, Author at gettectonic.com - Page 13
AI Assistants Using LangGraph

AI Assistants Using LangGraph

In the evolving world of AI, retrieval-augmented generation (RAG) systems have become standard for handling straightforward queries and generating contextually relevant responses. However, as demand grows for more sophisticated AI applications, there is a need for systems that move beyond simple retrieval tasks. Enter AI agents—autonomous entities capable of executing complex, multi-step processes, maintaining state across interactions, and dynamically adapting to new information. LangGraph, a powerful extension of the LangChain library, is designed to help developers build these advanced AI agents, enabling stateful, multi-actor applications with cyclic computation capabilities. AI Assistants Using LangGraph. In this insight, we’ll explore how LangGraph revolutionizes AI development and provide a step-by-step guide to building your own AI agent using an example that computes energy savings for solar panels. This example will demonstrate how LangGraph’s unique features enable the creation of intelligent, adaptable, and practical AI systems. What is LangGraph? LangGraph is an advanced library built on top of LangChain, designed to extend Large Language Model (LLM) applications by introducing cyclic computational capabilities. While LangChain allows for the creation of Directed Acyclic Graphs (DAGs) for linear workflows, LangGraph enhances this by enabling the addition of cycles—essential for developing agent-like behaviors. These cycles allow LLMs to continuously loop through processes, making decisions dynamically based on evolving inputs. LangGraph: Nodes, States, and Edges The core of LangGraph lies in its stateful graph structure: LangGraph redefines AI development by managing the graph structure, state, and coordination, allowing for the creation of sophisticated, multi-actor applications. With automatic state management and precise agent coordination, LangGraph facilitates innovative workflows while minimizing technical complexity. Its flexibility enables the development of high-performance applications, and its scalability ensures robust and reliable systems, even at the enterprise level. Step-by-step Guide Now that we understand LangGraph’s capabilities, let’s dive into a practical example. We’ll build an AI agent that calculates potential energy savings for solar panels based on user input. This agent can function as a lead generation tool on a solar panel seller’s website, providing personalized savings estimates based on key data like monthly electricity costs. This example highlights how LangGraph can automate complex tasks and deliver business value. Step 1: Import Necessary Libraries We start by importing the essential Python libraries and modules for the project. pythonCopy codefrom langchain_core.tools import tool from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import Runnable from langchain_aws import ChatBedrock import boto3 from typing import Annotated from typing_extensions import TypedDict from langgraph.graph.message import AnyMessage, add_messages from langchain_core.messages import ToolMessage from langchain_core.runnables import RunnableLambda from langgraph.prebuilt import ToolNode Step 2: Define the Tool for Calculating Solar Savings Next, we define a tool to calculate potential energy savings based on the user’s monthly electricity cost. pythonCopy code@tool def compute_savings(monthly_cost: float) -> float: “”” Tool to compute the potential savings when switching to solar energy based on the user’s monthly electricity cost. Args: monthly_cost (float): The user’s current monthly electricity cost. Returns: dict: A dictionary containing: – ‘number_of_panels’: The estimated number of solar panels required. – ‘installation_cost’: The estimated installation cost. – ‘net_savings_10_years’: The net savings over 10 years after installation costs. “”” def calculate_solar_savings(monthly_cost): cost_per_kWh = 0.28 cost_per_watt = 1.50 sunlight_hours_per_day = 3.5 panel_wattage = 350 system_lifetime_years = 10 monthly_consumption_kWh = monthly_cost / cost_per_kWh daily_energy_production = monthly_consumption_kWh / 30 system_size_kW = daily_energy_production / sunlight_hours_per_day number_of_panels = system_size_kW * 1000 / panel_wattage installation_cost = system_size_kW * 1000 * cost_per_watt annual_savings = monthly_cost * 12 total_savings_10_years = annual_savings * system_lifetime_years net_savings = total_savings_10_years – installation_cost return { “number_of_panels”: round(number_of_panels), “installation_cost”: round(installation_cost, 2), “net_savings_10_years”: round(net_savings, 2) } return calculate_solar_savings(monthly_cost) Step 3: Set Up State Management and Error Handling We define utilities to manage state and handle errors during tool execution. pythonCopy codedef handle_tool_error(state) -> dict: error = state.get(“error”) tool_calls = state[“messages”][-1].tool_calls return { “messages”: [ ToolMessage( content=f”Error: {repr(error)}n please fix your mistakes.”, tool_call_id=tc[“id”], ) for tc in tool_calls ] } def create_tool_node_with_fallback(tools: list) -> dict: return ToolNode(tools).with_fallbacks( [RunnableLambda(handle_tool_error)], exception_key=”error” ) Step 4: Define the State and Assistant Class We create the state management class and the assistant responsible for interacting with users. pythonCopy codeclass State(TypedDict): messages: Annotated[list[AnyMessage], add_messages] class Assistant: def __init__(self, runnable: Runnable): self.runnable = runnable def __call__(self, state: State): while True: result = self.runnable.invoke(state) if not result.tool_calls and ( not result.content or isinstance(result.content, list) and not result.content[0].get(“text”) ): messages = state[“messages”] + [(“user”, “Respond with a real output.”)] state = {**state, “messages”: messages} else: break return {“messages”: result} Step 5: Set Up the LLM with AWS Bedrock We configure AWS Bedrock to enable advanced LLM capabilities. pythonCopy codedef get_bedrock_client(region): return boto3.client(“bedrock-runtime”, region_name=region) def create_bedrock_llm(client): return ChatBedrock(model_id=’anthropic.claude-3-sonnet-20240229-v1:0′, client=client, model_kwargs={‘temperature’: 0}, region_name=’us-east-1′) llm = create_bedrock_llm(get_bedrock_client(region=’us-east-1′)) Step 6: Define the Assistant’s Workflow We create a template and bind the tools to the assistant’s workflow. pythonCopy codeprimary_assistant_prompt = ChatPromptTemplate.from_messages( [ ( “system”, ”’You are a helpful customer support assistant for Solar Panels Belgium. Get the following information from the user: – monthly electricity cost Ask for clarification if necessary. ”’, ), (“placeholder”, “{messages}”), ] ) part_1_tools = [compute_savings] part_1_assistant_runnable = primary_assistant_prompt | llm.bind_tools(part_1_tools) Step 7: Build the Graph Structure We define nodes and edges for managing the AI assistant’s conversation flow. pythonCopy codebuilder = StateGraph(State) builder.add_node(“assistant”, Assistant(part_1_assistant_runnable)) builder.add_node(“tools”, create_tool_node_with_fallback(part_1_tools)) builder.add_edge(START, “assistant”) builder.add_conditional_edges(“assistant”, tools_condition) builder.add_edge(“tools”, “assistant”) memory = MemorySaver() graph = builder.compile(checkpointer=memory) Step 8: Running the Assistant The assistant can now be run through its graph structure to interact with users. python import uuidtutorial_questions = [ ‘hey’, ‘can you calculate my energy saving’, “my montly cost is $100, what will I save”]thread_id = str(uuid.uuid4())config = {“configurable”: {“thread_id”: thread_id}}_printed = set()for question in tutorial_questions: events = graph.stream({“messages”: (“user”, question)}, config, stream_mode=”values”) for event in events: _print_event(event, _printed) Conclusion By following these steps, you can create AI Assistants Using LangGraph to calculate solar panel savings based on user input. This tutorial demonstrates how LangGraph empowers developers to create intelligent, adaptable systems capable of handling complex tasks efficiently. Whether your application is in customer support, energy management, or other domains, LangGraph provides the Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched

Read More
Market Insights and Forecast for Quote Generation Software

Market Insights and Forecast for Quote Generation Software

Market Insights and Forecast for Quote Generation Software for Salesforce (2024-2031): Key Players, Technology Advancements, and Growth Opportunities A recent research report by WMR delves into the Quote Generation Software for Salesforce Market, offering over 150 pages of in-depth analysis on business strategies employed by both leading and emerging industry players. The study provides insights into market developments, technological advancements, drivers, opportunities, and overall market status. Understanding market segments is essential to identify key factors driving growth. Comprehensive Market Insights The report provides an extensive analysis of the global market landscape, including business expansion strategies designed to increase revenue. It compiles critical data about target customers, evaluating the potential success of products and services prior to launch. The research offers valuable insights for stakeholders, including detailed updates on the impact of COVID-19 on business operations and the broader market. The report assesses whether a target market aligns with an enterprise’s goals, emphasizing that market success hinges on understanding the target audience. Key Players Featured: Market Segmentation By Types: By Applications: Geographical Overview The Quote Generation Software for Salesforce Market varies significantly across regions, driven by factors such as economic development, technical advancements, and cultural differences. Businesses looking to expand globally must account for these variations to leverage local opportunities effectively. Key regions include: Competitive Landscape The report offers a detailed competitive analysis, highlighting: Highlights from the Report Key Market Questions Addressed: Reasons to Purchase this Report: This report provides a valuable roadmap for businesses aiming to navigate the evolving Quote Generation Software for Salesforce Market, helping them make informed decisions and strategically position themselves for growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Data Quality Management Process

