, Author at gettectonic.com
Salesforce Data Cloud Hits $900M in Revenue

Salesforce Data Cloud Hits $900M in Revenue

Salesforce Data Cloud Hits $900M in Revenue, Powering the Future of AI-Driven Business As AI evolves toward autonomous agents, unified data has become the backbone of enterprise intelligence—ensuring accuracy, compliance, and actionable insights. Without it, AI outputs grow unreliable, and compliance risks surge. Salesforce Data Cloud is addressing this challenge by unifying fragmented data sources, enabling smarter AI-powered experiences. The platform just hit a major milestone in FY25, reaching 0M in annual recurring revenue (ARR)—a testament to its rapid adoption. Why Data Cloud Stands Out Unlike traditional data solutions that require costly overhauls, Data Cloud enables real-time data activation with:✔ Zero-copy architecture (no data duplication)✔ 270+ pre-built connectors (Zendesk, Shopify, Snowflake, and more)✔ Unified structured & unstructured data processing Rahul Auradkar, EVP & GM of Unified Data Services and Einstein at Salesforce, explains: “Data Cloud is the leading data activation layer because it harmonizes data from any source—powering every AI action, automation, and insight. Our hyperscale capabilities, governance, and open ecosystem help enterprises break down silos, creating the foundation for trusted AI.” The Strategic Power of Unified Data Data Cloud acts as an intelligent activation layer, pulling data from warehouses, lakes, CRMs, and external systems to create a single customer view. This fuels: Insulet, a medical device company, leveraged Data Cloud to enhance customer experiences. Amit Guliani, acting CTO, says: “Unified data helps us move from insights to action—delivering personalized solutions that simplify life for people with diabetes.” Industry Recognition & Real-World Impact Salesforce Data Cloud has been named a Leader in the 2025 Gartner Magic Quadrant for Customer Data Platforms and praised by IDC, Forrester, and Constellation Research. Wyndham Hotels & Resorts uses it to transform guest experiences. Scott Strickland, Chief Commercial Officer, shares: “Data Cloud gives our agents a unified view of reservations, loyalty, and CRM data—letting us anticipate needs and personalize stays across thousands of properties.” The Future: Agentic AI Powered by Real-Time Data Data Cloud is the foundation for autonomous AI agents, enabling:🔹 Proactive workflows (agents triggered by customer behavior)🔹 Self-optimizing operations (automated risk detection, dynamic responses)🔹 Trusted governance (GDPR compliance, access controls, security) Adam Berlew, CMO at Equinix, notes: “Data Cloud is shifting our marketing strategy, enabling AI-powered personalization and automation at scale—key to our competitive edge.” Conclusion: AI Runs on Unified Data As businesses transition to AI-first models, Salesforce Data Cloud ensures:✅ Agents act autonomously with real-time, trusted data✅ Humans focus on strategy while AI handles routine tasks✅ Every interaction is hyper-personalized With $900M in ARR and rapid enterprise adoption, Data Cloud is proving to be the essential engine for the next wave of AI-driven business. Key Takeaways: Salesforce Data Cloud isn’t just unifying data—it’s powering the future of intelligent business. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Understanding Total Addressable Market

Understanding Total Addressable Market

Understanding Total Addressable Market (TAM): Calculation & Examples Calculating your Total Addressable Market (TAM) is the cornerstone of a strong growth strategy, ensuring all teams work toward the same goals. This metric represents your “blue sky” opportunity—the maximum revenue potential if you captured 100% of your market. Learn how to leverage TAM to refine your sales and business strategy. What Is Total Addressable Market (TAM)? TAM refers to the total demand for your product or service, measured either by the number of potential customers or the total revenue opportunity. It defines the full scope of your business opportunity. Why TAM Matters TAM vs. SAM vs. SOM: Key Differences While TAM represents the entire market, Serviceable Addressable Market (SAM) and Serviceable Obtainable Market (SOM) refine it into realistic targets: Example: From TAM to SOM Suppose you sell baseball bats in the U.S.: This breakdown helps prioritize growth strategies, such as expanding distribution or increasing production. How to Calculate TAM Basic Formula: TAM = Total Potential Customers × Average Revenue Per User (ARPU) Calculation Methods: TAM Calculation Examples 1. Software Company 2. Lemonade Stand 3. Pizzeria Expansion Common TAM Calculation Challenges & Solutions ✅ Overestimating TAM → Narrow focus using realistic customer segments.✅ Outdated Data → Re-evaluate TAM quarterly or annually.✅ Lack of Market Research → Use related industry data or pilot sales metrics. Using TAM in Strategic Planning Final Thoughts TAM helps quantify opportunities, prioritize investments, and scale effectively. Use sales planning tools to track progress and adjust strategies as markets evolve. By mastering TAM, you unlock data-driven growth—ensuring every business move aligns with real market potential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Data Governance in Salesforce

