AI Agents Archives - gettectonic.com
Autonomous AI Service Agents

The AI Agent Revolution

The AI Agent Revolution: How Tectonic is Unifying Disparate AI Systems for Enterprises AI agents are proliferating at breakneck speed—embedded in platforms, deployed as standalone apps, and built on proprietary or open-source SDKs. Yet as these intelligent systems multiply, enterprises face a critical challenge: getting them to communicate, collaborate, and scale effectively across complex IT environments. Recent moves by Tectonic, Salesforce, and Google Cloud highlight the next frontier of enterprise AI: seamless, cross-platform agent orchestration. We’ve reached an inflection point where human-AI synergy can transform business operations—but only if organizations can unify their agent ecosystems. The AI Agent Collaboration Challenge Today’s enterprises use AI agents for:✔ Salesforce’s Agentforce (CRM automation)✔ Google’s Agentspace (cloud-based workflows)✔ Custom agents (built on Vertex AI, OpenAI, or open-source models) But without interoperability, these agents operate in silos—limiting their potential. Tectonic bridges this gap with secure, enterprise-grade agent orchestration, enabling businesses to: Tectonic and Supported Agent OS: The Glue Holding AI Ecosystems Together Tectonic and Agent Operating Systems (OS) are business-focused platform for orchestrating AI agents across enterprise environments. An “agent operating system” (AOS) is a type of operating system designed to facilitate the development, deployment, and management of AI agents, which are software systems that can act autonomously to achieve goals. AOS systems aim to provide a platform for AI agents to operate efficiently and effectively, offering features like resource management, context switching, and tool integration. AIOS, for example, is a particular implementation of this concept that aims to address the challenges of managing large language model (LLM)-based AI agents How It Works Real-World Use Cases 1. Salesforce + Google Gemini: Smarter CRM Salesforce’s Agentforce now integrates Google Gemini, enabling:🔹 Better RAG (Retrieval-Augmented Generation) for faster, more accurate customer responses🔹 Predictive trend analysis embedded directly in CRM workflows Tectonic’s Role: Deploys multi-agent solutions that turn AI insights into actionable items—like auto-recommending next steps for sales teams. 2. Retail: Unified Customer Experiences A retailer combines: Result: Customers get instant, accurate updates on orders—no manual backend checks required. 3. Financial Services: AI-Powered Risk Analysis Banks use: Outcome: Suspicious transactions trigger automated compliance workflows without leaving Salesforce. Tectonic’s AI Activation Path: From Pilot to Production For enterprises ready to scale AI agents, Tectonic offers a rapid deployment framework:✅ Discovery and Road Mapping – Co-design high-impact use cases✅ Rapid Implementation – Deploy working agents in sandbox environments✅ Pre-Built Industry Libraries – Accelerate time-to-value The Future: Harmonized AI Ecosystems The biggest barrier to AI adoption isn’t technology—it’s fragmentation. With the Agent OS in place, businesses can finally:✔ Break down silos between Salesforce, Google Cloud, and custom AI✔ Automate complex workflows end-to-end✔ Scale AI responsibly with enterprise-grade governance The bottom line? AI agents are powerful alone—but unstoppable when unified. Ready to orchestrate your AI ecosystem?Discover how Tectonic’s Agentforce approach can transform your enterprise AI strategy. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Revolution in Government

Ready for AI in Government

AI Agents in Government: Who’s Ready? A new Salesforce survey reveals strong public support for AI-driven government efficiency, with the potential to save Americans hours of bureaucratic hassle. However, the findings also highlight a demographic divide, underscoring the need for a tailored approach to implementation. Public Readiness for AI in Government Salesforce surveyed 1,000 Americans and found that 87% would use an AI agent to navigate complex government processes. AI agents—software programs that automate tasks and interact with citizens—could function as virtual assistants, making services more accessible and efficient. The demand for 24/7 assistance is driven by frustration with time-consuming government tasks. Respondents identified these processes as the biggest waste of time due to confusing or redundant questions: AI in Action: A Proven Use Case Salesforce has already helped government agencies enhance efficiency through AI. For example, the California Department of Motor Vehicles reduced the time required to apply for a Real ID from 35 minutes to just 7 minutes using AI-powered digital solutions. According to Nasi Jazayeri, EVP and GM of Public Sector at Salesforce, license renewals present a prime opportunity for AI-driven improvements: “Now, in minutes, state and local government agencies can set up an AI agent powered by agency-specific data to make this process easier on both the applicant and the reviewer.” Addressing Public Concerns Despite the enthusiasm, the survey also highlights key concerns about AI in government. The top issues cited were: Additionally, certain demographics were less open to AI adoption. The survey found that: The Road Ahead The Salesforce survey highlights a public eager for AI-driven improvements in government services, but with critical concerns that must be addressed. The challenge now is to deploy AI thoughtfully, ensuring accessibility, transparency, and trust while bridging the demographic divide. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Real-World AI

