Generative AI Archives - gettectonic.com - Page 22
Exploring Google Vertex AI

Vertex AI

Exploring Google Vertex AI Conversation — Dialogflow CX with Generative AI, Data Stores, and Generators Vertex AI Conversation, built on Dialogflow and Vertex AI, introduces generative conversational features that utilize large language models (LLMs) for natural language understanding, crafting responses, and managing conversation flow. These advancements streamline agent design and enhance the quality of interactions. With Vertex AI Conversation, you can employ a state machine approach to develop sophisticated, generative AI-powered agents for dynamic conversation design and automation. In this insight, we’ll delve into the cutting-edge Dialogflow CX Generative AI technology, focusing on Data Stores and Generators. Data Stores: The Library of Information for Conversations Imagine Data Stores as an extensive library. When a question is asked, the virtual assistant acts as a librarian, locating relevant information. Dialogflow CX’s Data Store feature makes it easy to create conversations around stored information from various sources: For data preparation guidance, visit Google’s official documentation. Generators: LLM-Enhanced Dynamic Responses Dialogflow CX also enables Generators to use an LLM directly in Dialogflow CX without webhooks. Generators can perform tasks like summarization, parameter extraction, and data manipulation. Sourced from Vertex AI, they create real-time responses based on your prompts. For example, a Generator can be customized to summarize lengthy answers—an invaluable feature for simplifying conversations in chat or voice applications. You can find common Generator configurations in Google Cloud Platform (GCP) documentation. Creating a Chat Application with Vertex AI To start building, go to the Search and Conversation page in Google Cloud, agree to the terms, activate the API, and select “Chat.” Setting Up Your Agent After naming your agent and configuring data sources, like a Cloud Storage bucket with PDF documents, you’ll see your new chat app under Search & Conversation | Apps. Navigate to Dialogflow CX, where you can use your data store by setting up parameters for the agent and configuring responses. Once your agent is ready, you can test it in the Agent simulator. Adding a Generator for Summarization Using the Generator feature, you can further refine responses. Set parameters to target the Generator’s summarization feature, and link it to a specific page for summarized responses. This improves chat flow, providing concise answers for faster interactions. Integrating with Discord If you want to deploy your agent on platforms like Discord, follow Google’s integration guide for Dialogflow and adjust your code as needed. With the integration, responses will include hyperlinks for easy reference. Conclusion Vertex AI Conversation, with Dialogflow CX, enables powerful, human-like chat experiences by combining LLMs, Data Stores, and Generators. Ready to build your own dynamic conversational experiences? Now is the perfect time to experiment with this technology and see where it can take you. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Conversational Commerce

Conversational Commerce

“Hey Siri, find the top-rated red saddle pads.” This simple command exemplifies how conversational commerce is revolutionizing the digital shopping experience. While Siri and Alexa are training us to talk to our technology, traditional chatbots teach us to ask our technology in natural language to do something. Now, customers can utilize chatbots, messaging apps, and voice assistants to explore products and complete purchases online. This experiential shopping shift enables businesses to engage with consumers in a natural manner, seamlessly integrating into their everyday routines. With conversational AI, shopping feels akin to conversing with a friend. Thanks to advancements in generative AI, the process is becoming increasingly personalized, intuitive, and hassle-free. Here’s an overview of conversational commerce: What is conversational commerce? Conversational shopping tools involve enhancing sales through direct communication with customers. It encompasses automated conversation flows as well as interactions between sales and service representatives and customers via text or social media messaging. Ultimately, conversational commerce aims to establish meaningful, personalized connections with customers, combining the convenience of digital communication with the warmth of human language to drive sales and foster loyalty. Different Types of Conversational Commerce: The Role of AI in Conversational Commerce: AI plays a primary role in evolving conversational commerce by understanding consumer intent and guiding them through the purchasing process. Natural language processing (NLP) enables chatbots to comprehend inquiries and provide relevant responses, while machine learning analyzes customer data to offer personalized recommendations and streamline the purchase journey. Conversational Commerce and Social Commerce: Conversational commerce intersects with social commerce, capitalizing on platforms like Instagram and TikTok to build authentic connections with customers and facilitate seamless transactions embedded in their social interactions. Benefits of Conversational Commerce: Common Pitfalls and Solutions: By leveraging conversational commerce effectively, businesses can create seamless, personalized interactions that drive sales and foster long-term customer relationships. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
steps to embrace ai

Steps to Embrace AI

The world is evolving rapidly, with AI playing a transformative role. Despite concerns about AI’s impact on jobs, it has the potential to empower and simplify our lives. Rather than replacing humans, AI can automate routine tasks, allowing individuals to focus on more creative and value-added work. The future lies in human-AI collaboration, requiring us to prepare for a shift in roles and responsibilities.