Data Quality Management Process

Data quality is often paradoxical—simple in its fundamentals, yet challenging in its details. A solid data quality management program is essential for ensuring processes run smoothly. What is Data Quality? At its core, data quality means having accurate, consistent, complete, and up-to-date data. However, quality is also context-dependent. Different tasks or applications require different types of data and, consequently, different standards of quality. Data that works well for one purpose may not be suitable for another. For instance, a list of customer names and addresses might be ideal for a marketing campaign but insufficient for tracking customer sales history. There isn’t a universal quality standard. A data set of credit card transactions, filled with cancellations and verification errors, may seem messy for sales analysis—but that’s exactly the kind of data the fraud analysis team wants to see. The most accurate way to assess data quality is to ask, “Is the data fit for its current purpose?” Steps to Build a Data Quality Management Process The goal of data quality management is not perfection. Instead, it focuses on ensuring reliable, high-quality data across the organization. Here are five key steps in developing a robust data quality process: Step 1: Data Quality Assessment Begin by assessing the current state of data. All relevant parties—from business units to IT—should understand the current condition of the organization’s data. Check for errors, duplicates, or missing entries and evaluate accuracy, consistency, and completeness. Techniques like data profiling can help identify data issues. This step forms the foundation for the rest of the process. Step 2: Develop a Data Quality Strategy Next, develop a strategy to improve and maintain data quality. This blueprint should define the use cases for data, the required quality for each, and the rules for data collection, storage, and processing. Choose the right tools and outline how to handle errors or discrepancies. This strategic plan will guide the organization toward sustained data quality. Step 3: Initial Data Cleansing This is where you take action to improve your data. Clean, correct, and prepare the data based on the issues identified during the assessment. Remove duplicates, fill in missing information, and resolve inconsistencies. The goal is to establish a strong baseline for future data quality efforts. Remember, data quality isn’t about perfection—it’s about making data fit for purpose. Step 4: Implement the Data Quality Strategy Now, put the plan into action by integrating data quality standards into daily workflows. Train teams on new practices and modify existing processes to include data quality checks. If done correctly, data quality management becomes a continuous, self-correcting process. Step 5: Monitor Data Quality Finally, monitor the ongoing process. Data quality management is not a one-time event; it requires continuous tracking and review. Regular audits, reports, and dashboards help ensure that data standards are maintained over time. In summary, an effective data quality process involves understanding current data, creating a plan for improvement, and consistently monitoring progress. The aim is not perfection, but ensuring data is fit for purpose. The Impact of AI and Machine Learning on Data Quality The rise of AI and machine learning (ML) brings new challenges to data quality management. For AI and ML, the quality of training data is crucial. The performance of models depends on the accuracy, completeness, and bias of the data used. If the training data is flawed, the model will produce flawed outcomes. Volume is another challenge. AI and ML models require vast amounts of data, and ensuring the quality of such large datasets can be a significant task. Organizations may need to prepare data specifically for AI and ML projects. This might involve collecting new data, transforming existing data, or augmenting it to meet the requirements of the models. Special attention must be paid to avoid bias and ensure diversity in the data. In some cases, existing data may not be sufficient or representative enough to meet future needs. Implementing specific validation checks for AI and ML training data is essential. This includes checking for bias, ensuring diversity, and verifying that the data accurately represents the problem the model is designed to address. By applying these practices, organizations can tackle the evolving challenges of data quality in the age of AI and machine learning. Create a great Data Quality Management Process. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
UX Principles for AI in Healthcare

UX Principles for AI in Healthcare

The Role of UX in AI-Driven Healthcare AI is poised to revolutionize the global economy, with predictions it could contribute $15.7 trillion by 2030—more than the combined economic output of China and India. Among the industries likely to see the most transformative impact is healthcare. However, during my time at NHS Digital, I saw how systems that weren’t designed with existing clinical workflows in mind added unnecessary complexity for clinicians, often leading to manual workarounds and errors due to fragmented data entry across systems. The risk is that AI, if not designed with user experience (UX) at the forefront, could exacerbate these issues, creating more disruption rather than solving problems. From diagnostic tools to consumer health apps, the role of UX in AI-driven healthcare is critical to making these innovations effective and user-friendly. This article explores the intersection of UX and AI in healthcare, outlining key UX principles to design better AI-driven experiences and highlighting trends shaping the future of healthcare. The Shift in Human-Computer Interaction with AI AI fundamentally changes how humans interact with computers. Traditionally, users took command by entering inputs—clicking, typing, and adjusting settings until the desired outcome was achieved. The computer followed instructions, while the user remained in control of each step. With AI, this dynamic shifts dramatically. Now, users specify their goal, and the AI determines how to achieve it. For example, rather than manually creating an illustration, users might instruct AI to “design a graphic for AI-driven healthcare with simple shapes and bold colors.” While this saves time, it introduces challenges around ensuring the results meet user expectations, especially when the process behind AI decisions is opaque. The Importance of UX in AI for Healthcare A significant challenge in healthcare AI is the “black box” nature of the systems. For example, consider a radiologist reviewing a lung X-ray that an AI flagged as normal, despite the presence of concerning lesions. Research has shown that commercial AI systems can perform worse than radiologists when multiple health issues are present. When AI decisions are unclear, clinicians may question the system’s reliability, especially if they cannot understand the rationale behind an AI’s recommendation. This opacity hinders feedback, making it difficult to improve the system’s performance. Addressing this issue is essential for UX designers. Bias in AI is another significant issue. Many healthcare AI tools have been documented as biased, such as systems trained on predominantly male cardiovascular data, which can fail to detect heart disease in women. AIs also struggle to identify conditions like melanoma in people with darker skin tones due to insufficient diversity in training datasets. UX can help mitigate these biases by designing interfaces that clearly explain the data used in decisions, highlight missing information, and provide confidence levels for predictions. The movement toward eXplainable AI (XAI) seeks to make AI systems more transparent and interpretable for human users. UX Principles for AI in Healthcare To ensure AI is beneficial in real-world healthcare settings, UX designers must prioritize certain principles. Below are key UX design principles for AI-enabled healthcare applications: Applications of AI in Healthcare AI is already making a significant impact in various healthcare applications, including: Real-world deployments of AI in healthcare have demonstrated that while AI can be useful, its effectiveness depends heavily on usability and UX design. By adhering to the principles of transparency, interpretability, controllability, and human-centered AI, designers can help create AI-enabled healthcare applications that are both powerful and user-friendly. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Salesforce Flow Tests

