Salesforce Health and Life Sciences Solutions - gettectonic.com - Page 2
Ambient AI Enhances Patient-Provider Relationship

Ambient AI Enhances Patient-Provider Relationship

How Ambient AI is Enhancing the Patient-Provider Relationship Ambient AI is transforming the patient-provider experience at Ochsner Health by enabling clinicians to focus more on their patients and less on their screens. While some view technology as a barrier to human interaction, Ochsner’s innovation officer, Dr. Jason Hill, believes ambient AI is doing the opposite by fostering stronger connections between patients and providers. Researchers estimate that physicians spend over 40% of consultation time focused on electronic health records (EHRs), limiting face-to-face interactions. “We have highly skilled professionals spending time inputting data instead of caring for patients, and as a result, patients feel disconnected due to the screen barrier,” Hill said. Additionally, increased documentation demands related to quality reporting, patient satisfaction, and reimbursement are straining providers. Ambient AI scribes help relieve this burden by automating clinical documentation, allowing providers to focus on their patients. Using machine learning, these AI tools generate clinical notes in seconds from recorded conversations. Clinicians then review and edit the drafts before finalizing the record. Ochsner began exploring ambient AI several years ago, but only with the advent of advanced language models like OpenAI’s GPT did the technology become scalable and cost-effective for large health systems. “Once the technology became affordable for large-scale deployment, we were immediately interested,” Hill explained. Selecting the Right Vendor Ochsner piloted two ambient AI tools before choosing DeepScribe for an enterprise-wide partnership. After the initial rollout to 60 physicians, the tool achieved a 75% adoption rate and improved patient satisfaction scores by 6%. What set DeepScribe apart were its customization features. “We can create templates for different specialties, but individual doctors retain control over their note outputs based on specific clinical encounters,” Hill said. This flexibility was crucial in gaining physician buy-in. Ochsner also valued DeepScribe’s strong vendor support, which included tailored training modules and direct assistance to clinicians. One example of this support was the development of a software module that allowed Ochsner’s providers to see EHR reminders within the ambient AI app. “DeepScribe built a bridge to bring EHR data into the app, so clinicians could access important information right before the visit,” Hill noted. Ensuring Documentation Quality Ochsner has implemented several safeguards to maintain the accuracy of AI-generated clinical documentation. Providers undergo training before using the ambient AI system, with a focus on reviewing and finalizing all AI-generated notes. Notes created by the AI remain in a “pended” state until the provider signs off. Ochsner also tracks how much text is generated by the AI versus added by the provider, using this as a marker for the level of editing required. Following the successful pilot, Ochsner plans to expand ambient AI to 600 clinicians by the end of the year, with the eventual goal of providing access to all 4,700 physicians. While Hill anticipates widespread adoption, he acknowledges that the technology may not be suitable for all providers. “Some clinicians have different documentation needs, but for the vast majority, this will likely become the standard way we document at Ochsner within a year,” he said. Conclusion By integrating ambient AI, Ochsner Health is not only improving operational efficiency but also strengthening the human connection between patients and providers. As the technology becomes more widespread, it holds the potential to reshape how clinical documentation is handled, freeing up time for more meaningful patient interactions. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Success Story

Case Study: Children’s Hospital Use Cases

In need of help to implement requisite configuration updates to establish a usable data model for data segmentation that supports best practices utilization of Marketing Cloud features including Contact Builder, Email Studio and Journey Builder.