Read More
Generative AI Prompts with Retrieval Augmented Generation

Generative AI Cheat Sheets

Wanted to utilize this insight to share a link to some incredible AI cheat sheets compiled by Medium. Generative AI Cheat Sheets. Top 8 Cheat Sheets on AI Whether you need assistance building a Powerpoint Presentation, AI for enterprise, machine learning, podcast enhancement tools, large language models, efficient ChatGPT prompts, efficient use of emojis, journeys, or more. This list is pretty inclusive. Tectonic would like to share one additional tool we have been using internally. Fireflies. Firflies helps teams transcribe, summarize, search, and analyze voice conversations. When ChatGPT made its debut in late 2022, it sparked global recognition of the transformative capabilities of artificial intelligence (AI). This groundbreaking chatbot represents one of the most significant advancements in AI history. Unlike traditional AI systems that analyze or categorize existing data, generative AI has the remarkable ability to create entirely new content, spanning text, images, audio, synthetic data, and more. This innovation is poised to revolutionize human creativity and productivity across industries, including business, science, and society as a whole. From ChatGPT to DALL-E, the latest wave of generative AI applications has emerged from foundation models, sophisticated machine learning systems trained on massive datasets encompassing text, images, audio, or a combination of these data types. Recent advancements now enable companies to develop specialized models for image and language generation based on these foundation models, most of which are large language models (LLMs) trained on natural language. The power of these models lies not only in their scale but also in their adaptability to diverse tasks without the need for task-specific training. Techniques like zero-shot learning and in-context learning allow models to make predictions and generate responses even in domains they haven’t been explicitly trained on. As a result, companies can leverage these models to address a wide range of challenges, from customer service automation to product design. The introduction of pre-trained foundation models with unprecedented adaptability is expected to have profound implications. According to Accenture’s 2023 Technology Vision report, 97% of global executives believe that foundation models will revolutionize how and where AI is applied, enabling seamless connections across different data types. To thrive in this evolving landscape, businesses must leverage the full potential of generative AI. To expedite implementation, organizations can readily access foundation models through APIs. However, customization and fine-tuning are necessary to tailor these models to specific use cases and maximize their effectiveness. By harnessing generative AI, companies can enhance efficiency, drive innovation, and gain a competitive edge in the market. As generative AI continues to evolve, its impact will only multiply. Companies will increasingly rely on these technologies to streamline workflows, optimize processes, and unlock new opportunities for growth and innovation. With the global AI market projected to reach nearly trillion by 2030, the future holds immense potential for companies to leverage generative AI in solving complex problems and driving transformative change. Generative AI encompasses various machine learning techniques, including transformer models, generative adversarial networks (GANs), and variational autoencoders (VAEs). These technologies underpin a wide range of applications, from natural language processing to image generation, enabling businesses to approach tasks in innovative ways. While generative AI presents unprecedented opportunities, it also raises ethical and security concerns. It is essential for companies to adopt responsible AI practices and ensure the safe and ethical use of these technologies. By embracing generative AI and investing in the necessary infrastructure and talent, businesses can unlock its full potential and drive sustainable growth in the digital era. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce prompt builder