AI in the Travel Industry

AI in Travel: How the Industry is Transforming with Intelligent Technology The travel sector has long been at the forefront of AI adoption, with airlines, hotels, and cruise lines leveraging advanced analytics for decades to optimize pricing and operations. Now, as artificial intelligence evolves—particularly with the rise of generative AI—the industry is entering a new era of smarter automation, hyper-personalization, and seamless customer experiences. “AI and generative AI have emerged as truly disruptive forces,” says Kartikey Kaushal, Senior Analyst at Everest Group. “They’re reshaping how travel businesses operate, compete, and serve customers.” According to Everest Group, AI adoption in travel is growing at 14-16% annually, driven by demand for efficiency and enhanced customer engagement. But as adoption accelerates, the industry must balance automation with the human touch that travelers still value. 10 Key AI Use Cases in Travel & Tourism 1. Dynamic Pricing Optimization Travel companies pioneered AI-driven dynamic pricing, adjusting fares based on demand, competitor rates, weather, and events. Now, AI takes it further with hyper-personalized pricing—tracking user behavior (like repeated searches) to offer tailored deals. 2. Customer Sentiment Analysis AI evaluates traveler emotions through voice tone, reviews, and social media, enabling real-time adjustments. Hotels and airlines use sentiment tracking to improve service before complaints escalate. 3. Automated Office Tasks Travel agencies use generative AI (like ChatGPT) to draft emails, marketing content, and customer onboarding materials, freeing staff for high-value interactions. 4. Self-Service & Customer Empowerment AI-powered chatbots, itinerary builders, and booking tools let travelers plan trips independently. Some even bring AI-generated plans to agents for refinement—blending automation with human expertise. 5. Operational Efficiency & Asset Management Airlines and cruise lines deploy AI for:✔ Predictive maintenance (reducing downtime)✔ Route optimization (cutting fuel costs)✔ Staff scheduling (improving productivity) 6. AI-Powered Summarization Booking platforms use generative AI to summarize hotel reviews, local attractions, and FAQs—delivering concise, personalized travel insights. 7. Frictionless Travel Experiences From contactless hotel check-ins to AI-driven real-time recommendations (restaurants, shows, transport), AI minimizes hassles and enhances convenience. 8. AI Agents for Problem-Solving Agentic AI autonomously resolves disruptions—like rebooking flights, rerouting luggage, and updating hotels—without human intervention. 9. Enhanced Personalization Without “Creepiness” AI tailors recommendations based on past behavior but must avoid overstepping. The challenge? “A customer segment of one”—balancing customization with privacy. 10. Risk & Compliance Management AI helps navigate data privacy laws (GDPR, CCPA) and detects fraud, but companies must assign clear accountability for AI-driven decisions. Challenges in AI Adoption for Travel The Future: AI + Human Collaboration The most successful travel companies will blend AI efficiency with human empathy, ensuring technology enhances—not replaces—the art of travel. “The goal isn’t full automation,” says McKinsey’s Alex Cosmas. “It’s using AI to make every journey smoother, smarter, and more personal.” As AI evolves, so will its role in travel—ushering in an era where smarter algorithms and human expertise work together to create unforgettable experiences. What’s Next? The journey has just begun. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents, Tech's Next Big Bet

Embracing “Intelligent Austerity”