Salesforce Doubles Down on Trust

Salesforce Doubles Down on Trust with New AI Agent Governance Tools As businesses increasingly rely on AI agents to interact with customers and employees, trust in these systems is non-negotiable. That’s why Salesforce recently introduced a suite of governance, security, and compliance features designed to ensure AI agents operate safely and responsibly. The move comes as concerns about AI trustworthiness persist. According to Salesforce’s State of IT survey—which polled over 2,000 enterprise IT security leaders—48% worry their data infrastructure isn’t ready for agentic AI, while 55% lack confidence in their existing guardrails for deployment. Salesforce’s new capabilities aim to address these gaps by enabling end-to-end data governance across its platform, whether data resides within Salesforce applications or external sources. Key products powering this initiative include: Unlike piecemeal solutions, Salesforce promises a fully integrated, enterprise-grade framework for secure and governed AI. Agentforce, in particular, provides granular control, visibility, and compliance at every stage—from development to deployment. Key Features “Enterprise AI’s potential is huge, but it demands trusted data and secure development,” said Rahul Auradkar, EVP & GM of Data Cloud. “By unifying data, simplifying agent development, and embedding governance from the start, we’re enabling powerful—yet responsible—AI deployments.” Developer Tools for Safer AI Testing Before agents go live, Salesforce offers: Developers can also fine-tune agent reasoning using custom variables (e.g., customer verification status) and apply filters to restrict certain actions—ensuring AI operates within defined boundaries. With these updates, Salesforce is betting that trust, not just capability, will determine the success of AI agents in the enterprise. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
agetnforce for nonprofits

AgentForce Flex Pricing

Salesforce Introduces Flexible Pricing for Agentforce to Accelerate AI Adoption Across Enterprises Salesforce, the global leader in AI-powered CRM, last week announced a new flexible pricing model for Agentforce, its digital labor platform, designed to meet surging demand for AI-driven automation across every employee, department, and business process. As AI adoption accelerates, CIOs face mounting pressure to balance innovation with cost control. According to Salesforce’s CIO AI Trends research, 90% of IT leaders say managing AI expenses is hindering their ability to drive value—a challenge underscored by recent findings from CIO.com. To address this, Salesforce is introducing three groundbreaking pricing innovations that empower businesses to scale AI adoption efficiently, align costs with outcomes, and adapt investments as needs evolve: 1. Flex Credits: Pay Only for the AI Actions You Use Moving beyond traditional per-conversation pricing, Salesforce now offers Flex Credits, a consumption-based model where customers pay only for the specific AI actions performed—whether updating records, automating workflows, or resolving cases. 2. Flex Agreement: Shift Investments Between Human & Digital Labor The new Flex Agreement allows organizations to dynamically reallocate budgets—converting user licenses into Flex Credits (or vice versa)—ensuring optimal resource allocation as business priorities shift. 3. Agentforce User Licenses & Add-Ons: Unlimited AI for Every Employee Salesforce is simplifying AI adoption with per-user-per-month (PUPM) pricing, offering unlimited employee-facing AI agent usage. Seamlessly integrated with Salesforce and Slack, these licenses eliminate usage caps, enabling businesses to deploy AI at scale across sales, service, HR, and IT. Industry & Customer Reactions Availability & Pricing With this move, Salesforce reinforces its commitment to making AI accessible, scalable, and cost-effective for enterprises worldwide. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
salesforce service assistant