Create Test and Refine Prompt Templates With Prompt Builder

Salesforce has introduced Prompt Builder, a revolutionary tool powered by generative AI, designed to enhance business tasks by seamlessly integrating prompts into workflows. This article delves into the core AI concepts underlying Prompt Builder, offering insights into creating, managing, testing, and refining prompt templates for optimal performance. Before digging into the intricacies of this new innovation, let’s first explore what generative AI means for administrators. Create Test and Refine Prompt Templates With Prompt Builder. Understanding Key Terms: Key Features of Prompt Builder: Utilizing Prompt Templates: Testing and Refining Prompt Templates: Deploying Prompts: Designing Effective Prompt Templates: Embracing Generative AI with Prompt Builder: As Prompt Builder prepares for its general availability in Spring ’24, businesses can anticipate a paradigm shift in how they harness AI to propel their operations forward. Whether seasoned Salesforce Admins or newcomers to AI integration, Prompt Builder offers a gateway to unlocking the myriad possibilities of generative AI within Salesforce. Create Test and Refine Prompt Templates With Prompt Builder. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Generative AI Terms Do I Need to Understand

What Generative AI Terms Do I Need to Understand to Participate in AI Conversations?

You don’t need to be a software engineer, a data scientist, or a geek to understand gen AI or speak with authority about it with technical people. But business leaders should be able to think about AI holistically. Including benefits and risks, where it fits into the company’s culture, and mission. As well as what type of governance and infrastructure it requires.  What Generative AI Terms Do I Need to Understand to participate in the conversation? Business leaders can’t help lead AI programs to success if they can’t engage with the tech teams.    We’ve put together a list of the most essential AI terms that will help everyone in your company — no matter their technical background – understand the power of generative AI. Each term is defined based on how it impacts both your customers and your team, a crucial element in understanding the power of AI.  Gen AI technologies (and adoption) are growing extraordinarily fast. As it informs more business decisions and transforms your relationships with customers, leaders at all levels must understand its potential, its use cases, and its risks. How do you do that? Start by asking the right questions about AI.   Salesforce’s most recent survey on generative AI use among the general population within the U.S., UK, Australia and India found the public is split between users and non-users. Within each country, the online populations surveyed reported the below usage (note: cultural bias may impact results): Like1 Related Posts Salesforce Artificial Intelligence Is artificial intelligence integrated into Salesforce? Salesforce Einstein stands as an intelligent layer embedded within the Lightning Platform, bringing robust Read more Salesforce’s Quest for AI for the Masses The software engine, Optimus Prime (not to be confused with the Autobot leader), originated in a basement beneath a West Read more How Travel Companies Are Using Big Data and Analytics In today’s hyper-competitive business world, travel and hospitality consumers have more choices than ever before. With hundreds of hotel chains Read more Sales Cloud Einstein Forecasting Salesforce, the global leader in CRM, recently unveiled the next generation of Sales Cloud Einstein, Sales Cloud Einstein Forecasting, incorporating Read more

Read More
Generative AI Glossary

Key Questions to Ask About Generative AI Before Diving into the Gene Pool

As generative AI plays an increasingly significant role in shaping business decisions and reshaping customer relationships, leaders must grasp the potential.  This means use cases, and risks associated with AI. The good, the bad, and the ugly.  Questions to Ask About Generative AI gene pool. The journey begins with asking pertinent questions. Are you feeling overwhelmed by generative AI yet? The multitude of questions that businesses need to address regarding AI—covering technology, skills, privacy, data, and organizational requirements, among others—can be seemingly endless. Knowing where to start and identifying the most crucial AI-related questions before jumping into implementation can be challenging.  But it is totally worth the time. “Many organizations are venturing into AI for the first time. They are transitioning from predictive AI, machine learning, or deep learning to explore the next generation of AI for elevating productivity.” Marc Benioff, CEO of Salesforce While the demand and potential of AI are substantial, so are the associated risks. To assist in navigating this landscape, here’s a snapshot: Employee View: Exec Summary: Your Next Move: By Tectonic’s Marketing Consultant, Shannan Hearne Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Unfolding AI Revolution

