tokens are the basic units of text that LLMs process. They can be single characters, parts of words, or entire words. For example, the word “Oscar” might be split into two tokens, “os” and “car.” The performance of LLMs—quality, speed, and cost—hinges on how efficiently they generate these tokens. LLM providers price their services based on token usage, with different rates for input (prompt) and output (completion) tokens. As companies rely more on LLMs, especially for complex tasks like agentic applications, token usage will significantly impact operational costs. With fierce competition and the rise of open-source models like Llama-3.1, the cost of tokens is rapidly decreasing. For instance, OpenAI reduced its GPT-4 pricing by about 80% over the past year and a half. This trend enables companies to expand their portfolio of AI-powered products, further fueling the LLM economy. Context Windows: Expanding Capabilities

Read More
Salesforce Agentforce Integration

Agentforce at Work

Agentforce Salesforce Agentforce in Action: A Practical Example of Using Agents in Salesforce Autonomous Agents on the Agentforce Platform Agentforce represents a transformative shift in Salesforce’s strategy, poised to redefine how users engage with their CRM. By introducing both assistive AI—enhanced by generative AI for capabilities like summaries and sales emails—and autonomous AI, which empowers agents to automate actions without human oversight, Agentforce helps users operate more efficiently in Salesforce. Despite the excitement around Agentforce, most blogs and marketing materials focus on AI hype rather than practical applications. This insight focuses on illustrating how these tools work and the tangible value they can provide for your organization’s custom processes. Curious about setting up Agentforce agents using both out-of-the-box actions and custom actions? Let’s dive in. What is Agentforce? Agentforce is Salesforce’s conversational AI tool for CRM. In simple terms, it lets users “talk” to Salesforce. Powered by generative AI and the Atlas Reasoning Engine, Agentforce processes user input to perform tasks like summarizing data from objects, updating fields, and generating content such as emails or knowledge articles. This innovative tool is only at the beginning of its journey, likely setting the stage for a future where CRM interactions may evolve beyond traditional form-based interfaces to more intuitive chatbot-style engagement. Scenario: Managing Sales Pipeline Consider a salesperson with the daily objectives of tracking deals, managing pipeline opportunities, and identifying potential risks. Traditionally, this would require manually navigating numerous Salesforce objects, risking data inconsistencies and user errors. Agentforce’s assistive actions can streamline much of this, automating processes to identify key deals, summarize progress, and track deal risks across the pipeline. Let’s take a closer look at configuring a custom action for a pipeline summary. All powered by Salesforce Agentforce. Step-by-Step Guide to Configuring a Pipeline Summary Action Agentforce Use Cases: Getting Started Agentforce offers powerful tools for implementing AI-based functions within Salesforce, but to realize productivity gains, consider the following: Agentforce’s standard actions are a great starting point, providing immediate productivity impacts that can be enhanced as you customize actions to meet specific needs. For tailored guidance on integrating Agentforce, explore Tectonic’s Salesforce Agentforce Consulting Services. Tectonic’s expertise can support your organization in optimizing user experience, boosting productivity, and training users to responsibly leverage Agentforce’s capabilities across industries and channels. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Tectonic Salesforce Customization

Salesforce Customization Requests

The Most Commonly Requested Salesforce Customizations Salesforce’s flexibility is one of its biggest strengths, allowing businesses to tailor the platform to meet their unique needs. Here are the most frequently requested types of customizations: 1. Declarative Customization Make adjustments using Salesforce’s built-in tools—no coding required. Examples: Ideal For:Businesses looking for straightforward changes to enhance usability without requiring programming expertise. 2. Integration Customization Connect Salesforce with third-party systems to streamline workflows and centralize data. Examples: Benefits:Boost operational efficiency by enabling seamless communication between systems. 3. Custom Code Development Go beyond standard functionality with tailored solutions using Apex, Visualforce, or Lightning Web Components. Examples: Best For:Organizations with advanced or highly specific requirements that declarative tools can’t fulfill. 4. User Interface (UI) Customization Adapt the look and feel of Salesforce to improve user experience and align with your brand. Examples: Goal:Create an intuitive, visually appealing interface that boosts productivity and user adoption. 5. Workflow Automation Save time by automating repetitive tasks and processes. Examples: Impact:Streamline operations, reduce manual workloads, and improve efficiency. 6. Reporting and Analytics Customization Provide actionable insights with tailored reports and dashboards. Examples: Advantage:Empower teams to make data-driven decisions with clear, relevant insights. 7. Mobile Optimization Ensure a seamless Salesforce experience for users on mobile devices. Examples: Purpose:Keep teams connected and productive, regardless of location. Conclusion Salesforce customization goes beyond CRM—it transforms the platform into a tailored solution that aligns with your unique business processes. Whether you’re looking for simple adjustments or advanced integrations, these customizations unlock Salesforce’s full potential to drive operational success. Ready to Get Started?Discover how our Salesforce customization services can help tailor the platform to your specific needs. Let’s work together to maximize your investment and achieve your business goals! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Mulesoft

