ADA Archives - gettectonic.com
data cloud and data silos

Unify Your Data Silos

Unify Your Data Silos: Deliver Connected, Personalized Experiences 🔹 65% of customers expect businesses to tailor experiences to their evolving needs. (State of Data and Analytics Report, 2023) Have you ever received a marketing promotion for something you just bought? Or had to repeat your purchase history before getting help from customer service? These disjointed experiences frustrate customers and result from data silos that prevent a unified view of the customer journey. With enterprises using over 1,000 applications on average, data ecosystems are highly complex. Many businesses attempt to centralize data in lakes, warehouses, or lakehouses, yet 73% of enterprise data remains unused for analytics (Forrester). Why? Because much of this data stays locked in backend systems, failing to power the real-time applications and workflows that drive customer engagement and business success. Break Down Data Silos to Create Seamless Customer Experiences By unifying your data, you can personalize every interaction—from online reviews and service records to browsing history and purchases. And by securely activating this data within your CRM and AI-driven workflows, you can deliver smarter, faster, and more impactful customer experiences. Unlock Business Growth with Unified Data When your teams have access to a complete, real-time customer profile, they can turn insights into action across every touchpoint: ✅ Sales Teams receive real-time guidance during calls, offering tailored recommendations based on customer behavior.✅ Service Agents proactively address issues with instant alerts and AI-powered resolutions.✅ Marketers deliver personalized, cross-channel messaging, adapting dynamically to customer actions.✅ Retailers optimize shopping experiences by responding in real time to cart abandonment and browsing patterns.✅ IT Teams build real-time apps to detect fraud, assess economic trends, and enhance security. Checklist: Build a 360° View of Your Customer ✅ Basic Data: Demographics, job title, email, and IP address.✅ Interaction Data: Email opens, website visits, CTRs, customer service calls, and social media activity.✅ Behavioral & Attitudinal Data: Purchase history, order values, survey feedback, and online reviews. Turn Raw Data Into Actionable Insights with Data Cloud Data Cloud transforms fragmented data into a single, trusted source of truth, deeply integrated with the Salesforce Platform. It enables organizations to: ✔ Connect and unify all customer data without complex data pipelines.✔ Activate insights in real-time across sales, service, and marketing workflows.✔ Power trusted AI solutions using all enterprise data for better decision-making. See How Formula 1 Uses Data to Drive Fan Engagement 📺 Watch how F1 personalizes fan experiences “With over 500 million fans worldwide, we needed personalized journeys and always-on capabilities.”— Matthew Kemp, Senior CRM & Customer Operations Manager, F1 Checklist: Unite Your Data for Better Customer Experiences ✔ Make data easy to store, manage, and analyze from any source.✔ Think holistically about behavioral, interaction, and attitudinal data.✔ Use a platform that transforms raw data into actionable insights.✔ Audit your systems for data silos causing disconnected experiences.✔ Ensure data is accessible in everyday workflows with trusted solutions like Data Cloud. 📊 Data-driven businesses don’t just manage customer experiences—they revolutionize them. 🚀 Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