Read More
Einstein Copilot for Healthcare

Einstein Copilot for Healthcare

Einstein Copilot for Healthcare – Salesforce has introduced a new AI-powered healthcare assistant within its CRM system, marking its latest move to expand into the healthcare industry. As AI development accelerates, tech giants like Microsoft, Google, Amazon Web Services, and Salesforce are capitalizing on the opportunity to integrate AI and cloud technologies into healthcare to streamline administrative and operational tasks. Salesforce’s healthcare-specific AI tool, Einstein Copilot, is a conversational assistant that leverages an organization’s private data to provide relevant responses. Einstein Copilot enables healthcare providers and care teams to digitally capture and summarize information from both clinical and nonclinical sources, update patient records, and automate manual workflows. Key Features of Einstein Copilot Providers can use Einstein Copilot to generate patient summaries that include medications, diagnoses, social determinants, assessments, clinical service requests, and care gaps. A care manager can also ask the assistant to find an in-network provider based on location, specialty, and insurance coverage, and auto-fill referral forms using natural language prompts. The AI assistant can also trigger workflows for tasks such as sending referrals, scheduling appointments, and updating care plans. Salesforce expects Einstein Copilot to be HIPAA-compliant by summer 2024, with Copilot: Health Actions slated for general availability in winter 2024. Digitizing Health Assessments Salesforce is adding a feature called Assessment Generation that allows healthcare organizations to digitize standardized health assessments. These can be automatically populated into Salesforce Health Cloud, filled out electronically, and tracked for progress over time. Reducing Administrative Waste Salesforce cites research from McKinsey & Co. showing that administrative costs account for nearly a quarter of U.S. healthcare spending, with a potential savings of up to $320 billion. By integrating AI and CRM tools, Salesforce aims to reduce the operational burden on healthcare providers and improve patient outcomes. Amit Khanna, Senior Vice President and General Manager for Health at Salesforce, highlighted the value of these innovations: “These new data, AI, and CRM features reduce the administrative and operational burden for healthcare providers, leading to better outcomes for patients. With Salesforce’s trusted AI, healthcare organizations excited about generative AI—but wary of clinical and security concerns—can confidently integrate these innovations into their workflows.” Early Adopters and Impact Healthcare providers including Baptist Health South Florida and HarmonyCares are already leveraging Salesforce to personalize patient interactions and create unified patient views. HarmonyCares, which operates across 14 states with over 150 primary care providers, has used Salesforce’s AI-driven field service platform to streamline patient scheduling. The company reported a 50% increase in self-scheduling efficiency since adopting the platform and plans to expand its use of Salesforce Health Cloud for care management and engagement. Kristin Darby, Chief Information Officer at HarmonyCares, emphasized the benefits of AI in healthcare: “AI will dramatically improve our ability to quickly synthesize patient needs and preferences, enabling us to offer a more personalized experience with greater accuracy.” However, the integration of AI in healthcare is not without skepticism. A recent survey revealed that 69% of individuals are uncomfortable with AI being used to diagnose them, though more than half are open to its use in nonclinical tasks like scheduling and billing. Salesforce’s Healthcare Journey Salesforce first launched Health Cloud in 2015 to help providers manage patients by aggregating data from electronic medical records, devices, and wearables. In 2022, the company expanded this offering with Customer 360 for Health, a unified platform that combines real-time data from Data Cloud, Einstein AI, and automation tools like Flow to streamline processes such as prior authorizations, intake, and patient scheduling. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Gen AI to Predict and Automate Discharge

Gen AI to Predict and Automate Discharge

While electronic health records (EHRs) have improved data exchange for care coordination, they have also increased the clinical documentation burden on healthcare providers. Research from 2023 suggests that clinicians may now spend more time on EHRs than on direct patient care. On average, providers spend over 36 minutes on EHR tasks for every 30-minute patient visit. Generative AI, however, holds the potential to transform this. As defined by the Government Accountability Office, generative AI (GenAI) is a technology that can create content—such as text, images, audio, or video—based on user prompts. With the rise of chatbot interfaces like Chat-GPT, health IT vendors and healthcare systems are piloting GenAI tools to streamline clinical documentation. While the technology shows promise in reducing the documentation burden and mitigating clinician burnout, several challenges still hinder widespread adoption. Ambient Clinical Intelligence Ambient clinical intelligence leverages smartphone microphones and GenAI to transcribe patient encounters in real time, producing draft clinical documentation for providers to review within seconds. A 2024 study examined the use of ambient AI scribes by 10,000 physicians and staff at The Permanente Medical Group. The results were promising—providers reported better patient conversations and less after-hours EHR documentation. However, accuracy is critical for patient safety. A 2023 study found that ambient AI tools struggle with non-lexical conversational sounds (NLCSes)—like “mm-hm” and “uh-uh”—which patients and providers use to convey information. For instance, a patient might say “Mm-hm” to confirm they have no allergies to antibiotics. The study found that while the AI tools had a word error rate of 12% for all words, the error rate for NLCSes conveying clinically relevant information was as high as 98.7%. These inaccuracies could lead to patient safety risks, highlighting the importance of provider review. Patient Communication Patient portal messaging has surged since the COVID-19 pandemic, with a 2023 report showing a 157% increase in messages compared to pre-pandemic levels. To manage inbox overload, healthcare systems are exploring generative AI for drafting responses to patient messages. Clinicians review and edit these drafts before sending them to patients. A 2024 study found that primary care physicians rated AI-generated responses higher in communication style and empathy than those written by providers. However, the AI-generated responses were often longer and more complex, posing challenges for patients with lower health or English literacy. There are also potential risks to clinical decision-making. A 2024 simulation study revealed that the content of replies to patient messages changed when physicians used AI assistance, introducing an automation bias that could impact patient outcomes. Although most AI-generated drafts posed minimal safety risks, a small portion, if left unedited, could result in severe harm or death. Although GenAI may reduce the cognitive load of writing replies, it might not significantly decrease the overall time spent on patient communications. A recent study showed that while providers felt less emotional exhaustion when using AI to draft messages, the time spent on replying, reading, and writing messages remained unchanged from pre-pilot levels. Discharge Summaries Generative AI has also been shown to improve the readability of patient discharge summaries. A study published in JAMA Network Open demonstrated that GenAI could lower the reading level of discharge notes from an eleventh-grade to a sixth-grade level, which is more appropriate for diverse health literacy levels. However, accuracy is still a concern. Physician reviews of these AI-generated summaries found that while some were complete, others contained omissions and inaccuracies that raised safety concerns. Balancing AI’s Benefits with Oversight While generative AI shows promise in alleviating the documentation burden and improving patient communication, challenges remain. Issues such as accurately capturing non-verbal cues and ensuring document accuracy underscore the need for careful provider oversight. As AI technologies continue to evolve, ensuring that the benefits are balanced with provider review will be crucial for safe and effective healthcare implementation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Generative AI and Patient Engagement