Embracing “Intelligent Austerity”: How Scotland Can Lead the Way in Public Sector Innovation As the UK Government enforces a 15% reduction in operating costs across departments, the pressure to streamline workflows through generative AI has never been greater. While these targets have sparked concern in Westminster, Scotland’s legacy of innovation—from tidal energy to healthcare—positions it to redefine what austerity can achieve. Rather than resorting to blunt cuts that undermine services and hurt the most vulnerable constituents, Scotland has a unique opportunity to pioneer intelligent austerity: delivering significant cost savings and productivity gains without sacrificing the quality of essential public services. But how? A Smarter Approach to Public Services At Salesforce, we’re not just driving agentic transformation—we’re challenging governments to rethink efficiency. Our technology is already embedded across the UK public sector and beyond. With Agentforce, our goal isn’t to replace human workers but to empower them by eliminating repetitive, low-value tasks. When I speak with civil servants, I ask a simple question: “What parts of your day drain your productivity?” The answer is almost always the same: tedious administrative work that stifles innovation. The key to unlocking societal progress—whether in fighting child poverty, boosting the economy, or tackling climate change—lies in making small, daily efficiency gains. By automating routine tasks, we free up staff to focus on what they do best: high-impact, human-centric work. Agentforce serves as a practical blueprint for intelligent austerity, delivering lasting efficiencies while preserving—and even enhancing—the human touch in public services. Intelligent Austerity: Efficiency Without Sacrifice Traditional austerity often means deep, painful cuts that erode services and fuel public frustration. Intelligent austerity, by contrast, targets inefficiencies—like costly call centres and outdated administrative processes—while reinvesting savings where they matter most. Instead of lengthy, expensive IT overhauls that tie departments to consultants, we advocate for off-the-shelf AI solutions that deliver value in weeks, not years. These integrate seamlessly with existing systems, improving transparency, agility, and scalability from day one. The result? Departments can exceed cost-saving targets—even surpassing the 15% goal—without the downsides of traditional austerity. Agents in Action: Real-World Success Stories These examples prove that AI-driven transformation can counter fiscal pressures while improving service delivery—a win-win for both budgets and citizens. Scotland’s AI Opportunity Imagine every government department equipped with a 24/7 AI expert—an intelligent assistant capable of answering policy questions, processing documents, or even serving as a strategic advisor. Early AI adoption is like the first SatNav systems: helpful but imperfect. The real breakthrough comes when AI evolves into a collision avoidance system—actively preventing problems and enhancing decision-making. Our AI Agents Handbook outlines how Scotland can harness this potential. By adopting AI strategically, public services can achieve cost savings that are reinvested in key priorities—eradicating child poverty, growing the economy, and addressing the climate crisis. The Future: Smarter, More Agile Public Services AI isn’t about replacing humans—it’s about empowering them. With each small efficiency gain, departments become more agile, better equipped to deliver sustainable, high-quality services. Scotland has the chance to lead this shift, turning fiscal challenges into opportunities for innovation. Interested in learning more? Let’s discuss how AI Agents can transform your organization. Get in touch for a personalized consultation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
SaaS Data Protection from Own

Salesforce Integrates Own Co. Capabilities

Salesforce Integrates Own Co. Capabilities to Strengthen Data Resilience, Security, and AI Readiness Salesforce has fully integrated Own Co.’s data backup, recovery, and security solutions into its platform, equipping partners and customers with enhanced tools for data resilience, compliance, and security—critical foundations as businesses adopt AI-driven solutions. Marla Hay, Vice President of Product Management for Security, Privacy, and Data Management at Salesforce, emphasized in an interview with CRN that these new capabilities are essential as partners guide customers through AI adoption. “Before launching any major AI initiative, ensuring robust data backup and hygiene is critical,” Hay said. “With AI and autonomous agents, the quality of insights depends entirely on the integrity of your data. These new tools help businesses minimize risk while maximizing AI’s potential.” Key Enhancements for AI and Security The integration empowers solution providers to: “Clean, well-managed data isn’t just about compliance—it accelerates operations, enhances customer experiences, and ensures accuracy,” Hay added. Salesforce announced its acquisition of Own Co. in September 2023, bringing over 7,000 customers into its ecosystem. The newly integrated features include: 1. Secure Data Masking & Sandbox Testing 2. Enhanced Monitoring & Threat Detection 3. Robust Backup & Recovery 4. AI-Ready Data Insights with Salesforce Discover 5. Cost-Efficient Data Archiving Why This Matters for AI Adoption As businesses increasingly rely on AI agents and predictive analytics, ensuring data integrity, security, and recoverability is non-negotiable. Salesforce’s integration of Own Co.’s capabilities provides a low-risk pathway to cleaner, more resilient data—ultimately leading to: For partners and customers, these enhancements mean smoother AI deployments, reduced risk, and better business outcomes. Interested in leveraging these new capabilities? Contact Tectonic today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Second Wave of AI Agents