MuleSoft Empowering AI Agents

Empowering AI Agents with Real-Time Data: MuleSoft’s Full Lifecycle AsyncAPI Support MuleSoft has officially launched full lifecycle AsyncAPI support, providing organizations with the tools to connect real-time data to AI agents via event-driven architectures (EDAs). This integration empowers businesses to deploy AI agents that can autonomously act on dynamic, real-time events across various operations. MuleSoft Empowering AI Agents. AI Agents in Action with AsyncAPI The integration of Agentforce, Salesforce’s AI agent suite, with AsyncAPI takes automation to a new level. By utilizing real-time data streams, businesses can create AI agents capable of immediate, autonomous decision-making. Why AsyncAPI Matters Event-driven architectures are critical for real-time data processing, yet 43% of IT leaders struggle to integrate existing systems with their EDAs. AsyncAPI provides a scalable, standardized way to connect applications and AI agents, overcoming these challenges. Key Features of MuleSoft’s AsyncAPI Support Why It’s a Game-Changer for AI Agents AsyncAPI integration enables AI agents to function asynchronously within EDAs, meaning they can process tasks without waiting for updates. For example: Driving Innovation Across Industries Organizations in sectors like retail, IT, and financial services can leverage these capabilities: Expert Insights Andrew Comstock, VP of Product, Integration at Salesforce:“AI is reshaping how we think about modern architectures, but connectivity remains foundational. By supporting AsyncAPI, we’re empowering businesses to build event-driven, autonomous systems on a flexible and robust platform.” Maksim Kogan, Solution Architect, OBI Group Holding:“Integrating AsyncAPI into Anypoint Platform simplifies the developer experience and increases resilience, enabling real-time services that directly enhance customer satisfaction.” Availability MuleSoft’s full lifecycle AsyncAPI support is now available via the Anypoint Platform, with compatibility for Kafka, Solace, Anypoint MQ, and Salesforce Platform Events. Tools like Anypoint Code Builder and Anypoint Exchange further streamline the development process. MuleSoft Empowering AI Agents With full AsyncAPI support, MuleSoft unlocks the potential for AI agents to operate seamlessly within real-time event-driven systems. From improving customer experiences to enhancing operational efficiency, this innovation positions businesses to thrive in today’s fast-paced digital landscape. Learn more about empowering your AI agents with MuleSoft’s AsyncAPI capabilities today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
OpenAI Introduces Canvas

OpenAI Introduces Canvas

Don’t get spooked – OpenAI introduces Canvas—a fresh interface for collaborative writing and coding with ChatGPT, designed to go beyond simple conversation. Canvas opens in a separate window, enabling you and ChatGPT to work on projects side by side, creating and refining ideas in real time. This early beta provides an entirely new way of collaborating with AI—combining conversation with the ability to edit and enhance content together. Built on GPT-4o, Canvas can be selected in the model picker during the beta phase. Starting today, we’re rolling it out to ChatGPT Plus and Team users globally, with Enterprise and Education users gaining access next week. Once out of beta, Canvas will be available to all ChatGPT Free users. Enhancing Collaboration with ChatGPT While ChatGPT’s chat interface works well for many tasks, projects requiring editing and iteration benefit from more. Canvas provides a workspace designed for such needs. Here, ChatGPT can better interpret your objectives, offering inline feedback and suggestions across entire projects—similar to a copy editor or code reviewer. You control every aspect in Canvas, from direct editing to leveraging shortcuts like adjusting text length, debugging code, or quickly refining writing. You can also revert to previous versions with Canvas’s back button. OpenAI Introduces Canvas Canvas opens automatically when ChatGPT detects an ideal scenario, or you can prompt it by typing “use Canvas” in your request to begin working collaboratively on an existing project. Writing Shortcuts Include: Coding in Canvas Canvas makes coding revisions more transparent, streamlining the iterative coding process. Track ChatGPT’s edits more clearly and take advantage of features that make debugging and revising code simpler. OpenAI Introduces Canvas to a world of new possibilities for truly developing and working with artificial intelligence. Coding Shortcuts Include: Training the Model to Collaborate GPT-4o has been optimized to act as a collaborative partner, understanding when to open a Canvas, make targeted edits, or fully rewrite content. Our team implemented core behaviors to support a seamless experience, including: These improvements are backed by over 20 internal automated evaluations and refined with synthetic data generation techniques, allowing us to enhance response quality and interaction without relying on human-generated data. Key Challenges as OpenAI Introduces Canvas A core challenge was determining when to trigger Canvas. We trained GPT-4o to recognize prompts like “Write a blog post about the history of coffee beans” while avoiding over-triggering for simple Q&A requests. For writing tasks, we reached an 83% accuracy in correct Canvas triggers, and a 94% accuracy in coding tasks compared to baseline models. Fine-tuning continues to ensure targeted edits are favored over full rewrites when needed. Finally, improving comment generation required iterative adjustments and human evaluations, with the integrated Canvas model now outperforming baseline GPT-4o in accuracy by 30% and quality by 16%. What’s Next Canvas is the first major update to ChatGPT’s visual interface since launch, with more enhancements planned to make AI more versatile and accessible. Canvas is also integrated with Salesforce. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
gettectonic.com