AI and Robotics Revolution

The world’s leading CEOs are increasingly preparing for the imminent AI and robotics revolution, signaling a profound shift in the future of work. Salesforce CEO Marc Benioff recently offered a compelling vision of this future, where the boundaries between human and digital labor become increasingly blurred. In a striking declaration, Benioff stated that he would be the last Salesforce CEO to oversee a workforce composed solely of humans, underscoring the transformative impact of AI and robotics on the workplace. His remarks, which touched on the “digital labor revolution,” the multi-trillion-dollar economic opportunity it represents, and the rise of “agents” and robots, provide a thought-provoking glimpse into the evolving relationship between humans and technology in the professional sphere. Benioff elaborated on the concept of the “digital labor revolution,” describing it as a monumental opportunity worth between three and twelve trillion dollars. He emphasized that this revolution encompasses not only AI-driven agents and the “agentic age” but also the dawn of a “robotic age.” He highlighted China’s advancements in robotics as particularly noteworthy, pointing to the global competition in this rapidly evolving field. “The digital labor revolution is this three to twelve trillion dollar opportunity,” Benioff explained. “It involves agents and digital agents and the agentic age, but it also beholds a robotic age. And in the robotic age, who is going to make the robots? I think that that’s very impressive what the Chinese have been able to do with this robotic age. So the robots, the agents, AI—this is all part and parcel of the future.” When questioned about the implications for the workforce, Benioff made it clear that the integration of robots and AI agents into the workplace is inevitable. He envisions a future where humans work alongside these technologies in a collaborative manner. “The robotic age means for the workforce that we are going to work hand in hand with agents and robots,” he said. “I’ve told my employees, my customers, I’ll be the last CEO of Salesforce who only managed humans.” Benioff’s statement is more than a prediction; it is an acknowledgment of a rapidly approaching reality. His reference to the multi-trillion-dollar economic potential of AI and robotics highlights the scale of the opportunity, while his recognition of China’s progress in robotics underscores the global race to lead in this transformative domain. The concept of the “agentic age,” where AI agents operate autonomously, further underscores the shifting dynamics of the workplace, as traditional roles and processes are redefined by technological advancements. The implications of Benioff’s remarks are far-reaching. The integration of AI and robotics into the workforce will not simply augment human labor; it will fundamentally reshape it. This transformation will require a significant shift in mindset for both workers and leaders. Employees will need to adapt to collaborating with AI-powered agents and robots, acquiring new skills to remain relevant in an evolving job market. Companies, meanwhile, will face the challenge of integrating and managing a hybrid workforce, ensuring seamless collaboration between human and digital workers. Ethical considerations, such as the potential for job displacement and the responsible use of AI, will also need to be addressed proactively. Benioff’s words serve as a wake-up call, urging businesses and individuals alike to prepare for a future where humans and machines work side by side. This new era promises unprecedented levels of productivity and innovation, but it also demands careful planning and adaptation. As the lines between human and digital labor continue to blur, the organizations and individuals that embrace this change and invest in the necessary skills and infrastructure will be best positioned to thrive in the age of AI and robotics. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Shift From AI Agents to AI Agent Tool Use

Building Scalable AI Agents

Building Scalable AI Agents: Infrastructure, Planning, and Security The key building blocks of AI agents—planning, tool integration, and memory—demand sophisticated infrastructure to function effectively in production environments. As the technology advances, several critical components have emerged as essential for successful deployments. Development Frameworks & Architecture The ecosystem for AI agent development has matured, with several key frameworks leading the way: While these frameworks offer unique features, successful agents typically share three core architectural components: Despite these strong foundations, production deployments often require customization to address high-scale workloads, security requirements, and system integrations. Planning & Execution Handling complex tasks requires advanced planning and execution flows, typically structured around: An agent’s effectiveness hinges on its ability to: ✅ Generate structured plans by intelligently combining tools and knowledge (e.g., correctly sequencing API calls for a customer refund request).✅ Validate each task step to prevent errors from compounding.✅ Optimize computational costs in long-running operations.✅ Recover from failures through dynamic replanning.✅ Apply multiple validation strategies, from structural verification to runtime testing.✅ Collaborate with other agents when consensus-based decisions improve accuracy. While multi-agent consensus models improve accuracy, they are computationally expensive. Even OpenAI finds that running parallel model instances for consensus-based responses remains cost-prohibitive, with ChatGPT Pro priced at $200/month. Running majority-vote systems for complex tasks can triple or quintuple costs, making single-agent architectures with robust planning and validation more viable for production use. Memory & Retrieval AI agents require advanced memory management to maintain context and learn from experience. Memory systems typically include: 1. Context Window 2. Working Memory (State Maintained During a Task) Key context management techniques: 3. Long-Term Memory & Knowledge Management AI agents rely on structured storage systems for persistent knowledge: Advanced Memory Capabilities Standardization efforts like Anthropic’s Model Context Protocol (MCP) are emerging to streamline memory integration, but challenges remain in balancing computational efficiency, consistency, and real-time retrieval. Security & Execution As AI agents gain autonomy, security and auditability become critical. Production deployments require multiple layers of protection: 1. Tool Access Control 2. Execution Validation 3. Secure Execution Environments 4. API Governance & Access Control 5. Monitoring & Observability 6. Audit Trails These security measures must balance flexibility, reliability, and operational control to ensure trustworthy AI-driven automation. Conclusion Building production-ready AI agents requires a carefully designed infrastructure that balances:✅ Advanced memory systems for context retention.✅ Sophisticated planning capabilities to break down tasks.✅ Secure execution environments with strong access controls. While AI agents offer immense potential, their adoption remains experimental across industries. Organizations must strategically evaluate where AI agents justify their complexity, ensuring that they provide clear, measurable benefits over traditional AI models. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Captivates the World