Salesforce Flow Tests

Deploying Salesforce Flow tests is not just about hitting “go” and hoping for the best. It requires more than simply moving automations from a Sandbox environment to production. Successful deployment demands thoughtful planning and attention to detail. In this post, we’ll dive deeper into deploying Flow tests effectively, covering key factors like independent testing and ensuring environment consistency. Building on our ongoing series, we’ll provide practical insights to help you achieve smooth deployments and reliable test execution. Key Considerations for Deploying Flow Tests Steps to Deploy Flow Tests Using Change Sets Final Thoughts Deploying Flow tests effectively is critical for maintaining the integrity of your automations across environments. Skipping the testing phase is like driving with a blindfold—one mistake could disrupt your workflows and cause chaos in critical processes. By following these guidelines, particularly focusing on independent testing and post-deployment checks, you can help ensure your Salesforce Flows continue to operate smoothly. Stay tuned for future insights for Flownatics where we’ll dive into more advanced aspects of Flow tests, helping you further optimize your Salesforce automation processes. Need more advice on testing your automations in Salesforce? Let’s chat! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
TrueDialog Adds SMS Application for Salesforce Marketing Cloud Engagement

TrueDialog Adds SMS Application for Salesforce Marketing Cloud Engagement

TrueDialog Unveils SMS Integration for Salesforce Marketing Cloud

TrueDialog, a leader in SMS texting solutions, has expanded its Salesforce offerings with the launch of its SMS integration for Salesforce Marketing Cloud Engagement, complementing its existing Sales Cloud application. Now available on Salesforce AppExchange, this addition enables seamless documentation of SMS activities across the Salesforce Cloud ecosystem.

With TrueDialog’s integration for Salesforce Marketing Cloud, companies can incorporate SMS into customized, targeted marketing journeys. This includes sending promotional messages, geo-targeted offers, triggered alerts, order confirmations, account updates, and more—all as part of a cohesive customer engagement strategy.

TrueDialog’s solution uniquely enables SMS message flow across Salesforce Marketing Cloud, Sales Cloud, Service Cloud, and Education Cloud, ensuring communication continuity across platforms. “TrueDialog is the only provider offering bidirectional SMS integration between Salesforce Marketing Cloud and other Salesforce Clouds, including Sales, Service, Commerce, and Education Clouds,” said John Wright, CEO of TrueDialog. “Our solution records text messages on all relevant Salesforce Clouds, maintaining communication continuity between companies and their customers—something no other provider offers.”

The TrueDialog SMS application is fully native to Salesforce Marketing Cloud, allowing users to work within their regular workflow without switching applications to integrate SMS steps. TrueDialog also offers flexible options for short and long codes, automated 10DLC registration for long codes, and TrueDelivery, a tool for assessing SMS deliverability.

Read More
Transform Customer Experience

Transform Customer Experience

In today’s AI-driven business environment, customer experience (CX) has evolved from being a buzzword to a critical factor in determining success. It’s no longer enough for businesses to offer high-quality products or excellent service alone—today’s customers are always online, engaged, and seeking the most convenient, relevant, and enjoyable experiences. This is where Salesforce Data Cloud becomes a game-changer, providing the tools needed to meet modern customer expectations. Transforming Customer Experience with Salesforce Data Cloud Salesforce enables businesses to collect, integrate, and leverage critical customer information within its ecosystem, offering an all-encompassing view of each customer. This unified customer data allows organizations to forecast visitor trends, assess marketing impact, and predict customer behavior. As data-driven decision-making becomes increasingly central to business strategy, Salesforce Data Cloud and its Customer Data Platform (CDP) features provide a significant competitive edge—whether in e-commerce, fintech, or B2B industries. Data Cloud is more than just your traditional CDP. It’s the only data platform native to the world‘s #1 AI CRM. This means that marketers can quickly access and easily action on unified data – from across the entire business – to drive growth and increase customer lifetime value. Data Cloud’s Role in Enhancing CX By unifying data in one place, Salesforce Data Cloud enables organizations to access real-time customer insights. This empowers them to track customer activity across channels like email, social media, and online sales, facilitating targeted marketing strategies. Businesses can analyze customer behavior and deliver personalized messaging, aligning marketing, sales, and customer service efforts to ensure consistency. With these capabilities, Salesforce customers can elevate the CX by delivering the right content, at the right time, to the right audience, ultimately driving customer satisfaction and growth. New Features of Salesforce Data Cloud Salesforce continues to evolve, introducing cutting-edge features that reshape customer interaction: To fully maximize these features, partnering with a Salesforce Data Cloud consultant can help businesses unlock the platform’s full potential and refine their customer engagement strategies. Agentic AI Set to Supercharge Business Processes Salesforce’s vision extends beyond customer relationship management with the integration of Agentic AI through its Customer 360 platform. According to theCUBE Research analysts, this signals a shift toward using AI agents to automate complex business processes. These AI agents, built on Salesforce’s vast data resources, promise to revolutionize how companies operate, offering customized, AI-driven business tools. “If they can pull this off, where it becomes a more dynamic app platform, more personalized, really focused on those processes all the way back to the data, it’s going to be a clear win for them,” said Strechay. “They’re sitting on cloud; they’re sitting on IaaS. That’s a huge win from that perspective.” AI agents create a network of microservices that think and act independently, involving human intervention only when necessary. This division of labor allows businesses to capture expertise in routine tasks while freeing human workers to focus on more complex decision-making. However, the success of these AI agents depends on access to accurate and reliable data. As Gilbert explained, “Agents can call on other agents, and when they’re not confident of a step in a process or an outcome, they can then bounce up to an inbox for a human to supervise.” The goal isn’t to eliminate humans but to capture their expertise for simpler processes. Empowering Developers and Citizen Creators At the core of this AI-driven transformation is Salesforce’s focus on developers. The platform’s low-code tools allow businesses to easily customize AI agents and automate business processes, empowering both experienced developers and citizen creators. With simple language commands or goal-setting, companies can build and train these AI agents, streamlining operations. “It’s always going to be about good data—that’s the constant,” Bertrand said. “The second challenge is how to train agents and humans to work together effectively. While some entry-level jobs may be replaced, AI will continue to evolve, creating new opportunities in the future.” Is Salesforce Data Cloud the Right Fit for Your Business? Salesforce Data Cloud offers comprehensive capabilities for businesses of all sizes, but it’s essential to assess whether it aligns with your specific needs. The platform is particularly valuable for: For businesses that fit these scenarios, working with Salesforce’s partner ecosystem or a Data Cloud consultant can help ensure successful integration and optimization. What’s New in Salesforce’s Latest Release? The latest Salesforce Spring Release introduced several exciting features, further enhancing Salesforce Data Cloud: These updates reflect Salesforce’s commitment to providing innovative, data-driven solutions that enhance customer experiences and drive business success. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
What Should Enterprises Build with Agentic AI?

