Zero Trust Architecture Archives - gettectonic.com
ai trust layer

Gen AI Trust Layers

Addressing the Generative AI Production Gap with Trust Layers Despite the growing excitement around generative AI, only a small percentage of projects have successfully moved into production. A key barrier is the persistent concern over large language models (LLMs) generating hallucinations—responses that are inconsistent or completely disconnected from reality. To address these issues, organizations are increasingly adopting AI trust layers to enhance reliability and mitigate risk. Understanding the Challenge Generative AI models, like LLMs, are powerful tools trained on vast amounts of unstructured data, enabling them to answer questions and complete tasks based on text, documents, recordings, images, and videos. This capability has revolutionized the creation of chatbots, co-pilots, and even semi-autonomous agents. However, these models are inherently non-deterministic, meaning they don’t always produce consistent outputs. This lack of predictability leads to the infamous phenomenon of hallucination—what the National Institute of Standards and Technology (NIST) terms “confabulation.” While hallucination is a byproduct of how generative models function, its risks in mission-critical applications cannot be ignored. Implementing AI Trust Layers To address these challenges, organizations are turning to AI trust layers—frameworks designed to monitor and control generative AI behavior. These trust layers vary in implementation: Galileo: Building AI Trust from the Ground Up Galileo, founded in 2021 by Yash Sheth, Atindriyo Sanyal, and Vikram Chatterji, has emerged as a leader in developing AI trust solutions. Drawing on his decade of experience at Google building LLMs for speech recognition, Sheth recognized early on that non-deterministic AI systems needed robust trust frameworks to achieve widespread adoption in enterprise settings. The Need for Trust in Mission-Critical AI “Sheth explained: ‘Generative AI doesn’t give you the same answer every time. To mitigate risk in mission-critical tasks, you need a trust framework to ensure these models behave as expected in production.’ Enterprises, which prioritize privacy, security, and reputation, require this level of assurance before deploying LLMs at scale. Galileo’s Approach to Trust Layers Galileo’s AI trust layer is built on its proprietary foundation model, which evaluates the behavior of target LLMs. This approach is bolstered by metrics and real-time guardrails to block undesirable outcomes, such as hallucinations, data leaks, or harmful outputs. Key Products in Galileo’s Suite Sheth described the underlying technology: “Our evaluation foundation models are dependable, reliable, and scalable. They run continuously in production, ensuring bad outcomes are blocked in real time.” By combining these components, Galileo provides enterprises with a trust layer that gives them confidence in their generative AI applications, mirroring the reliability of traditional software systems. From Research to Real-World Impact Unlike vendors who quickly adapted traditional machine learning frameworks for generative AI, Galileo spent two years conducting research and developing its Generative AI Studio, launched in August 2023. This thorough approach has started to pay off: A Crucial Moment for AI Trust Layers As enterprises prepare to move generative AI experiments into production, trust layers are becoming essential. These frameworks address lingering concerns about the unpredictable nature of LLMs, allowing organizations to scale AI while minimizing risk. Sheth emphasized the stakes: “When mission-critical software starts becoming infused with AI, trust layers will define whether we progress or regress to the stone ages of software. That’s what’s holding back proof-of-concepts from reaching production.” With Galileo’s innovative approach, enterprises now have a path to unlock the full potential of generative AI—responsibly, securely, and at scale. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Data Cloud and Zero Copy