AI vs Human Intelligence

Artificial Intelligence vs. Human Intelligence: Key Differences Explained Artificial intelligence (AI) often mimics human-like capabilities, but there are fundamental differences between natural human intelligence and artificial systems. While AI has made remarkable strides in replicating certain aspects of human cognition, it operates in ways that are distinct from how humans think, learn, and solve problems. Below, we explore three key areas where AI and human intelligence diverge. Defining Intelligence Human IntelligenceHuman intelligence is often described using terms like smartness, understanding, brainpower, reasoning, sharpness, and wisdom. These concepts reflect the complexity of human cognition, which has been debated for thousands of years. At its core, human intelligence is a biopsychological capacity to acquire, apply, and adapt knowledge and skills. It encompasses not only logical reasoning but also emotional understanding, creativity, and social interaction. Artificial IntelligenceAI refers to machines designed to perform tasks traditionally associated with human intelligence, such as learning, problem-solving, and decision-making. Over the past few decades, AI has advanced rapidly, particularly in areas like machine learning and generative AI. However, AI lacks the depth and breadth of human intelligence, operating instead through algorithms and data processing. Human Intelligence: What Humans Do Better Humans excel in areas that require empathy, judgment, intuition, and creativity. These qualities are deeply rooted in our evolution as social beings. For example: These capabilities make human intelligence uniquely suited for tasks that involve emotional connection, ethical decision-making, and creative thinking. Artificial Intelligence: What AI Does Better AI outperforms humans in several areas, particularly those involving data processing, pattern recognition, and speed: However, AI’s strengths are limited to the data it is trained on and the algorithms it uses, lacking the adaptability and contextual understanding of human intelligence. 3 Key Differences Between AI and Human Intelligence AI and Human Intelligence: Working Together The future lies in human-AI collaboration, where the strengths of both are leveraged to address complex challenges. For example: While some may find the idea of integrating AI into decision-making unsettling, the scale of global challenges—from climate change to healthcare—demands the combined power of human and artificial intelligence. By working together, humans and AI can amplify each other’s strengths while mitigating weaknesses. Conclusion AI and human intelligence are fundamentally different, each excelling in areas where the other falls short. Human intelligence is unparalleled in creativity, empathy, and ethical reasoning, while AI dominates in data processing, pattern recognition, and speed. The key to unlocking the full potential of AI lies in human-AI collaboration, where the unique strengths of both are harnessed to solve the world’s most pressing problems. As we move forward, this partnership will likely become not just beneficial but essential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Sales Engagement for Nonprofits