What Should Enterprises Build with Agentic AI?

The rise of agentic AI has dominated recent discussions in enterprise technology, sparking debates over its transformative potential and practical applications. Just weeks ago, few had heard of the term. Now, every tech vendor is racing to stake their claim in this emerging space, positioning agentic AI as the successor to AI co-pilots. While co-pilots assist users with tasks, agentic AI represents the next step: delegating tasks to intelligent agents capable of independent execution, akin to assigning work to a junior colleague. But beyond the buzz, the pressing questions remain: Cutting Through the Hype Recent launches provide a snapshot of how enterprises are beginning to deploy agentic AI. Salesforce’s Agentforce, Asana’s AI Studio, and Atlassian’s Rovo AI Assistant all emphasize the ability of these agents to streamline workflows by interpreting unstructured data and automating complex tasks. These tools promise flexibility over previous rigid, rule-based systems. For example, instead of painstakingly scripting every step, users can instruct an agent to “follow documented policies, analyze data, and propose actions,” reserving human approval for final execution. However, the performance of these agents hinges on data quality and system robustness. Salesforce’s Marc Benioff, for instance, critiques Microsoft’s Copilot for lacking a robust data model, emphasizing Salesforce’s own structured approach as a competitive edge. Similarly, Asana and Atlassian highlight the structured work graphs underpinning their platforms as critical for accurate and reliable outputs. Key Challenges Despite the promise, there are significant challenges to deploying agentic AI effectively: Early Wins and Future Potential Early adopters are seeing value in high-volume, repetitive scenarios such as customer service. For example: However, these successes represent low-hanging fruit. The true promise lies in rethinking how enterprises work. As one panelist at Atlassian’s event noted: “We shouldn’t just use this AI to enhance existing processes. We should ask whether these are the processes we want for the future.” The Path Forward The transformative potential of agentic AI will depend on broader process standardization. Just as standardized shipping containers revolutionized logistics, and virtual containers transformed IT operations, similar breakthroughs in process design could unlock exponential gains for AI-driven workflows. For now, enterprises should: Conclusion Agentic AI holds immense potential, but its real power lies in enabling enterprises to question and redesign how work gets done. While it may still be in its early days, businesses that align their AI investments with strategic goals—and not just immediate fixes—will be best positioned to thrive in this new era of intelligent automation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Slack User Personas

Slack User Personas

A research team at Slack recently surveyed 5,000 full-time desk workers to understand what drives their use of AI-enhanced workplace tools. They found that people typically fall into one of five distinct personas, as identified by Slack’s Workforce Lab: What’s fascinating about this approach is how it aligns with the concept of managing people through “employee personas.” If you’re unfamiliar, workforce platform Envoy defines employee personas as “semi-fictional characters that represent the behaviors, needs, and preferences of a group of employees,” based on data and interviews. These personas help organizations tailor communications, plan training, and develop career paths, offering a data-driven approach to workforce management. Slack has extended this framework to AI adoption strategies. As reported by HR Dive, Christina Janzer, Slack’s SVP of research and analytics, noted during a press call that AI adoption is complex, with individuals experiencing it differently. She suggested that understanding employees’ emotional responses to AI could help predict whether they’ll experiment with or avoid the technology. This research mirrors the approach of the Slack-backed Future Forum, which surveyed 10,000 global workers each quarter on topics like flexibility, burnout, and hybrid work. Slack’s Workforce Lab takes a similar approach but focuses on productivity and employee experience across desk workers globally, including those at Slack, Salesforce, and beyond. The release of this report on AI personas—complete with a quiz—continues this work by asking how management can foster effective AI adoption. It’s crucial to note that personas aren’t fixed; people’s attitudes and enthusiasm for AI can evolve with experience. If Slack’s findings reflect broader trends, only a third of employees are truly excited about AI, with the rest hesitant or disengaged. A future challenge for Slack Workforce Lab may be uncovering what can motivate the remaining personas to embrace AI. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agent Workflows