Unfolding AI Revolution

Ways the AI Revolution is Unfolding The transformative potential of artificial intelligence (AI) is being explored by James Manyika, Senior VP of Research, Technology, and Society at Google, and Michael Spence, Nobel laureate in economics and professor at NYU Stern School of Business, in their recent article, “The Coming AI Economic Revolution: Can Artificial Intelligence Reverse the Productivity Slowdown?” Published in Foreign Affairs, the article outlines the conditions necessary for an AI-powered economy to thrive, including policies that augment human capabilities, promote widespread adoption, and foster organizational innovation. Manyika and Spence highlight AI’s potential to reverse stagnating productivity growth in advanced economies, stating, “By the beginning of the next decade, the shift to AI could become a leading driver of global prosperity.” However, the authors caution that this economic revolution will require robust policy frameworks to prevent harm and unlock AI’s full potential. Here are the key insights from their analysis: 1. The Great Slowdown The rapid advancements in AI arrive at a critical juncture for the global economy. While technological innovations have surged, productivity growth has stagnated. For instance, total factor productivity (TFP), a key contributor to GDP growth, grew by 1.7% in the U.S. between 1997 and 2005 but has since slowed to just 0.4%. This slowdown is exacerbated by aging populations and shrinking labor forces in major economies like China, Japan, and Italy. Without a transformative force like AI, economic growth could remain stifled, characterized by higher inflation, reduced labor supply, and elevated capital costs. 2. A Different Digital Revolution Unlike the rule-based automation of the 1990s digital revolution, AI has shattered previous technological constraints. Advances in AI now enable tasks that were previously unprogrammable, such as pattern recognition and decision-making. AI systems have surpassed human performance in areas like image recognition, cancer detection, and even strategic games like Go. This shift extends the impact of technology to domains previously thought to require exclusively human intuition and creativity. 3. Quick Studies Generative AI, particularly large language models (LLMs), offers exceptional versatility, multimodality, and accessibility, making its economic impact potentially transformative: Applications range from digital assistants drafting documents to ambient intelligence systems that automate homes or generate health records based on patient-clinician interactions. 4. Creative Instruction Despite its promise, AI has drawn criticism for issues like bias, misinformation, and the potential for job displacement. Critics highlight that AI systems may amplify societal inequities or produce unreliable outputs. However, research suggests that AI will primarily augment work rather than eliminate it. While about 10% of jobs may decline, two-thirds of occupations will likely see AI enhancing specific tasks. This shift emphasizes collaboration between humans and intelligent machines, requiring workers to develop new skills. Studies, such as MIT’s Work of the Future task force, reinforce that automation will not lead to a jobless future but rather to evolving roles and opportunities. 5. With Us, Not Against Us The full benefits of AI will not materialize if its deployment is left solely to market forces. Proactive measures are necessary to maximize AI’s positive impact while mitigating risks. This includes fostering widespread adoption of AI in ways that empower workers, enhance productivity, and address societal challenges. Policies should prioritize accessibility and equitable diffusion to ensure AI serves as a force for inclusive economic growth. 6. The Real AI Challenge Generative AI has the potential to spark a productivity renaissance at a time when the global economy urgently needs it. Yet, Manyika and Spence caution that AI could exacerbate existing economic disparities if not guided effectively. They argue that focusing solely on existential threats overlooks the broader risks posed by inequitable AI deployment. Instead, a positive vision is needed—one that prioritizes AI as a tool for global economic progress, equitable growth, and generational prosperity. “Harnessing the power of AI for good will require more than simply focusing on potential damage,” the authors conclude. “It will demand effective measures to turn that vision into reality.” The unfolding AI revolution offers immense opportunities, but realizing its full potential requires thoughtful action. By addressing risks and fostering innovation, AI could reshape the global economy for the better. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Salesforce Einstein AI Trust Layer

Einstein AI Trust Layer Explained

The Einstein Trust Layer is a secure AI architecture. It is natively built into the Salesforce Platform. Designed for enterprise security standards the Einstein Trust Layer continues to allow teams to benefit from generative AI. Without compromising their customer data, while at the same time letting companies use their trusted data to improve generative AI responses: Trusted AI starts with securely grounded prompts. A prompt is a canvas to provide detailed context and instructions to Large Language Models. The Einstein Trust layer allows you to responsibly ground all of your prompts in customer data and mask that data when the prompt is shared with Large Language Models*. With our Zero Retention architecture, none of your data is stored outside of Salesforce. Salesforce gives customers control over the use of their data for AI. Whether using our own Salesforce-hosted models or external models that are part of our Shared Trust Boundary, like OpenAI, no context is stored. The large language model forgets both the prompt and the output as soon as the output is processed. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI's Impact on the Workforce