Salesforce Sales Engagement for Nonprofits

Supercharge Your Nonprofit’s Donor Outreach with Salesforce Sales Engagement It’s time for the annual donor campaign. The fundraising team is juggling hundreds—if not thousands—of emails, phone calls, and follow-ups. The budget depends on surpassing last year’s donations, but with limited staff and time, reaching every potential donor feels impossible. The executive director asks, “How can we maximize donor engagement without increasing headcount—or at least focus our resources on the most likely givers?” Sound familiar? Every nonprofit faces the challenge of doing more with less. Fortunately, Salesforce offers a solution to keep your team organized, on task, and working smarter: Salesforce Sales Engagement. What Is Salesforce Sales Engagement? Salesforce Sales Engagement acts as a high-powered assistant for fundraising, membership, or program teams. This productivity hub, embedded within Salesforce, streamlines daily activities through automation, organization, and AI-powered insights. Key benefits include:✅ Cadences & Work Queues – Ensure no email, call, or task slips through the cracks.✅ Centralized Outreach – Keep all donor interactions in one place for seamless engagement.✅ AI-Driven Optimization – Analyze performance and refine strategies based on data. Previously known as High-Velocity Sales, Sales Engagement accelerates development cycles and scales outreach efforts effortlessly. By prioritizing critical tasks and automating others, your team can focus on building meaningful relationships and securing commitments faster. Engagement Cadences: Your Fundraising Playbook in Action Cadences serve as step-by-step roadmaps, guiding teams on how and when to engage with donors, members, or program participants. Whether you’re running a donor drive, promoting event registrations, or managing renewals, cadences ensure consistency and efficiency. Two Types of Cadences: 1️⃣ Standard Cadences – A structured sequence of touchpoints (emails, calls, LinkedIn messages) over time, such as a 30-day donor onboarding journey.2️⃣ Quick Cadences – A single, repeatable action, like automatically sending a thank-you email after a donation. With Cadence Builder, customizing workflows for different donor segments is fast and easy. Actions dynamically adjust based on engagement—so if a donor opens an email, they might receive a follow-up call; if they don’t, a reminder email is sent instead. Best of all, your team doesn’t have to track or remember each step—Sales Engagement assigns tasks automatically to individual work queues, ensuring nothing gets missed. Data-Driven Decision-Making with Built-In Analytics To improve outreach, you need to measure it. Sales Engagement provides powerful dashboards and reports to evaluate performance and optimize your approach. ✅ Track email open rates, call response rates, and donor engagement trends.✅ Identify successful messaging and refine underperforming campaigns.✅ Tie engagement metrics to fundraising goals to measure real impact. Unlike basic email tracking, Sales Engagement helps nonprofits connect data-driven insights with mission outcomes—empowering smarter decision-making without complex process changes. Already Using Salesforce Flows for Outreach? If your nonprofit relies on Salesforce Flow for outreach, you may wonder if Sales Engagement is necessary. The answer? Yes—if you want to do more with less effort. While flows are great for automation, Sales Engagement goes further with built-in call scripts, AI-powered task prioritization, and adaptable cadences. It offers a more intuitive, flexible approach to donor engagement, reducing manual work and boosting efficiency. Ready to Transform Your Fundraising Strategy? Salesforce Sales Engagement isn’t just for corporations—it’s a game-changer for nonprofits, helping teams increase donations, memberships, and event participation with less effort and greater impact. Are you ready to work smarter, engage better, and raise more? Let’s get started. Contact Tectonic today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Energy and Utilities Cloud Explained

Salesforce Energy and Utilities Cloud Explained

Salesforce Energy and Utilities Cloud is a specialized industry solution built on the Salesforce platform, designed to meet the unique needs of energy and utility companies. It helps these organizations manage customer relationships, streamline operations, and drive digital transformation in an increasingly complex and regulated industry. The cloud solution provides tools for customer engagement, field service management, and regulatory compliance, among other functionalities. Key Features of Salesforce Energy and Utilities Cloud: Benefits of Salesforce Energy and Utilities Cloud: Use Cases: Implementation Considerations: In summary, Salesforce Energy and Utilities Cloud is a comprehensive solution designed to help energy and utility companies enhance customer engagement, streamline operations, and achieve regulatory compliance. By leveraging advanced technologies and industry-specific functionalities, utilities can drive digital transformation and improve overall performance. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Unveils Agentforce 2dx

Salesforce Unveils Agentforce 2dx

Salesforce Unveils Agentforce 2dx: A Major Leap in AI Agent Capabilities Proactive, Autonomous AI Agents to Bridge the Skills Gap Salesforce has announced a major upgrade to its AI agent platform with Agentforce 2dx, a next-generation solution designed to move beyond reactive, chat-based interactions. With enhanced efficiency, agility, and scalability, Agentforce 2dx enables AI agents to operate autonomously, integrating seamlessly with existing data systems, business logic, and user interfaces. The Future of Work: AI Agents Filling the Labor Gap “Companies today have more work than workers, and Agentforce is stepping in to fill the gap,” said Adam Evans, EVP and GM of Salesforce’s AI Platform. Unlike traditional AI chatbots that rely on rigid programming or manual prompts, agentic AI dynamically adapts to live data and evolving business needs, making it far more effective in real-world applications. Introducing AgentExchange: A Marketplace for AI Agent Templates Alongside Agentforce 2dx, Salesforce is launching AgentExchange, an online marketplace where businesses can access and share pre-built AI agent templates and actions. From launch, AgentExchange will feature: The AI Agent Race Heats Up Salesforce’s announcement comes amid intensified industry focus on AI agents. Microsoft and AWS have recently made significant moves, with Microsoft research revealing that 72% of business leaders expect AI agents to be fully integrated into their operations soon—21% within the next year and 39% within two years. Meanwhile, AWS is reportedly forming a dedicated AI agent division, led by Swami Sivasubramanian, VP of AI and Data, reporting directly to CEO Matt Garman. Salesforce CEO Marc Benioff has been vocal about the future of AI agents, predicting that tomorrow’s CEOs will need to manage both human employees and AI-powered agents. With Agentforce 2dx and AgentExchange, Salesforce is positioning itself at the forefront of this transformation, empowering businesses to automate, scale, and innovate like never before. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