AI Agent Workflows

AI Agent Workflows: The Ultimate Guide to Choosing Between LangChain and LangGraph Explore two transformative libraries—LangChain and LangGraph—both created by the same developer, designed to build Agentic AI applications. This guide dives into their foundational components, differences in handling functionality, and how to choose the right tool for your use case. Language Models as the Bridge Modern language models have unlocked revolutionary ways to connect users with AI systems and enable AI-to-AI communication via natural language. Enterprises aiming to harness Agentic AI capabilities often face the pivotal question: “Which tools should we use?” For those eager to begin, this question can become a roadblock. Why LangChain and LangGraph? LangChain and LangGraph are among the leading frameworks for crafting Agentic AI applications. By understanding their core building blocks and approaches to functionality, you’ll gain clarity on how each aligns with your needs. Keep in mind that the rapid evolution of generative AI tools means today’s truths might shift tomorrow. Note: Initially, this guide intended to compare AutoGen, LangChain, and LangGraph. However, AutoGen’s upcoming 0.4 release introduces a foundational redesign. Stay tuned for insights post-launch! Understanding the Basics LangChain LangChain offers two primary methods: Key components include: LangGraph LangGraph is tailored for graph-based workflows, enabling flexibility in non-linear, conditional, or feedback-loop processes. It’s ideal for cases where LangChain’s predefined structure might not suffice. Key components include: Comparing Functionality Tool Calling Conversation History and Memory Retrieval-Augmented Generation (RAG) Parallelism and Error Handling When to Choose LangChain, LangGraph, or Both LangChain Only LangGraph Only Using LangChain + LangGraph Together Final Thoughts Whether you choose LangChain, LangGraph, or a combination, the decision depends on your project’s complexity and specific needs. By understanding their unique capabilities, you can confidently design robust Agentic AI workflows. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Innovation at Salesforce

AI Innovation at Salesforce

AI innovation is advancing at an unprecedented pace, unlike anything I’ve seen in nearly 25 years at Salesforce. It’s now a top priority for every CEO, CTO, and CIO I speak with. As a trusted partner, we help customers innovate, iterate, and navigate the evolving AI landscape. They recognize AI’s immense potential to revolutionize every aspect of business, across all industries. While they’re already seeing significant advancements, we are still just scratching the surface of AI’s full transformational promise. They seek AI technologies that will enhance productivity, augment employee performance at scale, improve customer relationships, and ultimately drive rapid time to value and higher margins. That’s where our new Agentforce Platform comes in. Agentforce represents a breakthrough in AI, delivering on the promise of autonomous AI agents. These agents perform advanced planning and decision-making with minimal human input, automating entire workflows, making real-time decisions, and adapting to new information—all without requiring human intervention. Salesforce customers are embracing Agentforce and integrating it with other products, including Einstein AI, Data Cloud, Sales Cloud, and Service Cloud. Here are some exciting ways our customers are utilizing these tools: Strengthening Customer Relationships with AI Agents OpenTable is leveraging autonomous AI agents to handle the massive scale of its operations, supporting 60,000 restaurants and millions of diners. By piloting Agentforce for Service, they’ve automated common tasks like account reactivations, reservation management, and loyalty point expiration. The AI agents even answer complex follow-up questions, such as “when do my points expire in Mexico?”—a real “wow” moment for OpenTable. These agents are redefining how customers engage with companies. Wiley, an educational publisher, faces a seasonal surge in service requests each school year. By piloting Agentforce Service Agent, they increased case resolution by 40-50% and sped up new agent onboarding by 50%, outperforming their previous systems. Harnessing Data Insights The Adecco Group, a global leader in talent solutions, wanted to unlock insights from its vast data reserves. Using Data Cloud, they’re connecting multiple Salesforce instances to give 27,000 recruiters and sales staff real-time, 360-degree views of their operations. This empowers Adecco to improve job fill rates and streamline operations for some of the world’s largest companies. Workday, a Salesforce customer for nearly two decades, uses Service Cloud to power customer service and Slack for internal collaboration. Our new partnership with Workday will integrate Agentforce with their platform, creating a seamless employee experience across Salesforce, Slack, and Workday. This includes AI-powered employee service agents accessible across all platforms. Wyndham Resorts is transforming its guest experience by using Data Cloud to harmonize CRM data across Sales Cloud, Marketing Cloud, and Service Cloud. By consolidating their systems, Wyndham anticipates a 30% reduction in call resolution time and an overall enhanced customer experience through better access to accurate guest and property data. Empowering Employees Air India, with ambitions to capture 30% of India’s airline market, is using Data Cloud, Service Cloud, and Einstein AI to unify data across merged airlines and enhance customer service. Now, human agents spend more time with customers while AI handles routine tasks, resulting in faster resolution of 550,000 monthly service calls. Heathrow Airport is focused on improving employee efficiency and personalizing passenger experiences. Service Cloud and Einstein chatbots have significantly reduced call volumes, with chatbots answering 4,000 questions monthly. Since launching, live chat usage has surged 450%, and average call times have dropped 27%. These improvements have boosted Heathrow’s digital revenue by 30% since 2019. Driving Productivity and Margins Aston Martin sought to improve customer understanding and dealer collaboration. By adopting Data Cloud, they unified their customer data, reducing redundancy by 52% and transitioning from six data systems to one, streamlining operations. Autodesk, a leader in 3D design and engineering software, uses Einstein for Service to generate AI-driven case summaries, cutting the time spent summarizing customer chats by 63%. They also use Salesforce to enhance data security, reducing ongoing maintenance by 30%. Creating a Bright Future for Our Customers For over 25 years, Salesforce has guided customers through transformative technological shifts. The fusion of AI and human intelligence is the most profound shift we’ve seen, unlocking limitless potential for business success. Join them at Dreamforce next month, where we’ll celebrate customer achievements and share the latest innovations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Rise of Agentforce