AI’s Impact on the Workforce

According to McKinsey, generative AI has the potential to contribute between $2.6 trillion and $4.4 trillion in value to the global economy across various industries, spanning banking, retail, high tech, healthcare, and life sciences. Its impact is expected to reach diverse professions, including customer operations, marketing and sales, software engineering, and research and development. The influence of AI on the workforce is significant. A report by Goldman Sachs suggests that AI could replace the equivalent of 300 million full-time jobs, affecting a quarter of work tasks in the US and Europe. However, it also brings forth new job opportunities and a productivity boom. Despite concerns about job displacement, AI is anticipated to generate numerous new opportunities. Roles like prompt engineer and AI product manager are emerging, with a Salesforce-sponsored IDC white paper predicting a surge in demand for positions such as data architects, AI ethicists, and AI solutions architects over the next 12 months. The report also forecasts the creation of 11.6 million new jobs within the Salesforce ecosystem alone over the next six years. Recent advancements in generative AI, exemplified by products like ChatGPT with 100 million monthly active users in two months, have reignited discussions about automation’s impact on jobs. While the extent of disruption remains unknown, developers, users, and policymakers should consider its effects on workers. To address challenges and opportunities, Majority Leader Chuck Schumer has launched a SAFE Innovation Framework, emphasizing worker security. The Biden administration is developing a National AI Strategy to address economic and job impacts. For individuals in the workforce, there’s an opportunity to cultivate existing skills and acquire new ones through platforms like Salesforce’s Trailhead, Coursera, and LinkedIn. AI’s impact on jobs involves eliminating repetitive tasks, allowing individuals to focus on more strategic and creative aspects of their roles. In fields like sales, customer service, marketing, healthcare, finance, and graphic design, AI will transform roles and create new opportunities. Chris Poole, AI Technical Consulting Lead in Salesforce’s global AI practice, envisions AI becoming ingrained in every aspect of our lives, contributing to fascinating evolution across various fields. The scale of AI adoption’s impact on workers, especially with generative AI tools, remains uncertain. Potential effects include replacing, complementing, or freeing workers for more productive tasks, or creating new jobs. A Goldman Sachs estimate suggests that about two-thirds of current jobs are exposed to some degree of AI automation, with generative AI potentially substituting up to one-fourth of current work. McKinsey Global Institute estimates that 29.5 percent of all hours worked could be automated by 2030. Regarding job impact, professional occupations associated with clerical work in finance, law, and business management are most exposed to AI. However, AI is also concurrently creating many new jobs. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Einstein Commerce

Salesforce Einstein Commerce

Elevate Your Commerce Store Experience with Commerce Einstein Transform your commerce store with the advanced capabilities of Commerce Einstein, which includes features like Goals and Recommendations, the Commerce Concierge bot, Smart Promotions, and SEO-optimized meta tags. Salesforce Einstein Commerce, Enhance Store Performance with Goals and Recommendations Achieve key performance objectives for your store such as increased site conversion, higher site traffic, and greater average order value. Utilize an intuitive framework powered by AI recommendations to implement intelligent actions quickly and efficiently, facilitating the setup and growth of your store. Track progress with insights from Data Cloud. This feature is available for B2B Commerce and D2C Commerce in the Enterprise, Unlimited, and Developer editions. Access it through the Goals and Recommendations option in the Commerce App Navigation menu. Optimize Shopping Experience with the Commerce Concierge Bot Enhance the shopping experience by providing conversational product recommendations and reordering capabilities with the Commerce Concierge bot. Build a new bot using the Commerce Concierge template to connect your store to a new Einstein bot, or upgrade an existing bot with new Commerce Concierge bot blocks. This allows customers to authenticate, manage multiple accounts, reorder, and utilize Einstein’s generative AI features. Craft Intelligent Promotions with Einstein Create promotions effortlessly using Einstein and reliable data from Commerce Cloud. Employ natural language instructions and generative AI to quickly generate both simple and advanced promotions, making your promotional efforts smarter and more effective. Enhance SEO with Einstein Meta Tags Boost your SEO performance by using Einstein’s generative AI to create Page Title Tags and Page Meta Descriptions for products. This enriches search engines with relevant information, improving your store’s visibility. Alternatively, you can manually create and manage page meta tags through the SEO tab on a product record. Reduce Return Rates with Einstein Return Insights Analyze return reasons to refine product listings and minimize return rates. Einstein helps you identify up to 20 high return-rate products and provides analyzed and categorized return reasons, enabling you to make strategic improvements. Facilitate Product Discovery with AI-Powered Search (Generally Available) Improve your customers’ product discovery experience with Einstein semantic search. Using natural language processing, this feature interprets queries to deliver relevant results, accommodating synonyms, alternative spellings, typos, and more. For example, it matches terms like “couch” and “sofa” or “jumper” and “sweater,” aligning with the searcher’s intent. Enhance your commerce store with these innovative features from Commerce Einstein to drive growth, improve customer experience, and optimize operational efficiency. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Ready for GPT5