The Evolving Role of AI Agents in Key Industries

Legal Services The future of AI in the legal field lies in deeper collaboration between human lawyers and AI systems. AI agents will handle routine document processing, contract analysis, and compliance checks, while legal professionals focus on strategy, negotiation, and final validation. This approach ensures efficiency without compromising accuracy or legal accountability. Finance The financial sector has been an early adopter of AI agents, leveraging them for market analysis, trading, and risk management. 1. Market Analysis & Research 2. Trading & Investment 3. Risk Management Current Limitations: While results are promising, financial AI applications require strict risk management and regulatory oversight. Most firms start with narrowly scoped use cases—such as single-asset trading—before expanding into complex portfolio management. Research & Science AI agents are transforming scientific research by accelerating discovery while maintaining rigorous methodology. A multi-agent approach is proving valuable throughout the research lifecycle: This framework has already shown success in chemistry, where AI agents have identified novel catalysts and reaction pathways. With Google’s Gemini Deep Research, AI-driven knowledge synthesis is expanding beyond specialized fields to broader scientific domains. Challenges & Considerations: The key to success is integrating AI agents into existing research methodologies while preserving scientific rigor. Emerging AI Agent Trends Across industries, three core patterns define the evolution of AI agents: While AI agents hold immense potential, most industries remain in an experimental phase of adoption. Many organizations start with Retrieval-Augmented Generation (RAG) before advancing to fully autonomous agents. The Challenge of Implementation Adopting AI agents requires careful evaluation of their benefits vs. complexity: Organizations must balance innovation, security, and operational efficiency to maximize the impact of AI agents in their industries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Data Cloud

Maximizing Salesforce Data Cloud

Maximizing Salesforce Data Cloud: Post-Implementation Strategies for Long-Term Success The Fastest-Growing Salesforce Product Salesforce Data Cloud is seeing explosive growth, with a 130% year-over-year increase in paid customers. In just one quarter, it processed an astonishing 2.3 quadrillion records—a 147% jump from the previous year. Businesses leveraging Data Cloud have seen a 165% boost in web engagement, with major brands like The Adecco Group, Aston Martin, and FedEx using it to strengthen customer relationships and drive growth. The Power of Data Cloud: Turning Information into Action What makes Salesforce Data Cloud so impactful is its ability to unify vast amounts of data, creating 360-degree customer profiles and transforming insights into action. But unlocking its full potential doesn’t stop at implementation—it requires ongoing optimization to keep your data clean, your systems efficient, and your AI models accurate. Post-Implementation Best Practices for Salesforce Data Cloud Once your Salesforce Data Cloud is up and running, the next step is ensuring long-term performance and business value. Here’s how to optimize and sustain your Data Cloud investment: 1. Maintain Data Integrity with Ongoing Quality Management 2. Optimize System Performance for Speed and Efficiency 3. Drive User Adoption with Tailored Training 4. Strengthen Data Governance and Compliance 5. Proactively Manage and Optimize Integrations 6. Refine Customer Segmentation for More Personalization 7. Keep AI and Predictive Models Up to Date 8. Measure ROI and Optimize for Business Impact 9. Foster a Data-Driven Culture Through Clear Communication 10. Stay Agile with Continuous Innovation and Community Engagement Conclusion: The Real Value of Data Cloud Begins After Implementation Salesforce Data Cloud is at the heart of next-gen customer engagement, but its true impact lies in how well you maintain and optimize it. Success depends on:✅ Involving key stakeholders in ongoing improvements✅ Enforcing strong data governance for security and accuracy✅ Continuously refining processes to adapt to changing business needs By committing to post-implementation optimization, your organization can stay agile, data-driven, and ahead of the competition—ensuring that Salesforce Data Cloud delivers maximum value now and in the future. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Why Its Good to be Data-Driven