Second Wave of AI Agents

The “second wave” of AI agents refers to the evolution of AI beyond simple chatbots and into more sophisticated, autonomous systems that can plan, execute, and deliver results independently, often leveraging large language models (LLMs). These agents are characterized by their ability to interact with other applications, interpret the screen, fill out forms, and coordinate with other AI systems to achieve a desired outcome. They are also seen as a significant step beyond the first wave of AI, which primarily focused on predictive models and statistical learning.  Key Characteristics of the Second Wave of AI Agents: Examples and Applications: In 2023 Bill Gates prophesized AI Agents would be here in 5 years. His timing was off. But not his prediction. The Future of Computing: Your AI Agent, Your Digital Sidekick Imagine this: No more juggling apps. No more digging through menus. No more searching for a document or a spreadsheet. Just tell your device—in plain English—what you need, and it handles the rest. Whether it’s planning a tour, managing your schedule, or helping with work, your AI assistant will understand you personally, adapting to your life based on what you choose to share. This isn’t science fiction. Today, everyone online has access to an AI-powered personal assistant far more advanced than anything available in 2023. Meet the Agent: The Next Era of Computing This next-generation software—called an agent—responds to natural language and accomplishes tasks using deep knowledge of you and your needs. Bill Gates first wrote about agents in his 1995 book The Road Ahead, but only now, with recent AI breakthroughs, have they become truly possible. Agents won’t just change how we interact with technology. They’ll reshape the entire software industry, marking the biggest shift in computing since we moved from command lines to touchscreens. Consider Salesforce’s AgentForce. A platform driven by automated AI agents that can be trained to do virtually anything. Freeing staff up from mundane data entry and administrative work to really set them loose. Marketers can once again create content, but with the insights provided by AI. Sales teams can close deals, but with the lead rating details provided by AI. Developers can devote more time to writing code but letting AI do the repetitive pieces that take time away from awe inspiring development. Why This Changes Everything We’re on the brink of a revolution—one where technology doesn’t just respond to commands but anticipates your needs and acts on your behalf. The age of the AI agent is here, and it’s going to redefine how we live and work. By Tectonic’s Marketing Operations Manager, Shannan Hearne Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Code Genie

Salesforce Code Genie

How Salesforce’s Agentforce Is Reshaping Development—Saving 30,000 Hours a Month “AI agents are transforming my role—shifting me from pure technical execution to strategic leadership,” says one Salesforce developer. Instead of spending hours on repetitive tasks like code reviews or debugging, she now focuses on designing scalable architectures, optimizing workflows, and driving innovation. This shift reflects a broader evolution in software development: Developers are becoming AI supervisors, guiding autonomous agents, refining outputs, and ensuring alignment with business goals. Success in this new paradigm requires systems thinking, context management, and strategic oversight—not just coding expertise. Agentforce: The AI-Powered Developer Revolution Salesforce is already leading this transition with Agentforce, its digital labor platform, which has saved 30,000 developer hours per month—equivalent to 15 full-time engineers—by automating routine tasks. Key tools powering this transformation include: Unlike traditional AI coding assistants (which suggest snippets or autocomplete boilerplate), Agentforce agents act autonomously. For example, a developer can simply prompt: “Create a component that calls this API, processes these parameters, and returns success/failure status.” The AI then: The developer’s role? Review, refine, and ensure alignment with broader system goals. CodeGenie: Salesforce’s Internal AI Powerhouse Behind Agentforce lies CodeGenie, Salesforce’s internal AI assistant, built on its proprietary CodeGen model. The results speak for themselves: ✅ 7M+ lines of code accepted✅ 500K+ developer questions answered✅ 30K+ hours saved monthly✅ Seamless integration (IDEs, GitHub, Slack, CLI) “CodeGenie handles repetitive work, freeing me to solve complex problems,” says NaveenKumar Namachivayam, Senior Software Engineer at Salesforce. “It’s like having an expert collaborator—making coding faster, smarter, and more efficient.” Lessons from Salesforce’s AI Journey These insights don’t just benefit Salesforce—they directly shape Agentforce’s external offerings. CodeGenie’s success, for example, informed Agentforce for Developers, ensuring enterprise users get battle-tested AI assistance. The Bottom Line: AI Won’t Replace Developers—It Will Elevate Them Just as cloud computing didn’t kill IT jobs, AI won’t make developers obsolete—it will redefine their roles. The future belongs to those who: 🔹 Embrace AI as a force multiplier🔹 Shift from writing code to orchestrating AI agents🔹 Focus on architecture, strategy, and innovation For organizations, this demands investment in training, culture, and tools that empower teams to lead in the agentic era. The message is clear: Developers who adapt will thrive—not as coders, but as AI-powered strategists. Salesforce’s Agentforce is proving it’s possible today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Agentforce: Modernizing 311 and Case Management