Ready for GPT5

Anticipating GPT-5: OpenAI’s Next Leap in Language Modeling Ready for GPT5-OpenAI’s recent advancements have sparked widespread speculation about the potential launch of GPT-5, the next iteration of their groundbreaking language model. This insight aims to explore the available information, analyze tweets from OpenAI officials, discuss potential features of GPT-5, and predict its release timeline. Additionally, it explores advancements in reasoning abilities, hardware considerations, and the evolving landscape of language models. Clues from OpenAI Officials Speculation around GPT-5 gained momentum with tweets from OpenAI’s President and Co-founder, Greg Brockman, and top researcher Jason Way. Brockman hinted at a full-scale training run, emphasizing the utilization of computing resources to maximize the model’s capabilities. Way’s tweet about the adrenaline rush of launching massive GPU training further fueled anticipation. Training Process and Red Teaming OpenAI typically follows a process of training smaller models before a full training run to gather insights. The red teaming network, responsible for safety testing, indicates that OpenAI is progressing towards evaluating GPT-5’s capabilities. The possibility of releasing checkpoints before the full model adds an interesting layer to the anticipation. Enhancements in Reasoning Abilities – Ready for GPT5 A key focus for GPT-5 is the incorporation of advanced reasoning capabilities. OpenAI aims to enable the model to lay out reasoning steps before solving a challenge, with internal or external checks on each step’s accuracy. This represents a significant shift towards enhancing the model’s reliability and reasoning prowess. Multimodal Capabilities GPT-5 is expected to further expand its multimodal capabilities, integrating text, images, audio, and potentially video. The goal is to create an operating system-like experience, where users interact with computers through a chat-based interface. OpenAI’s emphasis on gathering diverse data sources and reasoning data signifies their commitment to a holistic approach. Predictions on Model Size and Release Timeline Hardware CEO Gavin Uberti suggests that GPT-5 could have around 10 times the parameter count of GPT-4. Considering leaks indicating GPT-4’s parameter count of 1.5 to 1.8 trillion, GPT-5’s size is expected to be monumental. The article speculates on a potential release date, factoring in training time, safety testing, and potential checkpoints. Language Capabilities and Multilingual Data – Ready for GPT5 GPT-4’s surprising ability to understand unnatural scrambled text hints at the model’s language flexibility. The article discusses the likelihood of GPT-5 having improved multilingual capabilities, considering OpenAI’s data partnerships and emphasis on language diversity. Closing Thoughts Predictions about GPT-5’s exact capabilities remain speculative until the model is trained and unveiled. OpenAI’s commitment to pushing the boundaries of AI, surprises in AI development, and potential industry-defining products contribute to the excitement surrounding GPT-5. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Generative AI Trends for 2024