Salesforce Data Cloud and Zero Copy

As organizations across industries gather increasing amounts of data from diverse sources, they face the challenge of making that data actionable and deriving real-time insights. With Salesforce Data Cloud and zero copy architecture, organizations can streamline access to data and build dynamic, real-time dashboards that drive value while embedding contextual insights into everyday workflows. A session during Dreamforce 2024 with Joanna McNurlen, Principal Solution Engineer for Data Cloud at Salesforce, discussed how zero copy architecture facilitates the creation of dashboards and workflows that provide near-instant insights, enabling quick decision-making to enhance operational efficiency and competitive advantage. What is zero copy architecture?Traditionally, organizations had to replicate data from one system to another, such as copying CRM data into a data warehouse for analysis. This approach introduces latency, increases storage costs, and often results in inconsistencies between systems. Zero copy architecture eliminates the need for replication and provides a single source of truth for your data. It allows different systems to access data in its original location without duplication across platforms. Instead of using traditional extract, transform, and load (ETL) processes, systems like Salesforce Data Cloud can connect directly with external databases, such as Google Cloud BigQuery, Snowflake, Databricks, or Amazon Redshift, for real-time data access. Zero copy can also facilitate data sharing from within Salesforce to other systems. As Salesforce expands its zero copy partner network, opportunities to easily connect data from various sources will continue to grow. How does zero copy work?Zero copy employs virtual tables that act as blueprints for the data structure, enabling queries to be executed as if the data were local. Changes made in the data warehouse are instantly visible across all connected systems, ensuring users always work with the latest information. While developing dashboards, users can connect directly to the zero copy objects within Data Cloud to create visualizations and reports on top of them. Why is zero copy beneficial?Zero copy allows organizations to analyze data as it is generated, enabling faster responses, smarter decision-making, and enhanced customer experiences. This architecture reduces reliance on data transformation workflows and synchronizations within both Tableau and CRM Analytics, where organizations have historically encountered bottlenecks due to runtimes and platform limits. Various teams can benefit from the following capabilities: Unlocking real-time insights in Salesforce using zero copy architectureZero copy architecture and real-time data are transforming how organizations operate. By eliminating data duplication and providing real-time insights, the use of zero copy in Salesforce Data Cloud empowers organizations to work more efficiently, make informed decisions, and enhance customer experiences. Now is the perfect time to explore how Salesforce Data Cloud and zero copy can elevate your operations. Tectonic, a trusted Salesforce partner, can help you unlock the potential of your data and create new opportunities with the Salesforce platform. Connect with us today to get started. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Stay Ahead of SaaS Threats

Stay Ahead of SaaS Threats

The modern kill chain is eluding enterprises because they are not adequately protecting the infrastructure of modern business: SaaS. Stay Ahead of SaaS Threats. SaaS continues to dominate software adoption, accounting for the greatest share of public cloud spending. However, enterprises and SMBs alike have not revised their security programs or adopted security tooling designed for SaaS environments. Security Teams Struggle with SaaS Security Traditional security controls that CISOs and their teams relied on during the era of on-premise dominance have become obsolete. Firewalls now protect a much smaller perimeter, visibility is limited, and even if SaaS vendors offer logs, security teams need custom middleware to process them into their SIEM. SaaS vendors define security scopes for their products, but customers must manage SaaS compliance, data governance, identity and access management (IAM), and application controls—areas where most incidents occur. While the SaaS shared responsibility model is universal among SaaS apps, no two SaaS applications have identical security settings. Understanding the SaaS Kill Chain In the context of SaaS security, the application provider is responsible for physical infrastructure, the network, OS, and the application itself. Customers are responsible for data security and identity management. This shared responsibility model requires SaaS customers to take ownership of components that threat actors target most frequently. Research by AppOmni indicates that a single SaaS instance typically has 256 SaaS-to-SaaS connections, many of which are no longer in use but still retain excessive permissions to core business applications like Salesforce, Okta, and GitHub. With the multitude of different SaaS security settings and constant updates, security teams struggle to monitor these connections effectively. The number of entry points multiplies exponentially as employees enable SaaS-to-SaaS connections, using machine identities like API keys and digital certificates. As the attack surface migrated outside the network perimeter, so did the kill chain—threat actors orchestrate their attacks through various phases: Case Study: Scattered Spider/Starfraud In a recent attack by the Scattered Spider/Starfraud groups, a user opened a phishing email and logged into a spoofed IdP page. Through social engineering, the attackers obtained the user’s TOTP token, tricked the MFA protocol, and gained access to Amazon S3, Azure AD, and Citrix VDI. They then deployed a malicious server in the IaaS environment and executed a privileged Azure AD escalation attack, eventually encrypting all accessible data and delivering a ransom note. Growing SaaS Attack Activity SaaS breaches, though not always making headlines, have significant consequences. IBM reports that the average cost of data breaches in 2023 was $4.45 million per incident, a 15% increase over three years. Threat actors frequently use tactics similar to those seen in the Scattered Spider/Starfraud kill chain, targeting SaaS tenants and exploiting configuration issues. Protecting SaaS Environments With these measures, security teams can gain the visibility and intelligence needed to identify intruders early in the kill chain and prevent breaches before they become devastating. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Trust Einstein Copilot for Tableau