Generative AI and Patient Engagement

The healthcare industry is undergoing a significant digital transformation, with generative AI and chatbots playing a prominent role in various patient engagement applications. Technologies such as online symptom checkers, appointment scheduling, patient navigation tools, medical search engines, and patient portal messaging are prime examples of how AI is enhancing patient-facing interactions. These advancements aim to alleviate staff workload while improving the overall patient experience, according to industry experts. However, even these patient-centric applications face challenges, such as the risk of generating medical misinformation or biased outcomes. As healthcare professionals explore the potential of generative AI and chatbots, they must also implement safeguards to prevent the spread of false information and mitigate disparities in care. Online Symptom Checkers Online symptom checkers allow patients to input their symptoms and receive a list of potential diagnoses, helping them decide the appropriate level of care, whether it’s urgent care or self-care at home. These tools hold promise for improving patient experiences and operational efficiency, reducing unnecessary healthcare visits. For healthcare providers, they help triage patients, ensuring those who need critical care receive it. However, the effectiveness of online symptom checkers is mixed. A 2022 literature review revealed that diagnostic accuracy ranged between 19% and 37.9%, while triage accuracy was higher, between 48.9% and 90%. Patient reception to these tools has been lukewarm as well, with some expressing dissatisfaction with the COVID-19 symptom checkers during the pandemic, mainly when the tools did not emulate human interaction. Moreover, studies have indicated that these tools might exacerbate health inequities, as users tend to be younger, female, and more digitally literate. To mitigate this, developers must ensure that chatbots can communicate in multiple languages, replicate human interactions, and escalate to human providers when needed. Self-Scheduling and Patient Navigation Generative AI and conversational AI have shown promise in addressing lower-level patient inquiries, such as appointment scheduling and navigation, reducing the strain on healthcare staff. AI-driven scheduling systems help fill gaps in navigation by assisting patients with appointment bookings and answering logistical questions, like parking or directions. A December 2023 review noted that AI-optimized patient scheduling reduces provider time burdens and improves patient satisfaction. However, barriers such as health equity, access to broadband, and patient trust must be addressed to ensure effective implementation. While organizations need to ensure these systems are accessible to all, AI is a valuable tool for managing routine patient requests, freeing staff to focus on more complex issues. Online Medical Research AI tools like ChatGPT are expanding on the “Dr. Google” phenomenon, offering patients a way to search for medical information. Despite initial concerns from clinicians about online medical searches, recent studies show that generative AI tools can provide accurate and understandable information. For instance, ChatGPT accurately answered breast cancer screening questions 88% of the time in one 2023 study and offered adequate colonoscopy preparation information in another. However, patients remain cautious about AI-generated medical advice. A 2023 survey revealed that nearly half of respondents were concerned about potential misinformation, and many were unsure about the sources AI tools use. Addressing these concerns by validating source material and providing supplementary educational resources will be crucial for building patient trust. Patient Portal Messaging and Provider Communication Generative AI is also finding its place in patient portal messaging, where it can generate responses to patient inquiries, helping to alleviate clinician burnout. In a 2024 study, AI-generated responses within a patient portal were often indistinguishable from those written by clinicians, requiring human editing in only 58% of cases. While chatbot-generated messages have been found to be more empathetic than those written by overworked providers, it’s important to ensure AI-generated responses are always reviewed by healthcare professionals to catch any potential errors. In addition to patient engagement, generative AI is being used in clinical decision support and ambient documentation, showcasing its potential to improve healthcare efficiency. However, developers and healthcare organizations must remain vigilant about preventing algorithmic bias and other AI-related risks. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Promising Patient Engagement Use Cases for GenAI and Chatbots