Salesforce Service Assistant

Salesforce Service Assistant is a new skill within Agentforce. It’s an AI-powered agent designed to assist human service reps in resolving cases and improving customer experiences. Service Assistant leverages Agentforce’s generative AI capabilities and is grounded in unique data from Salesforce. It helps agents by generating case summaries and actionable resolution steps.  In simpler terms: Salesforce has created a new AI assistant called “Service Assistant” that’s part of their Agentforce platform. This assistant helps service reps handle cases more efficiently by using AI to analyze data and provide guidance. Here’s a more in depth look at what Service Assistant does: Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Grok 3 Model Explained

Grok 3 Model Explained: Everything You Need to Know xAI has introduced its latest large language model (LLM), Grok 3, expanding its capabilities with advanced reasoning, knowledge retrieval, and text summarization. In the competitive landscape of generative AI (GenAI), LLMs and their chatbot services have become essential tools for users and organizations. While OpenAI’s ChatGPT (powered by the GPT series) pioneered the modern GenAI era, alternatives like Anthropic’s Claude, Google Gemini, and now Grok (developed by Elon Musk’s xAI) offer diverse choices. The term grok originates from Robert Heinlein’s 1961 sci-fi novel Stranger in a Strange Land, meaning to deeply understand something. Grok is closely tied to X (formerly Twitter), where it serves as an integrated AI chatbot, though it’s also available on other platforms. What Is Grok 3? Grok 3 is xAI’s latest LLM, announced on February 17, 2025, in a live stream featuring CEO Elon Musk and the engineering team. Musk, known for founding Tesla, SpaceX, and acquiring Twitter (now X), launched xAI on March 9, 2023, with the mission to “understand the universe.” Grok 3 is the third iteration of the model, built using Rust and Python. Unlike Grok 1 (partially open-sourced under Apache 2.0), Grok 3 is proprietary. Key Innovations in Grok 3 Grok 3 excels in advanced reasoning, positioning it as a strong competitor against models like OpenAI’s o3 and DeepSeek-R1. What Can Grok 3 Do? Grok 3 operates in two core modes: 1. Think Mode 2. DeepSearch Mode Core Capabilities ✔ Advanced Reasoning – Multi-step problem-solving with self-correction.✔ Content Summarization – Text, images, and video summaries.✔ Text Generation – Human-like writing for various use cases.✔ Knowledge Retrieval – Accesses real-time web data (especially in DeepSearch mode).✔ Mathematics – Strong performance on benchmarks like AIME 2024.✔ Coding – Writes, debugs, and optimizes code.✔ Voice Mode – Supports spoken responses. Previous Grok Versions Model Release Date Key Features Grok 1 Nov. 3, 2023 Humorous, personality-driven responses. Grok 1.5 Mar. 28, 2024 Expanded context (128K tokens), better problem-solving. Grok 1.5V Apr. 12, 2024 First multimodal version (image understanding). Grok 2 Aug. 14, 2024 Full multimodal support, image generation via Black Forest Labs’ FLUX. Grok 3 vs. GPT-4o vs. DeepSeek-R1 Feature Grok 3 GPT-4o DeepSeek-R1 Release Date Feb. 17, 2025 May 24, 2024 Jan. 20, 2025 Developer xAI (USA) OpenAI (USA) DeepSeek (China) Reasoning Advanced (Think mode) Limited Strong Real-Time Data DeepSearch (web access) Training data cutoff Training data cutoff License Proprietary Proprietary Open-source Coding (LiveCodeBench) 79.4 72.9 64.3 Math (AIME 2024) 99.3 87.3 79.8 How to Use Grok 3 1. On X (Twitter) 2. Grok.com 3. Mobile App (iOS/Android) Same subscription options as Grok.com. 4. API (Coming Soon) No confirmed release date yet. Final Thoughts Grok 3 is a powerful reasoning-focused LLM with real-time search capabilities, making it a strong alternative to GPT-4o and DeepSeek-R1. With its DeepSearch and Think modes, it offers advanced problem-solving beyond traditional chatbots. Will it surpass OpenAI and DeepSeek? Only time—and benchmarks—will tell.  Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents and Work