Join Tectonic for an informational webinar on Salesforce Agentforce, Modernizing 311 services, and Case management. In this webinar you will hear: For more information fill out the contact us form below or reach out to the Public Sector team [email protected] Get ready for the Next Frontier in Enterprise AI: Shaping Public Policies for Trusted AI Agents! AI agents are a technological revolution – the third wave of artificial intelligence after predictive and generative AI. They go beyond traditional automation, being capable of searching for relevant data, analyzing it to formulate a plan, and then putting the plan into action. Users can configure agents with guardrails that specify what actions they can take and when tasks should be handed off to humans. For the past 25 years, Salesforce has led their customers through every major technological shift: from cloud, to mobile, to predictive and generative AI, and, today, agentic AI. We are at the cusp of a pivotal moment for enterprise AI that has the opportunity to supercharge productivity and change the way we work forever. This will require governments working together with industry, civil society, and all stakeholders to ensure responsible technological advancement and workforce readiness. We look forward to continuing our contributions to the public policy discussions on trusted enterprise AI agents. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Slack Operating System

Agentforce in Slack

Agentforce in Slack: Elevating Engineering Productivity at Salesforce At Salesforce, we’ve proven that engineers do scale—when you remove the bottlenecks. The real challenge isn’t engineering talent; it’s the endless hunt for context. As teams expand, so does the time wasted searching for knowledge, switching between tools, and answering repetitive questions. Enter the Engineering Agent—a game-changing digital teammate built on Agentforce and deployed directly in Slack, where our engineers already collaborate. Integrated with Data Cloud, MuleSoft, and Heroku, this AI-powered assistant delivers instant, reliable support—whether answering technical questions, automating tests, or streamlining onboarding. The result? Engineers spend less time chasing information and more time building what matters. The Impact: Support Where Engineers Need It Most Senior engineers once spent 10+ minutes per support request—time better spent on high-value work. Now, the Engineering Agent in Slack serves as the first point of contact, providing instant answers in channels or DMs, 24/7. But it doesn’t stop there. Our agent acts as an “agent of agents”—intelligently routing questions to specialized sub-agents for precise, domain-specific responses. Each answer includes cited sources and relevant links, making knowledge access seamless without disrupting teammates. To ensure accuracy, the Engineering Agent continuously ingests structured and unstructured data from Slack, Confluence, GitHub, Google Docs, and more, with daily refreshes keeping responses up to date. Beyond Answers: Automating Workflows The Engineering Agent doesn’t just talk—it takes action. By orchestrating tasks via MuleSoft, it automates processes like: This reduces friction, accelerates workflows, and keeps engineers focused. The Future: Scaling Impact Today, the Engineering Agent supports 3,500+ users across 700+ Slack channels. As we expand from 18 to 30–40 specialized agents, we project: For Salesforce, Agentforce isn’t just a tool—it’s an always-on teammate. By embedding AI directly in Slack, we’ve transformed support, optimized workflows, and unlocked engineering potential. The Takeaway:For enterprises looking to boost productivity, modernize support, and empower engineers, deploying AI agents in Slack isn’t just smart—it’s essential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce’s AI Evolution

Salesforce’s AI Evolution:

Salesforce’s AI Evolution: Efficiency, Expansion, and What Comes Next Salesforce isn’t just a CRM giant anymore—it’s becoming a central hub for AI-driven enterprise automation. Its Agentforce platform, already in use by over 3,000 customers, is proving its worth, both for clients and internally. The company has automated 380,000 support requests with an 84% resolution rate without human intervention, while sales productivity has jumped 7% thanks to AI-generated leads. But the bigger story might be how Salesforce is changing the way businesses pay for AI. Moving toward consumption-based pricing—charging based on how much companies use AI agents and data—means revenue might fluctuate, but it also aligns with how modern tech scales. And with $37.9 billion in FY25 revenue (up 9% YoY) and net income surging 50%, Salesforce has the financial muscle to experiment. What’s Driving the AI Growth? The Risks: Unpredictability in the Shift The move to usage-based pricing means revenue could swing with customer adoption rates. If businesses are slow to ramp up AI usage, growth could stall. But if adoption accelerates—as it has internally, where AI has boosted engineering productivity by 30%—this model could pay off big. The Bottom Line Salesforce is betting that AI will make it indispensable to enterprises. With strong financials, a growing AI customer base, and smart partnerships, it’s well-positioned—but the real test will be whether businesses fully embrace AI agents at scale. If they do, Salesforce could become far more than a CRM. (Originally published on wdstock, April 2025) Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Google and Salesforce Expand Partnership

Google Unveils Agent2Agent (A2A)

Google Unveils Agent2Agent (A2A): An Open Protocol for AI Agents to Collaborate Directly Google has introduced the Agent2Agent Protocol (A2A), a new open standard that enables AI agents to communicate and collaborate seamlessly—regardless of their underlying framework, developer, or deployment environment. If the Model Context Protocol (MCP) gave agents a structured way to interact with tools, A2A takes it a step further by allowing them to work together as a team. This marks a significant step toward standardizing how autonomous AI systems operate in real-world scenarios. Key Highlights: How A2A Works Think of A2A as a universal language for AI agents—it defines how they: Crucially, A2A is designed for enterprise use from the ground up, with built-in support for:✔ Authentication & security✔ Push notifications & streaming updates✔ Human-in-the-loop workflows Why This Matters A2A could do for AI agents what HTTP did for the web—eliminating vendor lock-in and enabling businesses to mix-and-match agents across HR, CRM, and supply chain systems without custom integrations. Google likens the relationship between A2A and MCP to mechanics working on a car: Designed for Enterprise Security & Flexibility A2A supports opaque agents (those that don’t expose internal logic), making it ideal for secure, modular enterprise deployments. Instead of syncing internal states, agents share context via structured “Tasks”, which include: Communication happens via standard formats like HTTP, JSON-RPC, and SSE for real-time streaming. Available Now—With More to Come The initial open-source spec is live on GitHub, with SDKs, sample agents, and integrations for frameworks like: Google is inviting community contributions ahead of a production-ready 1.0 release later this year. The Bigger Picture If A2A gains widespread adoption—as its strong early backing suggests—it could accelerate the AI agent ecosystem much like Kubernetes did for cloud apps or OAuth for secure access. By solving interoperability at the protocol level, A2A paves the way for businesses to deploy a cohesive digital workforce composed of diverse, specialized agents. For enterprises future-proofing their AI strategy, A2A is a development worth watching closely. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