Generative AI Trends for 2024

It’s hard to believe that ChatGPT is only a year old. The number of exciting new product launches over the past 12 months has been astonishing — and there’s no sign of slowing down. In fact, quite the opposite. Earlier in November, OpenAI hosted DevDay, where the company announced extensive offerings across B2C and B2B markets. Cohere has doubled down on its knowledge search capabilities and private deployments. Amazon Web Services launched PartyRock, its no-code gen AI app-building playground. Generative AI Trends for 2024 you can expect to see. We believe that last month’s activity sets the stage for 2024 in the gen AI space. Here are six major trends happening across the space: While the technology’s possibilities continue to grow, we believe there are four principles for CEOs to consider as they drive their gen AI agendas. These principles draw from our experiences building gen AI applications with our clients throughout the year, as well as decades of delivering digital and analytics transformations. Be Intentional: Set Gen AI Strategy Top-Down Gen AI is a gold rush. Everyone from shareholders to employees to boards is scrambling to deploy the latest and most powerful gen AI tools, and many large organizations have over 150 gen AI use cases on backlog. While we share their excitement and admire their ambition, allowing dozens of gen AI projects to spawn across an organization puts at-scale value creation at risk. Generative AI Trends for 2024 With recent developments in the gen AI space, the proliferation of use cases and opportunities will continue to split the already divided attention of leadership teams. C-suites must bring focus with a top-down gen AI strategy, constantly asking how the technology can create enduring strategic distance between the organization and its competitors. Here are some examples from first movers: Smart organizations are taking a 2×2 approach: identifying two fast use cases to register quick wins and excite the organization while working on two slower, more transformational use cases that will change day-to-day business operations. Reimagine Entire Domains Rather Than Isolated Use Cases During 2023, most organizations began experimenting with gen AI, building one-off prototypes and buying off-the-shelf solutions. Yet, as these solutions are rolled out to end users, organizations are struggling to capture value. For example, some organizations that invested in GitHub Copilot have yet to figure out how the value capture is passed back to the business. Organizations need to reframe from isolated use cases to the full software delivery lifecycle. Scrum teams need to commit to shipping more product features, or sales need to offer more competitive pricing to win more business. Stopping at just buying a new shiny tool means the productivity gains will not translate to bottom-line gains. This often means reimagining entire workflows and domains. This serves two purposes: 1) it creates a more seamless end-user experience by avoiding point solutions; and 2) organizations can more easily track value against clear business outcomes. For example, an insurer we worked with is reimagining its end-to-end claims process — from first notice of loss to payment. For each step along the way, the insurer has identified gen AI, digital, and analytics opportunities, while never losing sight of the claims adjuster’s experience. Ultimately, this comprehensive approach made a step-change impact on end-to-end handling time. Buy Selectively, Build Strategically Matching the pace of innovation, many new startups and software offerings are entering the market, leaving enterprises with a familiar question: “Buy or build?” On the “buy” side, organizations are wary about investing in capabilities that will eventually be available for a fraction of the cost. These organizations are also skeptical of off-the-shelf solutions, unsure if the software will perform at scale without significant customization. As these solutions mature and prove their value, “buy” strategies will continue to play a central role in any gen AI strategy. Meanwhile, some organizations find compelling business cases to “build.” These players start by identifying use cases that create strategic competitive advantages against their peers by compounding existing strengths in their domain expertise, workflow integration, or regulatory know-how. For example, deploying gen AI to accelerate drug discovery has become standard in the pharmaceutical industry. Additionally, organizations are investing in data and IT infrastructure to enable their portfolio of gen AI use cases. For many organizations, there has been little to no investment in unstructured data governance. Now is the time. Build Products, Not Proofs of Concept (POCs) With the new tooling available, a talented engineer can build a proof-of-concept over a weekend. In some cases, this might be sufficient to serve an enterprise need (e.g., a summarization chatbot). However, for most use cases in a large enterprise context, proofs-of-concept are not sufficient. They do not scale well into production and their performance degrades without the appropriate engineering and experimentation. At OpenAI’s Dev Day, engineers demonstrated how hard it is to turn a POC into a production-grade product. Initially, a demo POC only achieved 45% accuracy for a retrieval task. After a few months and numerous experiments (e.g., fine-tuning, re-ranking, metadata tagging, data labeling, model self-assessment, risk guardrails), the engineers achieved 98% accuracy. Implications of Generative AI Trends for 2024 This has two implications. First, organizations cannot seek near-perfection on every use case. They need to be selective about when it is worthwhile to invest scarce engineering talent to develop high-performance gen AI applications. For some situations, 45% accuracy may be sufficient to deliver business benefits. Second, organizations need to scale their gen AI capabilities to meet their ambitions. Most organizations have identified hundreds of gen AI use cases. Therefore, organizations are turning to reusable code components to accelerate development. Dedicated engineers, often in a Center of Excellence (COE), codify best practices into these code components, allowing subsequent gen AI efforts to build off the lessons learned from pioneering projects. We have seen these components accelerate delivery by 25% to 50%. Throughout the past year, there has been an endless stream of gen AI news and hype. The coming year will likely be similar