Promising Patient Engagement Use Cases for GenAI and Chatbots

Promising Patient Engagement Use Cases for GenAI and Chatbots Generative AI (GenAI) is showing great potential in enhancing patient engagement by easing the burden on healthcare staff and clinicians while streamlining the overall patient experience. As healthcare undergoes its digital transformation, various patient engagement applications for GenAI and chatbots are emerging as promising tools. Let’s look at Promising Patient Engagement Use Cases for GenAI and Chatbots. Key applications of GenAI and patient-facing chatbots include online symptom checkers, appointment scheduling, patient navigation, medical search engines, and even patient portal messaging. These technologies aim to alleviate staff workloads while improving the patient journey, according to some experts. However, patient-facing AI applications are not without challenges, such as the risk of generating medical misinformation or exacerbating healthcare disparities through biased algorithms. As healthcare professionals explore the potential of GenAI and chatbots for patient engagement, they must also ensure safeguards are in place to prevent the spread of inaccuracies and avoid creating health inequities. Online Symptom Checkers Online symptom checkers allow healthcare organizations to assess patients’ medical concerns without requiring an in-person visit. Patients can input their symptoms, and the AI-powered chatbot will generate a list of possible diagnoses, helping them decide whether to seek urgent care, visit the emergency department, or manage symptoms at home. These tools promise to improve both patient experience and operational efficiency by directing patients to the right care setting, thus reducing unnecessary visits. For healthcare providers, symptom checkers can help triage patients and ensure high-acuity areas are available for those needing critical care. Despite their potential, studies show mixed results regarding the diagnostic accuracy of online symptom checkers. A 2022 literature review found that diagnostic accuracy for these tools ranged from 19% to 37.9%. However, triage accuracy—referring patients to the correct care setting—was better, ranging between 48.9% and 90%. Patient reception to symptom checkers has also been varied. For example, during the COVID-19 pandemic, symptom checkers were designed to help patients assess whether their symptoms were virus-related. While patients appreciated the tools, they preferred chatbots that displayed human-like qualities and competence. Tools perceived as similar in quality to human interactions were favored. Furthermore, some studies indicate that online symptom checkers could deepen health inequities, as users tend to be younger, female, and more digitally literate. To mitigate this, AI developers must create chatbots that can communicate in multiple languages, mimic human interaction, and easily escalate issues to human professionals when needed. Self-Scheduling and Patient Navigation GenAI and conversational AI are proving valuable in addressing routine patient queries, like appointment scheduling and patient navigation, tasks that typically fall on healthcare staff. With a strained medical workforce, using AI for lower-level inquiries allows clinicians to focus on more complex tasks. AI-enhanced appointment scheduling systems, for example, not only help patients book visits but also answer logistical questions like parking directions or department locations within a clinic. A December 2023 literature review highlighted that AI-optimized scheduling could reduce provider workload, increase patient satisfaction, and make healthcare more patient-centered. However, key considerations for AI integration include ensuring health equity, broadband access, and patient trust. While AI can manage routine requests, healthcare organizations need to ensure their tools are accessible and functional for diverse populations. Online Medical Research GenAI tools like ChatGPT are contributing to the “Dr. Google” phenomenon, where patients search online for medical information before seeing a healthcare provider. While some clinicians have been cautious about these tools, research suggests they can effectively provide accurate medical information. For instance, an April 2023 study showed that ChatGPT answered 88% of breast cancer screening questions correctly. Another study in May 2023 demonstrated that the tool could adequately educate patients on colonoscopy preparation. In both cases, the information was presented in an easy-to-understand format, essential for improving health literacy. However, GenAI is not without flaws. Patients express concern about the reliability of AI-generated information, with a 2023 Wolters Kluwer survey showing that 49% of respondents worry about false information from GenAI. Additionally, many are uneasy about the unknown sources and validation processes behind the information. To build patient trust, AI developers must ensure the accuracy of their source material and provide supplementary authoritative resources like patient education materials. Patient Portal Messaging and Provider Communication Generative AI has also found use in patient portal messaging, where it can draft responses on behalf of healthcare providers. This feature has the potential to reduce clinician burnout by handling routine inquiries. A study conducted at Mass General Brigham in April 2024 revealed that a large language model embedded in a secure messaging tool could generate acceptable responses to patient questions. In 58% of cases, chatbot-generated messages required human editing. Promising Patient Engagement Use Cases for GenAI and Chatbots Interestingly, other research has found that AI-generated responses in patient portals are often more empathetic than those written by overworked healthcare providers. Nevertheless, AI responses should always be reviewed by a clinician to ensure accuracy before being sent to patients. Generative AI is also making strides in clinical decision support and ambient documentation, further boosting healthcare efficiency. However, as healthcare organizations adopt these technologies, they must address concerns around algorithmic bias and ensure patient safety remains a top priority. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Telemynd CharmHealth and Salesforce

Telemynd CharmHealth and Salesforce

Telemynd Integrates CharmHealth EHR with Salesforce to Scale Nationwide Care Telemynd, a leading behavioral health practice, has integrated its CharmHealth electronic health record (EHR) system with the Salesforce CRM platform to expand its services nationwide. This integrated tech stack enhances patient experiences, personalizes care, and streamlines clinical workflows across the organization. At the 2024 CharmHealth user conference, Charmalot2024, Roger Murray, Vice President of Product & Marketing at Telemynd, and Venky Chellappa, Vice President of Sales & Marketing at CharmHealth, discussed the partnership’s impact on scaling Telemynd’s operations. Key Takeaways: Partnership Rooted in Pandemic Response The partnership between Telemynd and CharmHealth began during the COVID-19 pandemic, when Telemynd needed to quickly expand its telehealth services. CharmHealth’s technology facilitated this growth, allowing Telemynd to deliver mental health services to thousands of patients across the U.S. through telehealth. “We were figuring it [telehealth] out together,” said Murray, reflecting on how both teams adapted to the rapid changes. Today, Telemynd delivers over 60,000 hours of care annually, serving both military and civilian patients nationwide. Seamless Integration: CharmHealth and Salesforce CharmHealth’s adaptable EHR platform was designed with integration in mind, allowing Telemynd to combine the strengths of Salesforce and CharmHealth. “Salesforce helps us maintain a positive user experience for patients and providers,” explained Murray. “But we wanted to continue using our CharmHealth EHR. We worked to make the interfaces between the two systems bidirectional for a seamless experience.” All clinical activities, including charting, notes, and revenue cycle management (RCM), take place in CharmHealth, while patient engagement, follow-ups, and outcomes reporting happen through Salesforce. The integration was achieved by enabling the necessary APIs for a smooth flow of information. Chellappa emphasized the collaboration’s success: “We made a commitment to Roger and his team to support them. When they succeed, we succeed.” Mutual Growth Through Partnership This collaboration has extended beyond Salesforce integration, with many solutions developed for Telemynd influencing CharmHealth’s broader product development. Though the API functionality remains proprietary to Telemynd, the insights gained have driven improvements to CharmHealth’s EHR platform. Murray highlighted the strength of the partnership, noting, “The same engineering team at CharmHealth has worked with us for years. Their commitment to our growth has been invaluable.” As a result of this partnership, Telemynd has rapidly expanded its reach, showcasing how mental health services can be scaled effectively. Both companies credit their ongoing collaboration and open communication as key drivers of their mutual success. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Discharge Planning