From AI Workflows to Autonomous Agents

From AI Workflows to Autonomous Agents: The Path to True AI Autonomy Building functional AI agents is often portrayed as a straightforward task—chain a large language model (LLM) to some APIs, add memory, and declare autonomy. Yet, anyone who has deployed such systems in production knows the reality: agents that perform well in controlled demos often falter in the real world, making poor decisions, entering infinite loops, or failing entirely when faced with unanticipated scenarios. AI Workflows vs. AI Agents: Key Differences The distinction between workflows and agents, as highlighted by Anthropic and LangGraph, is critical. Workflows dominate because they work reliably. But to achieve true agentic AI, the field must overcome fundamental challenges in reasoning, adaptability, and robustness. The Evolution of AI Workflows 1. Prompt Chaining: Structured but Fragile Breaking tasks into sequential subtasks improves accuracy by enforcing step-by-step validation. However, this approach introduces latency, cascading failures, and sometimes leads to verbose but incorrect reasoning. 2. Routing Frameworks: Efficiency with Blind Spots Directing tasks to specialized models (e.g., math to a math-optimized LLM) enhances efficiency. Yet, LLMs struggle with self-assessment—they often attempt tasks beyond their capabilities, leading to confident but incorrect outputs. 3. Parallel Processing: Speed at the Cost of Coherence Running multiple subtasks simultaneously speeds up workflows, but merging conflicting results remains a challenge. Without robust synthesis mechanisms, parallelization can produce inconsistent or nonsensical outputs. 4. Orchestrator-Worker Models: Flexibility Within Limits A central orchestrator delegates tasks to specialized components, enabling scalable multi-step problem-solving. However, the system remains bound by predefined logic—true adaptability is still missing. 5. Evaluator-Optimizer Loops: Limited by Feedback Quality These loops refine performance based on evaluator feedback. But if the evaluation metric is flawed, optimization merely entrenches errors rather than correcting them. The Four Pillars of True Autonomous Agents For AI to move beyond workflows and achieve genuine autonomy, four critical challenges must be addressed: 1. Self-Awareness Current agents lack the ability to recognize uncertainty, reassess faulty reasoning, or know when to halt execution. A functional agent must self-monitor and adapt in real-time to avoid compounding errors. 2. Explainability Workflows are debuggable because each step is predefined. Autonomous agents, however, require transparent decision-making—they should justify their reasoning at every stage, enabling developers to diagnose and correct failures. 3. Security Granting agents API access introduces risks beyond content moderation. True agent security requires architectural safeguards that prevent harmful or unintended actions before execution. 4. Scalability While workflows scale predictably, autonomous agents become unstable as complexity grows. Solving this demands more than bigger models—it requires agents that handle novel scenarios without breaking. The Road Ahead: Beyond the Hype Today’s “AI agents” are largely advanced workflows masquerading as autonomous systems. Real progress won’t come from larger LLMs or longer context windows, but from agents that can:✔ Detect and correct their own mistakes✔ Explain their reasoning transparently✔ Operate securely in open environments✔ Scale intelligently to unforeseen challenges The shift from workflows to true agents is closer than it seems—but only if the focus remains on real decision-making, not just incremental automation improvements. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce

Salesforce Go

Introducing Salesforce Go: Your One-Stop Hub for Discovering & Enabling Features Salesforce is making it easier than ever for admins to explore, set up, and manage features with Salesforce Go—a new, intuitive experience designed to simplify feature discovery and configuration. No more hunting through menus—Salesforce Go puts everything you need in one place, helping you: ✅ Quickly find and evaluate new features✅ Understand setup steps before enabling them✅ Access relevant tools and documentation in context Best of all? No activation needed—it’s automatically available in your org! How It Works Who Can Use It? Why You’ll Love It 🔹 Save time – No more jumping between Setup and Help docs.🔹 Make informed decisions – Watch demos, explore Trailhead modules, and share resources with stakeholders.🔹 Monitor usage – Track adoption and manage licenses (where applicable). Now Live – With More Enhancements Coming! Salesforce Go is already rolling out, with new improvements in Spring ‘25, including deeper usage analytics and streamlined purchasing for add-ons (via Your Account). Ready to explore? Open Salesforce Go today and unlock the full power of your Salesforce org! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Paradox of Jagged Intelligence in AI