Read More
2024 AI and Machine Learning Trends

2024 AI and Machine Learning Trends

In 2023, the AI landscape experienced transformative changes following the debut of ChatGPT in November 2022, a landmark event for artificial intelligence. 2024 AI and Machine Learning Trends ahead, AI is set to dramatically alter global business practices and drive significant advancements across various sectors. Organizations are shifting their focus from experimental initiatives to real-time applications, reflecting a more mature understanding of AI’s capabilities while still being intrigued by generative AI technologies. Key AI and Machine Learning Trends for 2024 Here are the top trends shaping the AI and machine learning landscape for 2024: 1. Agentic AIAgentic AI is evolving from reactive to proactive systems. Unlike traditional AI that primarily responds to user inputs, these advanced AI agents demonstrate autonomy, proactivity, and the ability to independently set and pursue goals. 2. Open-Source AIOpen-source AI is democratizing access to sophisticated AI models and tools by offering free, publicly accessible alternatives to proprietary solutions. This trend has seen significant growth, with notable competitors like Mistral AI’s Mixtral models and Meta’s Llama 2 making strides in 2023. 3. Multimodal AIMultimodal AI integrates various types of inputs—such as text, images, and audio—mimicking human sensory capabilities. Models like GPT-4 from OpenAI showcase this ability, enhancing applications in fields like healthcare by improving diagnostic precision. 4. Customized Enterprise Generative AI ModelsThere is a rising interest in bespoke generative AI models tailored to specific business needs. While broad tools like ChatGPT remain widely used, niche-specific models are increasingly popular for their efficiency in addressing specialized requirements. 5. Retrieval-Augmented Generation (RAG)RAG combines text generation with information retrieval to boost the accuracy and relevance of AI-generated content. By reducing model size and leveraging external data sources, RAG is well-suited for business applications that require up-to-date factual information. 6. Shadow AIShadow AI, which refers to user-friendly AI tools used without formal IT approval, is gaining traction among employees seeking quick solutions or exploring new technologies. While it fosters innovation, it also raises concerns about data privacy and security. Looking Ahead to 2024 These trends highlight AI and machine learning’s expanding role across industries in 2024. Organizations must adapt to these advancements to remain competitive, balancing innovation with strong governance frameworks to ensure security and compliance. Staying informed about these developments will be crucial for leveraging AI’s transformative potential in the coming year. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Copilot Capabilities

Copilot Capabilities

Einstein Copilot stands out from other AI assistants and copilots by leveraging Salesforce customers’ proprietary and trusted data to generate valuable responses. Unlike alternatives that lack access to relevant company data or require costly AI model training, Einstein Copilot capabilities provide answers, content summaries, task automation, and complex conversation interpretation—all while maintaining strict data governance. This innovation is achieved through a combination of conversational user interface, a robust large language model, and trusted company data integrated directly into Salesforce’s leading AI CRM applications. Einstein Copilot revolutionizes how users interact with Salesforce applications, offering seamless integration into their workflow to drive significant productivity improvements. With Einstein Copilot Studio, organizations can tailor their assistant to meet specific business requirements, further enhancing its effectiveness. Additionally, Einstein Copilot and Einstein Copilot Studio feature the Einstein Trust Layer, safeguarding sensitive data while leveraging trusted information to enhance generative AI responses. Copilot Capabilities The significance of these advancements is underscored by the increasing investment in AI, with 45% of executives boosting their AI initiatives. Early adopters are already experiencing benefits such as freeing up over 30% of employee time to focus on revenue growth, cost reduction, and delivering superior customer experiences. Einstein Copilot delivers accurate recommendations and content for various tasks, from building digital storefronts to drafting custom code and providing sales guidance. It securely integrates customer data from Salesforce Data Cloud, including enterprise content, Slack conversations, telemetry data, and structured/unstructured data, ensuring informed and precise decision-making. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com