Discharge Planning

Discharge planning is crucial for smoothly transitioning patients from hospital care to the next stage of their recovery. This process requires collaboration among patients, caregivers, and providers to create a personalized plan that ensures continuity of care after hospitalization. Effective discharge planning must consider the patient’s care needs, preferences, and concerns. When done well, it helps prevent readmissions and alleviates strain on both patients and hospitals. However, balancing clinical judgment with patient data can challenge care teams already burdened with heavy workloads. Jean Halpin, COO at Grant Medical Center, shared how the organization has integrated AI tools to predict discharge dates and automate parts of the discharge planning process, helping to streamline patient care. Challenges of Effective Discharge Planning Halpin emphasized that a streamlined discharge process is essential for reducing wait times and improving patient engagement. Yet, various factors influence how quickly patients are discharged, particularly in emergency rooms where delays can affect overall patient flow. “Most of the wait time we experience as patients boils down to a lengthy discharge process that isn’t effectively moving patients,” Halpin explained. “It’s a domino effect. Someone waiting in the ER for a bed is delayed because another patient hasn’t been discharged when they should have been.” To address these inefficiencies, Grant Medical Center implemented the Qventus Inpatient Solution. This tool integrates with electronic health records (EHRs) to analyze patient data—such as clinical notes, history, and labs—and provides recommendations on discharge timing. These insights have helped reduce ER wait times and improved patient flow. Integrating AI into Clinical Workflows Adopting AI in healthcare comes with integration challenges, particularly ensuring that tools enhance, rather than hinder, clinicians’ workflows. Halpin noted that the Qventus tool minimizes disruptions by seamlessly pulling EHR data to generate an estimated discharge date, allowing care teams to focus on patient care without extra administrative burdens. “As a patient’s health changes, the [discharge] date can fluctuate, but AI uses its data to predict the most accurate day based on similar cases,” Halpin explained. “The care teams can then review the date and determine whether they agree, without having to sift through records to develop their own recommendation.” Halpin also highlighted the value of AI in reducing the administrative load. Tasks like coordinating discharges to rehab facilities, ordering tests, and prescribing medication consume significant time, and automating these functions allows care teams to focus more on direct patient care. Embracing AI to Alleviate Healthcare Worker Burdens For healthcare systems adopting AI, accurately assessing its impact is critical. At Grant Medical Center, leadership is measuring success by evaluating employee satisfaction, patient outcomes, and administrative improvements—such as time and cost savings. “By improving our patient flow, we reduced unnecessary stays by nearly 1,400 days. Patients are happy to go home on time, and our care teams can focus on working at the top of their license,” said Halpin. Despite the benefits, Halpin stressed that implementing AI requires thoughtful onboarding to ensure staff are comfortable with the new tools. Training and support are key to making the transition seamless and enabling teams to see how AI can enhance their workflows. “Health system leaders should embrace advancements that help alleviate burdens for workers,” she said. “Once teams understand the tool, they can prioritize patient care while AI handles the time-consuming admin tasks.” Halpin concluded that embracing AI in discharge planning not only improves operational efficiency but also empowers healthcare teams to deliver better, more focused care. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More

Challenges of EHR Implementation in Healthcare

Challenges of EHR Implementation and How to Overcome Them Implementing an electronic health record (EHR) system is a monumental task, with complexities that require careful planning and execution. Common challenges—such as resistance to change, data migration hurdles, cost overruns, cybersecurity risks, and patient engagement issues—can impede progress. However, understanding these obstacles and applying targeted strategies can pave the way for a smooth transition. 1. Resistance to Change The adoption of a new EHR system affects nearly every workflow in a healthcare organization, often sparking resistance among staff. Fear of change and attachment to familiar processes can hinder implementation. Solution: 2. Data Migration Issues Accurate migration of patient health records is critical, yet transitioning data between systems often presents technical and logistical challenges. Solution: 3. Cost Overruns EHR implementation costs can quickly escalate, extending beyond software and hardware expenses to include consulting fees, training, and operational adjustments. Solution: 4. Heightened Cybersecurity Risks Transitioning sensitive patient data between EHR systems increases vulnerability to breaches, ransomware, and other cybersecurity threats. Solution: 5. Patient Engagement Challenges Patients are often overlooked during EHR transitions, leading to confusion about changes in medication requests, appointment scheduling, and other interactions. Solution: Conclusion EHR implementation is undoubtedly challenging, but with proactive strategies, healthcare organizations can navigate these complexities effectively. By addressing resistance to change, ensuring seamless data migration, managing costs, bolstering cybersecurity, and engaging patients, organizations can achieve a successful EHR transition that enhances workflows, safeguards data, and improves patient outcomes. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Beneficial for Mental Healthcare