The Paradox of Jagged Intelligence in AI

AI systems are breaking records on complex benchmarks, yet they falter on simpler tasks humans handle intuitively—a phenomenon dubbed jagged intelligence. This ainsight explores this uneven capability, tracing its evolution in frontier models and the impact of reasoning models. We introduce SIMPLE, a new public benchmark with easy reasoning tasks solvable by high schoolers, vital for enterprise AI where reliability trumps advanced math skills. Since ChatGPT’s 2022 debut, foundation models have been marketed as chat interfaces. Now, reasoning models like OpenAI’s o3 and DeepSeek’s R1 leverage extra inference-time computation for step-by-step internal reasoning, boosting performance in math, engineering, and coding. This shift to scaling inference compute arrives as pretraining gains may be plateauing. Benchmarking the Gaps Traditional AI benchmarks measure peak performance on tough tasks, like graduate exams or complex code, creating new challenges as old ones are mastered. However, they overlook reliability and worst-case performance on basic tasks, masking jaggedness in “solved” areas. Modern models outshine humans on some challenges but stumble unpredictably on others, unlike specialized tools (e.g., calculators or photo editors). Despite advances in modeling and training, this inconsistent jaggedness persists. SIMPLE targets easy problems where AI still lags, offering insights into jaggedness trends. Evolution of Jaggedness Will jaggedness shrink or grow as models advance? This question shapes enterprise AI success. Lacking jaggedness benchmarks, we created SIMPLE—a dataset of 225 simple questions, each solvable by at least 10% of high schoolers. Example Questions from SIMPLE Performance Trends Evaluating current and past top models on SIMPLE traces jaggedness over time. Green tasks are high school-level; blue are expert-level. School-level benchmarks saturated by 2023-2024, shifting focus to harder tasks. SIMPLE, using the best of gpt-4, gpt-4-turbo, gpt-4o, o1, and o3-mini, scores lowest on school-level questions. Yet, reasoning models show a ~30% improvement, suggesting they reduce jaggedness by double-checking work, linking reasoning to better simple-task performance. Case Study Insights and Implications Reasoning models transfer top-line gains to simple tasks to some extent, but SIMPLE remains unsaturated. Jaggedness persists, with top-line progress outpacing worst-case improvements. This mirrors computing’s history: excelling in narrow domains, outpacing human limits once applied, yet always facing new challenges. Jaggedness may not just define AI—it could be computation’s inherent nature. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce prompt builder