How AI Can Help Canadian Manufacturers Stay Competitive in a Changing Economy

Canada’s manufacturing sector faces mounting pressures—from a weak Canadian dollar to persistent supply chain disruptions. According to Salesforce’s Trends in Manufacturing Report, 63% of Canadian manufacturers say supply chain issues that began years ago still linger today, while unexpected equipment downtime costs large producers 8% of annual revenue. To navigate these challenges and future-proof operations, Canadian manufacturers must embrace AI-driven modernization—leveraging data intelligence, predictive analytics, and autonomous AI agents to boost efficiency, cut costs, and unlock new revenue streams. The Data Accessibility Challenge While 84% of Canadian manufacturers recognize the need to modernize, many struggle to extract real value from their digital investments. Key findings reveal: The problem? Siloed data prevents manufacturers from delivering real-time insights to frontline workers and AI tools—hindering predictive maintenance, inventory optimization, and customer service improvements. How AI Agents Drive Manufacturing Efficiency To maximize AI’s impact, manufacturers need a unified data platform (like Salesforce’s Manufacturing Data Cloud) that integrates: Autonomous AI agents (powered by natural language processing) can then automate decision-making, such as:✅ Detecting sales contract deviations and auto-correcting pricing or fulfillment issues.✅ Predicting equipment failures and scheduling proactive maintenance.✅ Optimizing stock levels by auto-reordering when inventory dips. 3 Key Areas Where AI Delivers Immediate ROI The Path Forward: Building an AI-Ready Foundation With economic uncertainty looming, Canadian manufacturers must act now to:🔹 Break down data silos (integrate IoT, ERP, and CRM systems).🔹 Deploy AI agents for autonomous decision-making in sales, maintenance, and logistics.🔹 Train teams to work alongside AI—not against it. The bottom line? AI isn’t just a competitive advantage—it’s becoming a necessity for survival in modern manufacturing. By harnessing connected data and intelligent automation, Canadian manufacturers can cut costs, boost productivity, and secure their future in an unpredictable global market. Ready to modernize? Start by auditing your data infrastructure—because AI is only as powerful as the insights it can access. Tectonic can help. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Marketing Automation

AI and Automation

The advent of AI agents is widely discussed as a transformative force in application development, with much of the focus on the automation that generative AI brings to the process. This shift is expected to significantly reduce the time and effort required for tasks such as coding, testing, deployment, and monitoring. However, what is even more intriguing is the change not just in how applications are built, but in what is being built. This perspective was highlighted during last week’s Salesforce developer conference, TDX25. Developers are no longer required to build entire applications from scratch. Instead, they can focus on creating modular building blocks and guidelines, allowing AI agents to dynamically assemble these components at runtime. In a pre-briefing for the event, Alice Steinglass, EVP and GM of Salesforce Platform, outlined this new approach. She explained that with AI agents, development is broken down into smaller, more manageable chunks. The agent dynamically composes these pieces at runtime, making individual instructions smaller and easier to test. This approach also introduces greater flexibility, as agents can interpret instructions based on policy documents rather than relying on rigid if-then statements. Steinglass elaborated: “With agents, I’m actually doing it differently. I’m breaking it down into smaller chunks and saying, ‘Hey, here’s what I want to do in this scenario, here’s what I want to do in this scenario.’ And then the agent, at runtime, is able to dynamically compose these individual pieces together, which means the individual instructions are much smaller. That makes it easier to test. It also means I can bring in more flexibility and understanding so my agent can interpret some of those instructions. I could have a policy document that explains them instead of hard coding them with if-then statements.” During a follow-up conversation, Steinglass further explored the practical implications of this shift. She acknowledged that adapting to this new paradigm would be a significant change for developers, comparable to the transition from web to mobile applications. However, she emphasized that the transition would be gradual, with stepping stones along the way. She noted: “It’s a sea change in the way we build applications. I don’t think it’s going to happen all at once. People will move over piece by piece, but the result’s going to be a fundamentally different way of building applications.” Different Building Blocks One reason the transition will be gradual is that most AI agents and applications built by enterprises will still incorporate traditional, deterministic functions. What will change is how these existing building blocks are combined with generative AI components. Instead of hard-coding business logic into predetermined steps, AI agents can adapt on-the-fly to new policies, rules, and goals. Steinglass provided an example from customer service: “What AI allows us to do is to break down those processes into components. Some of them will still be deterministic. For example, in a service agent scenario, AI can handle tasks like understanding customer intent and executing flexible actions based on policy documents. However, tasks like issuing a return or connecting to an ERP system will remain deterministic to ensure consistency and compliance.” She also highlighted how deterministic processes are often used for high-compliance tasks, which are automated due to their strict rules and scalability. In contrast, tasks requiring more human thought or frequent changes were previously left unautomated. Now, AI can bridge these gaps by gluing together deterministic and non-deterministic components. In sales, Salesforce’s Sales Development Representative (SDR) agent exemplifies this hybrid approach. The definition of who the SDR contacts is deterministic, based on factors like value or reachability. However, composing the outreach and handling interactions rely on generative AI’s flexibility. Deterministic processes re-enter the picture when moving a prospect from lead to opportunity. Steinglass explained that many enterprise processes follow this pattern, where deterministic inputs trigger workflows that benefit from AI’s adaptability. Connections to Existing Systems The introduction of the Agentforce API last week marked a significant step in enabling connections to existing systems, often through middleware like MuleSoft. This allows agents to act autonomously in response to events or asynchronous triggers, rather than waiting for human input. Many of these interactions will involve deterministic calls to external systems. However, non-deterministic interactions with autonomous agents in other systems require richer protocols to pass sufficient context. Steinglass noted that while some partners are beginning to introduce actions in the AgentExchange marketplace, standardized protocols like Anthropic’s Model Context Protocol (MCP) are still evolving. She commented: “I think there are pieces that will go through APIs and events, similar to how handoffs between systems work today. But there’s also a need for richer agent-to-agent communication. MuleSoft has already built out AI support for the Model Context Protocol, and we’re working with partners to evolve these protocols further.” She emphasized that even as richer communication protocols emerge, they will coexist with traditional deterministic calls. For example, some interactions will require synchronous, context-rich communication, while others will resemble API calls, where an agent simply requests a task to be completed without sharing extensive context. Agent Maturity Map To help organizations adapt to these new ways of building applications, Salesforce uses an agent maturity map. The first stage involves building a simple knowledge agent capable of answering questions relevant to the organization’s context. The next stage is enabling the agent to take actions, transitioning from an AI Q&A bot to a true agentic capability. Over time, organizations can develop standalone agents capable of taking multiple actions across the organization and eventually orchestrate a digital workforce of multiple agents. Steinglass explained: “Step one is ensuring the agent can answer questions about my data with my information. Step two is enabling it to take an action, starting with one action and moving to multiple actions. Step three involves taking actions outside the organization and leveraging different capabilities, eventually leading to a coordinated, multi-agent digital workforce.” Salesforce’s low-code tooling and comprehensive DevSecOps toolkit provide a significant advantage in this journey. Steinglass highlighted that Salesforce’s low-code approach allows business owners to build processes and workflows,