AI Beneficial for Mental Healthcare

Nearly half of the participants in a U.S. survey viewed AI as beneficial for mental healthcare, though concerns around incorrect diagnoses and reduced interaction with providers remain significant. A recent study from Columbia University School of Nursing highlighted that, while AI adoption in healthcare is growing, limited research has explored patient perspectives, especially in mental healthcare. Previous studies mainly focused on somatic healthcare issues like perinatal health and radiology, with patient trust hinging on the use case and clinician endorsement. The survey, which included 500 U.S. adults, revealed that 49.3% believed AI could be beneficial in mental healthcare, though opinions varied by demographic. Black respondents and those with lower health literacy were more likely to see the benefits, while women were less inclined to share that view. Major concerns included AI’s accuracy, risk of incorrect diagnoses, potential for inappropriate treatments, and fear of losing personal connection with providers. Additionally, most participants (81.6%) believed that mental health misdiagnoses involving AI would remain the provider’s responsibility. Key values identified by respondents included confidentiality, autonomy, and the ability to understand personal mental health risk factors. The researchers emphasized the need to communicate AI tool accuracy and ensure trust between patients and providers when implementing AI in mental healthcare. Lead researcher Dr. Natalie Benda emphasized the importance of understanding patient perspectives, as AI becomes more prevalent, to ensure safe and effective deployment of AI tools in mental health. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Agentforce - AI's New Role in Sales and Service

Agentforce – AI’s New Role in Sales and Service

From Science Fiction to Reality: AI’s Game-Changing Role in Service and Sales AI for service and sales has reached a critical tipping point, driving rapid innovation. At Dreamforce in San Francisco, hosted by Salesforce we explored how Salesforce clients are leveraging CRM, Data Cloud, and AI to extract real business value from their Salesforce investments. In previous years, AI features branded under “Einstein” had been met with skepticism. These features, such as lead scoring, next-best-action suggestions for service agents, and cross-sell/upsell recommendations, often required substantial quality data in the CRM and knowledge base to be effective. However, customer data was frequently unreliable, with duplicate records and missing information, and the Salesforce knowledge base was underused. Building self-service capabilities with chatbots was also challenging, requiring accurate predictions of customer queries and well-structured decision trees. This year’s Dreamforce revealed a transformative shift. The advancements in AI, especially for customer service and sales, have become exceptionally powerful. Companies now need to take notice of Salesforce’s capabilities, which have expanded significantly. Agentforce – AI’s New Role in Sales and Service Some standout Salesforce features include: At Dreamforce, we participated in a workshop where they built an AI agent capable of responding to customer cases using product sheets and company knowledge within 90 minutes. This experience demonstrated how accessible AI solutions have become, no longer requiring developers or LLM experts to set up. The key challenge lies in mapping external data sources to a unified data model in Data Cloud, but once achieved, the potential for customer service and sales is immense. How AI and Data Integrate to Transform Service and Sales Businesses can harness the following integrated components to build a comprehensive solution: Real-World Success and AI Implementation OpenTable shared a successful example of building an AI agent for its app in just two months, using a small team of four. This was a marked improvement from the company’s previous chatbot projects, highlighting the efficiency of the latest AI tools. Most CEOs of large enterprises are exploring AI strategies, whether by developing their own LLMs or using pre-existing models. However, many of these efforts are siloed, and engineering costs are high, leading to clunky transitions between AI and human agents. Tectonic is well-positioned to help our clients quickly deploy AI-powered solutions that integrate seamlessly with their existing CRM and ERP systems. By leveraging AI agents to streamline customer interactions, enhance sales opportunities, and provide smooth handoffs to human agents, businesses can significantly improve customer experiences and drive growth. Tectonic is ready to help businesses achieve similar success with AI-driven innovation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Success Story

Case Study: Salesforce Advanced Forcasting and Streamline Operations Yields Big Change and Bigger Results

Case Study: Salesforce Advanced Forcsting and Streamline Operations Yields Big Change and Bigger Results