The Power of Data-Driven Decision Making Success in business hinges on the ability to make informed decisions. Every operational aspect, from minor choices like office furniture selection to critical investments such as multi-million-dollar marketing campaigns, is shaped by a series of interrelated decisions. While instinct and intuition may play a role, most business choices rely on relevant data—covering aspects such as objectives, pricing, technology, and potential risks. However, excess irrelevant data can be just as detrimental as insufficient accurate data. Why Its Good to be Data-Driven organization… The Evolution of Data-Driven Decision Making Organizations that prioritize data-driven strategies rely on accurate, relevant, complete, and timely data. Simply amassing large volumes of information does not equate to better decision-making; companies must democratize data access, ensuring it is available to all employees rather than limited to data analysts. The practice of using data to inform business decisions gained traction in the mid-20th century when researchers identified decision-making as dynamic, complex, and often ambiguous. Early techniques like decision trees and prospect theory emerged in the 1970s alongside computer-aided decision-making models. The 1980s saw the rise of commercial decision support systems, and by the early 21st century, data warehousing and data mining revolutionized analytics. However, without clear governance and organizational policies, these vast data stores often fell short of their potential. Today, the goal of data-driven decision-making is to combine automated decision models with human expertise, creativity, and critical thinking. This approach requires integrating data science with business operations, equipping managers and employees with powerful decision-support tools. Characteristics of a Data-Driven Organization A truly data-driven organization understands the value of its data and maximizes its potential through structured alignment with business objectives. To safeguard and leverage data assets effectively, businesses must implement governance frameworks ensuring compliance with privacy, security, and integrity standards. Key challenges in establishing a data-driven infrastructure include: The Benefits of a Data-Driven Approach Businesses recognize that becoming data-driven requires more than just investing in technology; success depends on strategy and execution. According to KPMG, four critical factors contribute to the success of data-driven initiatives: A data-driven corporate culture accelerates decision-making, enhances employee engagement, and increases overall business value. Integrating ethical considerations into data usage is crucial for mitigating biases and maintaining data integrity. Transitioning to a Data-Driven Business With the rapid advancement of generative AI, data-driven organizations are poised to unlock trillions of dollars in economic value. McKinsey estimates that AI-driven decision-making could add between .6 trillion and .4 trillion annually across key sectors, including customer operations, marketing, software engineering, and R&D. To successfully transition into a data-driven organization, companies must: By embracing a data-driven model, organizations enhance their ability to make automated yet strategically sound decisions. With seamless data integration across CRM, ERP, and business applications, companies empower human decision-makers to apply their expertise to high-quality, actionable insights—driving innovation and competitive advantage in a rapidly evolving marketplace. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Rise of AI Agents

The Rise of AI Agents

The Rise of AI Agents: Salesforce’s Vision for a New Era of Business In just three months, more than 1,000 companies have deployed Salesforce AI agents, unlocking capabilities “they’ve never seen before” and setting the stage for game-changing business outcomes, according to CEO Marc Benioff. That’s a bold prediction—even for a visionary like Benioff, whose track record speaks for itself. But throughout our recent 25-minute conversation for the Cloud Wars CEO Outlook 2025 series, Benioff remained unwavering in his optimism about the AI-powered future. Agentic AI: The Force Driving Business Transformation According to Benioff, AI agents represent the next wave of business transformation, redefining how companies operate, innovate, and compete. “I’ve never been more excited about technology—this is an incredible moment in time,” Benioff said. He described AI agents as the bridge to a future where businesses engage with customers in ways previously thought possible only in science fiction. These AI-driven systems will help organizations operate at lower costs while improving customer relationships and key performance metrics. But Salesforce isn’t just selling this vision to customers—it’s living it. Benioff shared firsthand insights into how the company is leveraging AI to optimize its own operations, revealing lessons that could reshape how enterprises think about productivity and workforce planning. Digital Labor: A Multi-Trillion-Dollar Opportunity One of the most striking takeaways from our conversation was Salesforce’s approach to what Benioff calls “digital labor.” “For 25 years, Salesforce has helped businesses manage data. Now, we’re creating digital workers—AI agents that unlock entirely new ways to operate,” he said. This shift is already making an impact. Salesforce’s Agentforce AI now handles the bulk of the company’s customer support, transforming how its 9,000 service agents manage 36,000 weekly support inquiries: As a result, Salesforce is reallocating 2,000 support professionals to other roles—just one example of how AI is reshaping workforce dynamics. A Radical Rethink: No New Developers in 2025 Perhaps the most surprising revelation? Salesforce is pausing hiring for software engineers in 2025. Benioff explained that despite doubling its engineering team over the past five years, AI has driven a 30% increase in productivity. Rather than hiring more developers, Salesforce is leaning into AI-powered automation to accelerate software development. This shift raises fundamental questions about the future of work: Salesforce vs. Microsoft: Competing Visions for AI Agents AI agents are reshaping enterprise technology, but vendors have differing approaches. Benioff made it clear that Salesforce is taking a unique path—one he believes will ultimately lead the industry. Unlike Microsoft, which is deeply integrating AI within its core applications, Salesforce sees agents as an evolution of its CRM foundation, leveraging the vast 230-petabyte data ecosystem it manages for customers. “The businesses that are closest to their data will win,” Benioff said. “And we’re going to deliver capabilities that our customers have never seen before—ones that will thrill them out of their minds.” The Future: A Billion AI Agents As enterprises race to adopt AI, Benioff predicts an explosion in AI agent deployment. “In the next 12 months, we’ll see thousands of companies deploying up to a billion AI agents. And Salesforce will be the absolute leader in agentic technology for the enterprise,” he said. Benioff’s vision is clear: AI agents aren’t just an enhancement—they are the next frontier of business. And companies that embrace them will lead the way into a new era of efficiency, innovation, and growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Google and Salesforce Expand Partnership