Rise of Agentforce

The Rise of Agentforce: How AI Agents Are Shaping the Future of Work Salesforce wrapped up its annual Dreamforce conference this September, leaving attendees with more than just memories of John Mulaney’s quips. As the swarms of Waymos ferried participants across a cleaner-than-usual San Francisco, it became clear that AI-powered agents—dubbed Agentforce—are poised to transform the workplace. These agents, controlled within Salesforce’s ecosystem, could significantly change how work is done and how customer experiences are delivered. Dreamforce has always been known for its bold predictions about the future, but this year’s vision of AI-based agents felt particularly compelling. These agents represent the next frontier in workplace automation, but as exciting as this future is, some important questions remain. Reality Check on the Agentforce Vision During his keynote, Salesforce CEO Marc Benioff raised an interesting point: “Why would our agents be so low-hallucinogenic?” While the agents have access to vast amounts of data, workflows, and services, they currently function best within Salesforce’s own environment. Benioff even made the claim that Salesforce pioneered prompt engineering—a statement that, for some, might have evoked a scene from Austin Powers, with Dr. Evil humorously taking credit for inventing the question mark. But can Salesforce fully realize its vision for Agentforce? If they succeed, it could be transformative for how work gets done. However, as with many AI-driven innovations, the real question lies in interoperability. The Open vs. Closed Debate As powerful as Salesforce’s ecosystem is, not all business data and workflows live within it. If the future of work involves a network of AI agents working together, how far can a closed ecosystem like Salesforce’s really go? Apple, Microsoft, Amazon, and other tech giants also have their sights set on AI-driven agents, and the race is on to own this massive opportunity. As we’ve seen in previous waves of technology, this raises familiar debates about open versus closed systems. Without a standard for agents to work together across platforms, businesses could find themselves limited. Closed ecosystems may help solve some problems, but to unlock the full potential of AI agents, they must be able to operate seamlessly across different platforms and boundaries. Looking to the Open Web for Inspiration The solution may lie in the same principles that guide the open web. Just as mobile apps often require a web view to enable an array of outcomes, the same might be necessary in the multi-agent landscape. Tools like Slack’s Block Kit framework allow for simple agent interactions, but they aren’t enough for more complex use cases. Take Clockwise Prism, for example—a sophisticated scheduling agent designed to find meeting times when there’s no obvious availability. When integrated with other agents to secure that critical meeting, businesses will need a flexible interface to explore multiple scheduling options. A web view for agents could be the key. The Need for an Open Multi-Agent Standard Benioff repeatedly stressed that businesses don’t want “DIY agents.” Enterprises seek controlled, repeatable workflows that deliver consistent value—but they also don’t want to be siloed. This is why the future requires an open standard for agents to collaborate across ecosystems and platforms. Imagine initiating a set of work agents from within an Atlassian Jira ticket that’s connected to a Salesforce customer case—or vice versa. For agents to seamlessly interact regardless of the system they originate from, a standard is needed. This would allow businesses to deploy agents in a way that’s consistent, integrated, and scalable. User Experience and Human-in-the-Loop: Crucial Elements for AI Agents A significant insight from the integration of LangChain with Assistant-UI highlighted a crucial factor: user experience (UX). Whether it’s streaming, generative interfaces, or human-in-the-loop functionality, the UX of AI agents is critical. While agents need to respond quickly and efficiently, businesses must have the ability to involve humans in decision-making when necessary. This principle of human-in-the-loop is key to the agent’s scheduling process. While automation is the goal, involving the user at crucial points—such as confirming scheduling options—ensures that the agent remains reliable and adaptable. Any future standard must prioritize this capability, allowing for user involvement where necessary, while also enabling full automation when confidence levels are high. Generative or Native UI? The discussion about user interfaces for agents often leads to a debate between generative UI and native UI. The latter may be the better approach. A native UI, controlled by the responding service or agent, ensures the interface is tailored to the context and specifics of the agent’s task. Whether this UI is rendered using AI or not is an implementation detail that can vary depending on the service. What matters is that the UI feels native to the agent’s task, making the user experience seamless and intuitive. What’s Next? The Push for an Open Multi-Agent Future As we look ahead to the multi-agent future, the need for an open standard is more pressing than ever. At Clockwise, we’ve drafted something we’re calling the Open Multi-Agent Protocol (OMAP), which we hope will foster collaboration and innovation in this space. The future of work is rapidly approaching, where new roles—like Agent Orchestrators—will emerge, enabling people to leverage AI agents in unprecedented ways. While Salesforce’s vision for Agentforce is ambitious, the key to unlocking its full potential lies in creating a standard that allows agents to work together, across platforms, and beyond the boundaries of closed ecosystems. With the right approach, we can create a future where AI agents transform work in ways we’re only beginning to imagine. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial

Read More
Salesforce Says AI Should Be a Partner

Salesforce Says AI Should Be a Partner

Salesforce Says AI Should Be a Partner, Not Just a Tool As AI continues to evolve rapidly, Salesforce’s chief ethical and humane use officer, Paula Goldman, urged businesses to rethink how they integrate AI in the workplace. According to Goldman, we are at a pivotal moment where AI should be seen as a partner rather than merely a tool. Goldman emphasized the concept of agentic AI, which refers to AI systems that can act independently to achieve goals or make decisions on behalf of the company. However, with this autonomy comes the need for proper safeguards to prevent issues like bias and misinformation, especially considering AI’s tendency to generate “hallucinations” or inaccurate outputs. One powerful example Goldman provided was during a company board meeting where AI identified bias in real-time. The AI flagged a pattern that participants either didn’t notice or were hesitant to address, leading to richer discussions and better decision-making. She also cited a healthcare scenario where a nurse used AI during patient intake. The AI collected information through questions and answers, freeing up the nurse to focus on the patient’s body language and emotional cues, enhancing the human element of care. Goldman concluded by saying that the future of AI depends on how businesses choose to leverage it. “To make AI work for our businesses, we have to make sure it works for the people our businesses serve and the people our businesses employ,” she said. In short, AI should act as a collaborative partner, enhancing human judgment and decision-making while staying within ethical boundaries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Artificial Intelligence and Sales Cloud

Artificial Intelligence and Sales Cloud

Artificial Intelligence and Sales Cloud AI enhances the sales process at every stage, making it more efficient and effective. Salesforce’s AI technology—Einstein—streamlines data entry and offers predictive analysis, empowering sales teams to maximize every opportunity. Artificial Intelligence and Sales Cloud explained. Artificial Intelligence and Sales Cloud Sales Cloud integrates several AI-driven features powered by Einstein and machine learning. To get the most out of these tools, review which features align with your needs and check the licensing requirements for each one. Einstein and Data Usage in Sales Cloud Einstein thrives on data. To fully leverage its capabilities within Sales Cloud, consult the data usage table to understand which types of data Einstein features rely on. Setting Up Einstein Opportunity Scoring in Sales Cloud Einstein Opportunity Scoring, part of the Sales Cloud Einstein suite, is available to eligible customers at no additional cost. Simply activate Einstein, and the system will handle the rest, offering predictive insights to improve your sales pipeline. Managing Access to Einstein Features in Sales Cloud Sales Cloud users can access Einstein Opportunity Scoring through the Sales Cloud Einstein For Everyone permission set. Ensure the right team members have access by reviewing the permissions, features included, and how to manage assignments. Einstein Copilot Setup for Sales Einstein Copilot helps sales teams stay organized by guiding them through deal management, closing strategies, customer communications, and sales forecasting. Each Copilot action corresponds to specific topics designed to optimize the sales process. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Flow Tests

Salesforce Flow is Here

Hello, Salesforce Flow. Goodbye, Workflow Rules and Process Builder. As Bob Dylan famously sang, “The times they are a-changin’.” If your nonprofit is still relying on Workflow Rules and Process Builder to automate tasks in Salesforce, it’s time to prepare for change. These tools are being retired, but there’s no need to panic—Salesforce Flow, a more powerful, versatile automation tool, is ready to take the lead. Why Move to Salesforce Flow? Salesforce is consolidating its automation features into one unified platform: Flow. This shift comes with significant benefits for nonprofits: What This Means for Nonprofits While existing Workflow Rules and Process Builders will still function for now, Salesforce plans to end support by December 31, 2025. This means no more updates or bug fixes, and unsupported automations could break unexpectedly soon after the deadline. To avoid disruptions, nonprofits should start migrating their automations to Flow sooner rather than later. How to Transition to Salesforce Flow Resources to Simplify Migration: Planning Your Migration: Start by auditing your existing automations to determine which Workflow Rules and Process Builders need to be transitioned. Think strategically about how to improve processes and leverage Flow’s expanded capabilities. What Can Flow Do for Your Nonprofit? Salesforce Flow empowers nonprofits to automate processes in innovative ways: Don’t Go It Alone Transitioning to Salesforce Flow may seem overwhelming, but it’s a chance to elevate your nonprofit’s automation capabilities. Whether you need help with migration tools, strategic planning, or Flow development, you don’t have to do it alone. Reach out to our support team or contact us to get started. Together, we can make this transition seamless and set your nonprofit up for long-term success with Salesforce Flow. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com