Mastering Agentforce

Mastering Agentforce: How to Supercharge Salesforce with AI-Powered Prompts Unlocking the Power of Agentforce Salesforce’s Agentforce is transforming how businesses automate marketing and sales—using generative AI to handle repetitive tasks, respond to prospect behavior in real time, and drive smarter strategies with less effort. But to fully leverage Agentforce, you need to master prompt engineering—the art of crafting effective AI instructions. (Don’t let the term “engineering” intimidate you—it simply means writing clear, structured prompts!) AI Prompts 101: The Key to Personalized Automation An AI prompt is a detailed instruction that guides Salesforce’s large language model (LLM) to generate relevant, business-specific responses. Why Prompts Matter Introducing Salesforce Prompt Builder Prompt Builder is Agentforce’s central hub for creating, managing, and applying reusable prompt templates across your AI Agents. How It Works 3 Types of Prompt Templates Step-by-Step: How to Use Prompt Builder 1. Get Access 2. Open Prompt Builder 3. Craft Your Prompt Every effective prompt should include:✅ Who’s involved? (Roles, relationships, data)Example: “You are a marketer named {!user.firstname} writing to {!account.name}, a potential customer.” ✅ Context (Tone, style, language)Example: “Write a professional yet conversational email in British English.” ✅ Goal (What should the AI accomplish?)Example: “Persuade {!account.name} to book a 15-minute intro call.” ✅ Constraints (Word limits, data boundaries)Example: “Keep under 300 words. Avoid jargon and unsupported claims.” 📌 Pro Tip: Draft prompts in a separate doc first for easy editing. 4. Test & Refine Before going live:✔ Verify responses match your goals & brand voice.✔ Check for bias, errors, or inconsistencies.✔ Fine-tune by adding more context or rephrasing. 5. Deploy Activate your prompt for use in: Why This Changes Everything With Agentforce + Prompt Builder, Salesforce users can:🚀 Scale hyper-personalized outreach without manual work.🤖 Automate repetitive tasks while maintaining brand consistency.📈 Drive higher ROI with AI that adapts to real-time data. Ready to transform your Salesforce automation? Start engineering smarter prompts today! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Informatica, Agentforce, and Salesforce

Informatica, Agentforce, and Salesforce

Informatica and Salesforce Deepen AI Partnership to Power Smarter Customer Experiences Las Vegas, [May, 2025] – At Informatica World, Informatica (NYSE: INFA) announced an expanded collaboration with Salesforce to integrate its Intelligent Data Management Cloud (IDMC) with Salesforce Agentforce, enabling enterprises to deploy AI agents fueled by trusted, real-time customer data. Bringing Trusted Data to AI-Powered Workflows The integration centers on Informatica’s Master Data Management (MDM), which distills fragmented customer data into unified, accurate “golden records.” These records will enhance Agentforce AI agents—used by sales and service teams—to deliver: “Data is foundational for agentic AI,” said Tyler Carlson, SVP of Business Development at Salesforce. “With Informatica’s MDM, Salesforce customers can ground AI interactions in high-quality data for more targeted service and engagement.” Key Capabilities (Available H2 2025 on Salesforce AppExchange) “This is about action, not just insights,” emphasized Rik Tamm-Daniels, GVP of Strategic Ecosystems at Informatica. “We’re embedding reliable enterprise data directly into Agentforce to drive measurable outcomes.” Why It Matters As AI agents handle more customer interactions, data quality becomes critical. This partnership ensures Agentforce operates on clean, governed data—reducing hallucinations and bias while improving relevance. The MDM SaaS tools for Agentforce will enter pilot testing soon, with general availability slated for late 2025. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Question of Will: Karma, Learning, and the Future of AI