Google and Salesforce Expand Partnership

Google and Salesforce Expand Partnership to Enhance AI Agent Capabilities Google and Salesforce are deepening their collaboration to provide customers with greater flexibility in AI agent deployment. This expanded partnership will integrate Google Gemini within Salesforce’s Agentforce platform, enabling AI agents to process images, audio, and video with advanced multimodal capabilities. Enhanced AI Functionality with Gemini Through this integration, AI agents will gain access to Gemini’s powerful models, allowing them to handle complex tasks with extended context windows and leverage real-time insights from Google Search via Vertex AI. This collaboration aims to empower businesses with AI solutions that are not limited to a single model provider, offering crucial flexibility in AI customization. Srini Tallapragada, Salesforce’s President and Chief Engineering and Customer Success Officer, emphasized that the integration offers customers the ability to choose the applications and models that best suit their needs. “Salesforce offers a complete enterprise-grade agentic AI platform that makes it easy to deploy new capabilities quickly and realize business value fast. Google Cloud is a pioneer in enterprise agentic AI, offering some of the most powerful models, agents, and AI development tools on the planet. Together, we are creating the best place for businesses to scale with digital labor.” Key Benefits of the Integration The partnership is set to deliver significant advantages for businesses, as outlined in the official announcement: Thomas Kurian, CEO of Google Cloud, highlighted the benefits of this collaboration: “Our mutual customers have asked for seamless integration across Salesforce and Google Cloud. This expanded partnership enables them to accelerate AI transformations with state-of-the-art AI models, agentic AI, and advanced data analytics.” Strengthening Customer Service Integrations The partnership will also enhance the connection between Salesforce Service Cloud and Google Cloud’s Customer Engagement Suite, providing AI-driven improvements to customer support. Key upcoming features include: Expanding AI-Powered Decision-Making Beyond Gemini, Agentforce will integrate Google Search through Vertex AI, leveraging secure connections between Salesforce Data Cloud and Google BigQuery. This will enable AI agents to access real-time information for improved accuracy and decision-making. For example, in supply chain management, AI can track shipments, monitor inventory in Salesforce Commerce Cloud, and anticipate disruptions using real-time data on weather, port congestion, and geopolitical events. Additionally, joint customers will be able to utilize Salesforce’s unified platform—including Agentforce, Data Cloud, and Customer 360—on Google Cloud’s AI-optimized infrastructure. This integration ensures enhanced security through dynamic grounding, zero data retention, and toxicity detection via the Einstein Trust Layer. Businesses will also soon have the option to purchase Salesforce products via the Google Cloud Marketplace. More AI Innovations from Google and Salesforce Google recently announced the development of a personalized AI-powered chatbot that will be integrated into its devices, including smartphones, laptops, and tablets. This tool will automatically answer calls, process requests, and respond on behalf of users. Meanwhile, Salesforce’s Service Assistant—formerly known as Salesforce Service Planner—has launched on Service Cloud. Designed to support live agents, it generates step-by-step plans for resolving customer inquiries by analyzing intent, case history, and customer context. For optimal performance, Salesforce recommends integrating it with Data Cloud and the contact center knowledge base. With this expanded partnership, Google and Salesforce are setting the stage for businesses to leverage cutting-edge AI technology, driving innovation and operational efficiency across industries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com