Trust Einstein Copilot for Tableau

Are you prepared to utilize the capabilities of Einstein Copilot to expand your organization’s analytical advantages? This robust tool facilitates data exploration, insights generation, and visualization development at an unprecedented pace. However, before immersing yourself in its capabilities, it’s crucial to grasp how Einstein Copilot upholds Tableau and Salesforce’s core value: Trust. Let’s discover how the Einstein Trust Layer safeguards your data, ensures result accuracy, and facilitates auditing, addressing common questions and concerns raised by our customers.Trust Einstein Copilot for Tableau. What is Einstein Copilot for Tableau? Using generative AI and statistical analysis, Einstein Copilot for Tableau is able to understand the context of your data to create and suggest relevant business questions to help kickstart your analysis. A smart, conversational assistant for Tableau users, Einstein Copilot for Tableau automates data curation—the organization and integration of data collected from various sources—by generating calculations and metadata descriptions. Einstein Copilot for Tableau can fill data gaps and enhance analysis by creating synthetic datasets where real data is limited. Einstein Copilot helps you anticipate outcomes with predictive analytics that simulate diverse scenarios and uncover hidden correlations. Additionally, generative models can increase data privacy by producing non-traceable data for analysis.  Fulfilling the promise of generative AI, Einstein Copilot for Tableau presents an efficient, insightful, and ethical approach to data analytics. Think of it as an intelligent assistant integrated into the Tableau suite of products to make everyone successful in their analysis workflow—whether they’re an experienced data analyst or a data explorer. As your intelligent analytics AI assistant, Einstein Copilot for Tableau guides you through the process of creating data visualizations in Tableau by assisting you with recommended questions, conversational data exploration, guided calculation creation, and more. Understanding the Einstein Trust Layer The Einstein Trust Layer constitutes a secure AI architecture embedded within the Salesforce platform. Comprising agreements, security technology, and data privacy controls, it ensures the safety of your data while exploring generative AI solutions. Built upon the Einstein Trust Layer, Einstein Copilot for Tableau and other Tableau AI features inherit its security, governance, and Trust capabilities. The Einstein Trust Layer is a secure AI architecture, built into the Salesforce platform. It is a set of agreements, security technology, and data and privacy controls used to keep your company safe while you explore generative AI solutions. Tableau has been on the journey to help people see and understand their data for over two decades. Thanks to data analysts, this mission has been a success and will continue to be a success. Data analysts are the backbone of organizations that champion data culture, capture business requirements, prep data, and create data content for end users. Data Access and Privacy Who Accesses Your Data? A primary concern among our customers revolves around data access. Rest assured, the Einstein Trust Layer enforces strict policies to safeguard your organization’s data. Third-party LLM providers, including Open AI and Azure Open AI, adhere to a zero data retention policy. This means that data sent to LLMs isn’t stored; once processed, both the prompt and response are promptly forgotten. Additionally, each Einstein Copilot for Tableau customer receives their own Data Cloud instance, securely storing prompts and responses for auditing purposes. Data Residency and Access Control Einstein Copilot for Tableau respects permissions, row-level security, and data policies within Tableau Cloud, ensuring that only authorized personnel within your organization access specific data. Whether using Einstein Copilot or not, data access is restricted based on organizational roles and permissions. Data Handling and Processing Data Sent Outside of Tableau Cloud Site Einstein Copilot for Tableau operates within the confines of your Tableau site, scanning connected data sources to create a summary context. This summarized data is sent to third-party LLM providers for vectorization, enabling accurate interpretation of user queries. Importantly, the zero data retention policy ensures that summarized data is forgotten post-vectorization. Personally Identifiable Information (PII) Data To enhance data privacy, Einstein Copilot for Tableau employs data masking for PII data. This technique replaces sensitive information with placeholder text, ensuring privacy without sacrificing context. While our detection models strive for accuracy, continuous evaluation and refinement are paramount to maintain trust. Result Trustworthiness Ensuring Safe and Accurate Results Einstein Copilot for Tableau employs Toxicity Confidence Scoring to identify harmful inputs and responses. By combining rule-based filters and AI models, potentially harmful content is filtered and flagged for review. Furthermore, accuracy benchmarks ensure that generated results align closely with human-authored ones, bolstering trust in the platform. Future Trust Enhancements Trust remains an ongoing focus for our teams. Initiatives such as a BYO LLM solution and improved disambiguation capabilities are underway to further enhance trustworthiness. Continuous feedback, testing, and iteration drive our efforts to maintain your trust in Einstein Copilot for Tableau and the Einstein Trust Layer. Data analysis and data-driven decision-making have been part of the vocabulary in organizations over the years. And, while data analysis is one of the most in-demand tech skills sought by employers today, not everyone in an organization has “analyst” in their job title—myself included. Yet, so many of us use data daily to make informed decisions. The rise of generative AI presents a significant opportunity for us to bring transformative benefits to analytics. Businesses are eager to embrace generative AI because it can help save time, provide faster insights, and empower analysts to be even more productive with an AI assistant—freeing analysts to focus on delivering high-quality, data-driven insights. Is Tableau replacing Einstein analytics? Einstein Analytics has a new name. Say hello to Tableau CRM. Everything about how it works stays the same, just with that snazzy new name. When Tableau joined the Salesforce family, we brought together analytics capabilities of incredible depth and power. What is the difference between Einstein analytics and Tableau? If you’re only planning on analyzing Salesforce data, Einstein Analytics would probably make the most sense for you. However, if you need to analyze information that is coming from all over the place, Tableau will give your users more options. Tableau GPT infuses automation in every part of analytics – from preparation to communicating