Read More
Salesforce Unveils Agentforce for Consumer Goods

Salesforce Unveils Agentforce for Consumer Goods

Salesforce Unveils Agentforce for Consumer Goods: Accelerating AI Adoption in Retail San Francisco, [April 2025] – Just eight days after launching Agentforce for Field Service, Salesforce has introduced Agentforce for Consumer Goods—a tailored solution designed to help brands quickly deploy AI agents across four key sectors: customer service, key account management, retail sales, and field operations. Unlike previous editions that offered pre-built AI agents for specific roles, this release provides a library of industry-specific skills and actions, empowering consumer goods companies to rapidly customize and deploy their own AI assistants. Why Agentforce for Consumer Goods? While businesses could already build agents on the standard Agentforce platform, this industry-focused edition accelerates deployment with:✔ Pre-configured skills for customer service, sales, and field teams✔ Faster implementation with ready-made automation components✔ Lower-risk experimentation for brands new to agentic AI “Salesforce is curating a smooth onboarding experience for companies entering the agentic AI era,” says Martin Schneider, VP & Principal Analyst at Constellation Research. “This gives quick wins—building confidence before diving into advanced multi-agent workflows.” Key Use Cases for Consumer Goods Brands 🛎️ AI-Powered Customer Service Agents Example: A rep at a home appliance company can ask an AI agent to check a customer’s product health—if maintenance is due, the agent drafts a service quote in seconds. 📈 Smarter Sales Assistants Example: If an account’s order volume drops unexpectedly, an AI agent can recommend new products to pitch, helping sales teams react faster. 🚚 Optimized Field Operations Example: When a customer requests a replacement, an AI agent instantly books delivery, assigns the nearest driver, and updates schedules—no manual input needed. The Bigger Picture: Salesforce’s Agentforce Momentum This launch follows: With 5,000+ customers already on Agentforce, industry-specific editions like this lower the barrier to entry—letting more brands test AI agents in low-stakes scenarios before scaling. What’s Next? Expect more vertical-focused Agentforce releases in 2025, building on earlier launches like Agentforce for Retail. For now, consumer goods brands have a new toolkit to turn repetitive tasks into automated workflows—freeing teams to focus on growth. Ready to explore AI agents for your business? Contact Tectonic today! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com