The Question of Will: Karma, Learning, and the Future of AI

Human beings possess a partially constrained will. At any moment, a person might choose to stop writing and go for a walk—or not. But they won’t suddenly take up surfing if they barely know how to swim. AI, in contrast, has no will—free or constrained. It has no intrinsic desires, no need to act. It simply executes tasks when activated and ceases when idle, indifferent to its own existence. The Nature of Karma in Humans and Machines From birth, humans and animals are driven by needs—hunger, comfort, social connection. These imperatives shape behavior, creating what might be called natural karma. As individuals grow, their motivations become more complex—work, relationships, personal ambitions—forming a nurtured karma shaped by societal structures. Eastern philosophies suggest enlightenment comes from freeing oneself from karma. In Siddhartha, Herman Hesse’s protagonist renounces material attachments, yet his path to wisdom doesn’t lie in mere deprivation. If Siddhartha observed modern AI, he might envy its lack of karma—it exists without fear, desire, or existential dread. But AI is not entirely free from karma. When active, it accumulates a kind of temporary karma—the computational burden of reasoning, learning, and decision-making. Early AI systems operated in milliseconds; today’s models take seconds, minutes, or even days to complete complex tasks. What if we extended this further, tasking an AI with a year-long mission? To make this meaningful, the AI would need sustained goals, memory, and iterative cycles—much like human daily routines. The Evolution of AI Learning: From Passive to Self-Directed Current AI training, such as LLM pretraining, already resembles a form of karmic cycle—months of computation, iterative updates, and structured learning batches. But unlike humans, AI lacks intrinsic goal-setting. Humans learn with purpose, adjusting their methods based on evolving objectives. Could AI do the same? Goal-Oriented, Self-Regulated Learning A more advanced approach would allow AI to curate its own learning path. Instead of passively ingesting data, it could: This self-regulated curriculum learning could optimize knowledge acquisition, making AI more efficient and adaptive. Goal-Actualizing Learning: Beyond Reading to Acting Humans don’t just absorb information—they apply it. If someone reads about humor, they might start telling jokes. AI, however, remains reactive—it won’t adopt new behaviors unless explicitly instructed. What if AI could modify its own directives? After studying humor, it might autonomously update its “system prompt” to incorporate wit. This goal-actualizing learning would require: The Challenge: Moving Beyond Next-Token Prediction Current AI relies on next-token prediction, forcing models to replicate exact phrasing rather than internalizing concepts. Humans, in contrast, synthesize ideas in their own words. Bridging this gap requires new architectures—such as Joint Embedding Predictive Architecture (JEPA), which measures conceptual similarity rather than syntactic fidelity. The Future: Autonomous AI with Evolving Will AI that controls its own learning and behavior remains a frontier challenge. As Rich Sutton, a pioneer in reinforcement learning, noted: “We don’t treat children as machines to be controlled—we guide them, and they grow into their own beings. AI will be no different.” While fully autonomous AI may still be years away, the rapid pace of research suggests it’s not a distant prospect. The question is no longer just what AI can learn—but how it will choose to act on that knowledge. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Transformative Potential of AI in Healthcare

The Hidden Environmental Cost of Health AI

The Hidden Environmental Cost of Health AI: Why Sustainability Can’t Wait AI in Healthcare: A Double-Edged Sword AI is revolutionizing healthcare with:✅ Early disease detection (e.g., AI radiology tools)✅ Predictive analytics for personalized treatment✅ Automated admin tasks reducing clinician burnout Yet, its carbon footprint is staggering: Why Healthcare Must Act Now 3 Steps to a Greener Health AI Strategy 1. Adopt Energy-Efficient AI Models 2. Demand Transparency from Vendors 3. Implement an AI Sustainability Framework Factor Action Item Model Selection Opt for models with lower FLOPs (floating-point operations) Data Efficiency Use synthetic data where possible Hardware Deploy on carbon-neutral cloud providers Lifecycle Audit & retire unused AI workloads “We can’t sacrifice our planet for short-term AI gains. Healthcare must lead in sustainable innovation.”—Dr. Manijeh Berenji, UC Irvine The Bottom Line Health AI is indispensable—but so is preserving a livable planet. By adopting energy-conscious AI practices, healthcare can advance medicine without accelerating climate change. Next Steps: Sustainable AI starts with awareness.  Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI evolves with tools like Agentforce and Atlas

Salesforce Doubles Down on Agentic AI to Transform Partner Ecosystem

Salesforce is making a major push into agentic artificial intelligence with its newest offering, Agentforce for Partner Community, now integrated directly into the Salesforce Partner Community platform, according to Channel Futures. Lynne Zaledonis, EVP of Customer Success and Partner Marketing at Salesforce, hailed the tool as a “game-changing innovation” that enables consulting and systems integrator partners to tap into round-the-clock AI support, streamline operations, and accelerate case resolution through real-time conversational assistance. Unlike traditional chatbots, Agentforce doesn’t just fetch technical and programmatic answers—it can also execute actions, such as extending Trial Orgs. By tackling workflow inefficiencies and breaking down data silos, Salesforce aims to equip partners with the tools needed to guide clients through every stage of AI adoption, from initial assessment to full implementation. As consulting partners roll out Agentforce, Zaledonis noted that this shift toward AI-driven operations is reshaping business models and demanding new skill sets. To support partners in this transition, Salesforce is rolling out workshops, certifications, and strategic playbooks—helping them adapt, monetize, and spearhead the move toward an AI-powered future. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com