Read More
Salesforce AI Tools for Healthcare

Salesforce AI Tools for Healthcare

Salesforce to Launch Pre-Built AI Tools for Healthcare in October Salesforce is introducing a new library of out-of-the-box AI tools specifically designed for healthcare operations, available through its Health Cloud. These generative AI features aim to streamline time-consuming tasks by integrating directly into clinician workflows, enhancing both the quality and efficiency of patient care. Key Features and Benefits Part of Salesforce’s broader initiative to address operational challenges across 15 industries, these healthcare-specific AI tools are embedded in each of its industry clouds. The Einstein Copilot, for example, will allow healthcare providers to generate patient summaries in natural language, leveraging new data management capabilities. This could enable care coordinators to view comprehensive patient summaries—such as care plans, prescriptions, and prior authorizations—before appointments. According to Salesforce, these AI-driven services, powered by Einstein prompts, are integrated within Health Cloud’s member accounts, simplifying administrative tasks like sending referrals and booking appointments. Data privacy and security remain a priority, with Einstein’s data masking and zero data retention layer ensuring patient information is protected. Beyond patient care, the new AI features will support business operations, including verifying insurance coverage, determining out-of-pocket costs, and ensuring eligibility—all designed to reduce administrative burdens and improve operational efficiency. Why It Matters Healthcare organizations often lack the resources to build and train their own AI models, a process that can cost upwards of 0 million. Salesforce’s pre-built AI capabilities provide an accessible solution, allowing organizations of all sizes to adopt AI tools tailored to their specific needs. By automating administrative processes, healthcare providers can focus more on patient care, with faster approvals and fewer manual tasks. Salesforce is positioning these tools to help organizations streamline workflows, reduce inefficiencies, and ultimately improve the patient experience. The features will be generally available in October, with pricing based on specific implementations. Industry Impact and Larger Trend The release of these healthcare-specific AI tools is part of Salesforce’s broader push into industry-specific AI. In March, Salesforce launched the Einstein AI Copilot within its Einstein 1 Platform, designed to leverage healthcare organizations’ unique data within its Health Data Cloud. New capabilities, such as patient services and benefits verification, aim to reduce platform switching, enabling faster approvals and supporting clinicians in real-time patient record updates. Salesforce’s investment in industry-specific AI comes at a time when many healthcare organizations are grappling with the rising costs of technology and labor. At the HIMSS AI in Healthcare Forum in Boston, leaders echoed the challenges of managing expansive technology footprints while balancing the need for AI-driven transformation. Operational workflows, particularly back-office processes, offer a low-risk area for AI deployment, as noted by Lee Schwamm, chief digital health officer at Yale New Haven Health System. On the Record “Organizations of every size and budget can now easily get started with practical AI tools that were purposefully designed to solve their unique challenges,” said Jeff Amann, executive vice president and general manager of Salesforce Industries. Salesforce’s new AI use case library, featuring more than 100 AI capabilities embedded across 15 industry clouds, underscores the company’s commitment to developing industry-specific solutions. For healthcare, these tools include automated patient matching for clinical trials, AI-generated prescriptions, and pre-visit summaries—helping organizations accelerate time to care and improve clinical outcomes. In addition, a new auto-matching tool for life sciences will assist in identifying eligible clinical trial participants, using both structured and unstructured data to reduce assessment time. These features allow healthcare CIOs to easily deploy AI capabilities designed to address their organization’s unique needs. Looking Ahead Salesforce’s latest AI tools for healthcare represent a significant step in the company’s strategy to bring industry-specific AI to market, with healthcare, life sciences, financial services, and retail among its top priorities. By offering pre-built, customizable solutions, Salesforce is making AI accessible to a broader range of organizations, enabling them to deliver value quickly while navigating the complexities of modern healthcare operations. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Transformative Potential of AI in Healthcare

Transformative Potential of AI in Healthcare

Healthcare leaders are increasingly optimistic about the transformative potential of AI and data analytics in the industry, according to a new market research report by Arcadia and The Harris Poll. The report, titled “The Healthcare CIO’s Role in the Age of AI,” reveals that 96% of healthcare executives believe AI adoption can provide a competitive edge, both now and in the future. While one-third of respondents see AI as essential today, 73% believe it will become critical within the next five years. How AI is Being Used in Healthcare The survey found that 63% of healthcare organizations are using AI to analyze large patient data sets, identifying trends and informing population health management. Additionally, 58% use AI to examine individual patient data to uncover opportunities for improving health outcomes. Nearly half of the respondents also reported using AI to optimize the management of electronic health records (EHRs). These findings align with a similar survey conducted by the University of Pittsburgh Medical Center’s Center for Connected Medicine (CCM), which highlighted AI as the most promising emerging technology in healthcare. The focus on AI stems from its ability to break down data silos and make use of the vast amount of clinical data healthcare organizations collect. “Healthcare leaders are preparing to harness AI’s full potential to reform care delivery,” said Aneesh Chopra, Arcadia’s chief strategy officer. “With secure data sharing scaling across the industry, technology leaders are focusing on platforms that can organize fragmented patient records into actionable insights throughout the patient journey.” Supporting Strategic Priorities with AI AI and data analytics are also seen as critical for maintaining competitiveness and resilience, particularly as organizations face digital transformation and financial challenges. In fact, 83% of respondents indicated that data-driven tools could help them stay ahead in these areas. Technology-related priorities, such as adopting an enterprise-wide approach to data analytics (44%) and enhancing decision-making through AI (41%), were top of mind for many healthcare leaders. Improving patient experience (40%), health outcomes (35%), and patient engagement (29%) were also highlighted as key strategic goals that AI could help achieve. Challenges in AI Adoption While most healthcare leaders are confident about adopting AI (96%), they also feel pressure to do so quickly, with the push primarily coming from data and analytics teams (82%), IT teams (78%), and executives (73%). One major obstacle is the lack of talent. Approximately 40% of respondents identified the shortage of skilled professionals as a top barrier to AI adoption. To address this, organizations are seeing increased demand for skills related to data analysis, machine learning, and systems integration. Additionally, 71% of IT leaders emphasized the growing need for data-driven decision-making skills. The Evolving Role of CIOs The rise of AI is reshaping the role of CIOs in healthcare. Nearly 87% of survey respondents see themselves as strategic influencers in setting and refining AI-related strategies, rather than just implementers. However, many CIOs feel constrained by the demands of day-to-day operations, with 58% reporting that tactical execution takes precedence over long-term AI strategy development. Leaders agree that to be effective, CIOs and their teams should focus more on strategic planning, dedicating around 75% of their time to developing and implementing AI strategies. Communication and workforce readiness are also crucial, with 75% of respondents citing poor communication between IT teams and clinical staff as a barrier to AI success, and 40% noting that clinical staff need more support to utilize data analytics effectively. “CIOs and their teams are setting the stage for an AI-driven transformation in healthcare,” said Michael Meucci, president and CEO of Arcadia. “The findings show that a robust data foundation and an evolving workforce are key to realizing AI’s full potential in patient care and healthcare operations.” Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Impact of EHR Adoption