Read More
Salesforce and the Zero Trust Mandate

The Zero Trust Architecture Mandate

President Biden’s recent executive directive, mandating “all federal agencies and executive departments [to] transition to a zero trust architecture to bolster defenses against … cyber threats,” demands swift action from your agency. Zero Trust Architecture Mandate. As the landscape of remote work and cloud-based assets continues to evolve, traditional IT security strategies like VPNs and firewalls are proving less effective and increasingly perilous. These strategies, relying on perimeter defense, are becoming inefficient for organizations confronting diverse cyber threats. With remote work at its pinnacle and assets predominantly in the cloud, the demand for secure remote access to applications, data, and services has surged. Conventional security measures may no longer suffice in thwarting increasingly sophisticated cyber attacks. The paradigm shift in government cybersecurity is evident; perimeter defense is no longer adequate. The surge in hybrid working environments among government employees and inter-agency collaborations introduces new cybersecurity challenges and risks. The escalating frequency, cost, and impact of cyberthreat actions necessitate a robust cybersecurity posture. Cybercriminals, now targeting smaller agencies, underscore the urgency for enhanced network security and more effective remote access solutions than legacy VPNs. Enter zero trust architecture. For government agencies embarking on the zero trust journey, unwinding legacy security processes poses challenges but promises substantial benefits. To initiate this transformation, agencies should consider the following steps: Engage your IT team in a conversation about zero trust architecture: Recognize the importance of zero trust architecture—right now: Develop a checklist of questions to map your zero trust architecture: Educate your organization about the importance of data security: Emphasize the significance of data security, particularly in the context of multifactor authentication (MFA), a crucial component of zero trust architecture. Mitigate “security fatigue” among employees by ensuring a clear understanding of data security policies and the rationale behind them. Consider moving to a Zero Trust tool like Salesforce. Salesforce CRM is one of foremost cloud services today, delivered with a comprehensive security and compliance approach, and via platform which incorporates a number of Zero Trust best practices. On the Salesforce corporation side, Zero Trust helps us all become better protected against advanced persistent threats, nation-state actors, or other attacks, so that we are all more resilient. And as a product to customers, you should have comfort knowing that your data is better protected. The benefits that Zero Trust brings to our organization are the same benefits it brings to our customers. Salesforce also has introduced Salesforce Shield.  Salesforce Shield allows you to encrypt your Salesforce data with AES 256-bit encryption at the field-level, as well as manage your own encryption keys. Key takeaways of platform encryption include: AES 256-bit: The highest level of encryption available within Salesforce. Zero Trust Architecture Mandate Executive order May 12, 2021 Content updated November 2023. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com