Impact of EHR Adoption

Fueled by the availability of chatbot interfaces like Chat-GPT, generative AI has become a key focus across various industries, including healthcare. Many electronic health record (EHR) vendors are integrating the technology to streamline administrative workflows, allowing clinicians to focus more on patient care. Whether you see EHR adoption as easy or challenging, the Impact of EHR Adoption will be positive. Generative AI and EHR Efficiency As defined by the Government Accountability Office (GAO), generative AI is “a technology that can create content, including text, images, audio, or video, when prompted by a user.” Generative AI systems learn patterns from vast datasets, enabling them to generate new, similar content using machine learning algorithms and statistical models. One of the areas where generative AI shows promise is in automating EHR workflows, which could alleviate the burden on clinicians. Epic’s AI-Driven Innovations Phil Lindemann, vice president of data and analytics at Epic, noted that generative AI is ideal for automating repetitive tasks. One application under testing allows the technology to draft patient portal message responses for clinicians to review and send. This could save time and let doctors spend more time with patients. Another project focuses on summarizing updates to a patient’s record since their last visit, offering a quick synopsis for the provider. Epic is also exploring how generative AI could help patients better understand their health records by translating complex medical terms into more accessible language. Additionally, the system can translate this information into various languages, enhancing patient education across diverse populations. However, Lindemann emphasized that while AI offers valuable tools, it is not a cure-all for healthcare’s challenges. “We see it as a translation tool,” he said, acknowledging the importance of targeted use cases for successful implementation. Oracle Health’s Clinical Digital Assistant Oracle Health is beta-testing a generative AI chatbot aimed at reducing administrative tasks for healthcare professionals. The Clinical Digital Assistant summarizes patient information and generates automated clinical notes by listening to patient-provider conversations. Physicians can interact with the tool during consultations, asking for relevant patient data without breaking eye contact with the patient. The assistant can also suggest actions based on the discussion, which providers must review before finalizing. Oracle plans to make this tool widely available by the second quarter of 2024, with the goal of easing clinician workloads and improving the patient experience. eClinicalWorks and Ambient Listening Technology In partnership with sunoh.ai, eClinicalWorks is utilizing generative AI-powered ambient listening technology to assist with clinical documentation. This tool automatically drafts clinical notes based on patient conversations, which clinicians can then review and edit as necessary. Girish Navani, CEO of eClinicalWorks, highlighted the potential for generative AI to become a personal assistant for doctors, streamlining documentation tasks and reducing cognitive load. The integration is expected to be available to customers in early 2024. MEDITECH’s AI-Powered Discharge Summaries MEDITECH is collaborating with Google to develop a generative AI tool focused on automating hospital discharge summaries. These summaries, which are crucial for care coordination, are often time-consuming for clinicians to create, especially for patients with longer hospital stays. The AI system generates draft summaries that clinicians can review and edit, aiming to speed up discharges and reduce clinician burnout. MEDITECH is working with healthcare organizations to validate the technology before a general release. Helen Waters, executive vice president and COO of MEDITECH, stressed the importance of careful implementation. The goal is to ensure accuracy and build trust among clinicians so that generative AI can be successfully integrated into clinical workflows. The Impact of EHR Adoption EHR systems have transformed healthcare, improving care coordination and decision support. However, EHR-related administrative burdens have also contributed to clinician burnout. A 2019 study found that 40% of physician burnout was linked to EHR use. By automating time-consuming EHR tasks, generative AI could help reduce this burden and improve clinical efficiency. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
gettectonic.com