Design - gettectonic.com
Meta Joins the Race to Reinvent Search with AI

Meta Joins the Race to Reinvent Search with AI

Meta Joins the Race to Reinvent Search with AI Meta, the parent company of Facebook, Instagram, and WhatsApp, is stepping into the evolving AI-driven search landscape. As vendors increasingly embrace generative AI to transform search experiences, Meta aims to challenge Google’s dominance in this space. The company is reportedly developing an AI-powered search engine designed to provide conversational, AI-generated summaries of recent events and news. These summaries would be delivered via Meta’s AI chatbot, supported by a multiyear partnership with Reuters for real-time news insights, according to The Information. AI Search: A Growing Opportunity The push comes as generative AI reshapes search technology across the industry. Google, the long-standing leader, has integrated AI features such as AI Overviews into its search platform, offering users summarized search results, product comparisons, and more. This feature, now available in over 100 countries as of October 2024, signals a shift in traditional search strategies. Similarly, OpenAI, the creator of ChatGPT, has been exploring its own AI search model, SearchGPT, and forging partnerships with media organizations like the Associated Press and Hearst. However, OpenAI faces legal challenges, such as a lawsuit from The New York Times over alleged copyright infringement. Meta’s entry into AI-powered search aligns with a broader trend among tech giants. “It makes sense for Meta to explore this,” said Mark Beccue, an analyst with TechTarget’s Enterprise Strategy Group. He noted that Meta’s approach seems more targeted at consumer engagement than enterprise solutions, particularly appealing to younger audiences who are shifting away from traditional search behaviors. Shifting User Preferences Generational changes in search habits are creating opportunities for new players in the market. Younger users, particularly Gen Z and Gen Alpha, are increasingly turning to platforms like TikTok for lifestyle advice and Amazon for product recommendations, bypassing traditional search engines like Google. “Recent studies show younger generations are no longer using ‘Google’ as a verb,” said Lisa Martin, an analyst with the Futurum Group. “This opens the playing field for competitors like Meta and OpenAI.” Forrester Research corroborates this trend, noting a diversification in search behaviors. “ChatGPT’s popularity has accelerated this shift,” said Nikhil Lai, a Forrester analyst. He added that these changes could challenge Google’s search ad market, with its dominance potentially waning in the years ahead. Meta’s AI Search Potential Meta’s foray into AI search offers an opportunity to enhance user experiences and deepen engagement. Rather than pushing news content into users’ feeds—an approach that has drawn criticism—AI-driven search could empower users to decide what content they see and when they see it. “If implemented thoughtfully, it could transform the user experience and give users more control,” said Martin. This approach could also boost engagement by keeping users within Meta’s ecosystem. The Race for Revenue and Trust While AI-powered search is expected to increase engagement, monetization strategies remain uncertain. Google has yet to monetize its AI Overviews, and OpenAI’s plans for SearchGPT remain unclear. Other vendors, like Perplexity AI, are experimenting with models such as sponsored questions instead of traditional results. Trust remains a critical factor in the evolving search landscape. “Google is still seen as more trustworthy,” Lai noted, with users often returning to Google to verify AI-generated information. Despite the competition, the conversational AI search market lacks a definitive leader. “Google dominated traditional search, but the race for conversational search is far more open-ended,” Lai concluded. Meta’s entry into this competitive space underscores the ongoing evolution of search technology, setting the stage for a reshaped digital landscape driven by AI innovation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Google Prepares AI-Powered Jarvis Agent

Google Prepares AI-Powered Jarvis Agent

Google Prepares AI-Powered Jarvis Agent for Automated Browser Tasks in Chrome Google is reportedly gearing up to launch “Project Jarvis,” an AI-powered browser agent designed to automate tasks directly within the Chrome ecosystem. According to The Information, the tool is expected to roll out in December to select users and will leverage Google’s advanced Gemini 2.0 AI model. Jarvis aims to simplify repetitive online tasks, such as organizing information or booking reservations, offering a seamless and efficient digital assistant embedded within Chrome. This initiative reflects Google’s broader vision to enhance user experiences by automating web-based routines, making its browser a central hub for task automation. Anthropic Expands Desktop Automation with Claude 3.5 Sonnet Anthropic, a key player in the AI landscape, has advanced its Claude 3.5 model with a new “Computer Use” feature, enabling direct interaction with a user’s desktop. This update allows Claude to perform tasks such as typing, clicking, and managing multiple applications, making it a powerful tool for automating workflows like data entry, document management, and customer service. Available through APIs and platforms like Amazon Bedrock and Google Cloud’s Vertex AI, Claude’s new capabilities position it as a versatile solution for businesses seeking desktop-level automation, contrasting Google Jarvis’s browser-specific approach. By interpreting screen elements, Claude’s “Computer Use” mode supports broader applications beyond web tasks, offering businesses an edge in efficiency and scalability. How Google Jarvis Stands Out Unlike Anthropic’s desktop-oriented Claude Sonnet, Google Jarvis focuses on automating tasks within Chrome. Jarvis analyzes screenshots of web pages, interprets user commands, and executes actions like clicks or data entry. While still in development, Jarvis’s design suggests a future where mundane web-based tasks are seamlessly handled by AI. Powered by Google’s Gemini 2.0 language model, Jarvis is tailored for users who prioritize web-specific functions, creating a user-friendly assistant that requires no external software. This aligns with Google’s strategy to deepen integration within its ecosystem, making Chrome a more intuitive and productive environment. Microsoft’s Copilot Agents Lead Business Automation Microsoft, meanwhile, continues to enhance its Copilot AI agents, particularly within Dynamics 365. These specialized agents are designed to automate industry-specific workflows, from lead qualification in sales to financial data reconciliation. Unlike Google Jarvis or Anthropic Claude, Microsoft’s Copilot agents target enterprise users, embedding automation within business applications like Teams, Outlook, and SharePoint. With tools like Copilot Studio, organizations can customize workflows to meet specific needs, offering a level of flexibility that resonates with enterprise clients. Early adopters, including Vodafone and Cognizant, have reported significant productivity gains through these integrations. Microsoft’s efforts position Copilot as a robust partner for day-to-day operations, transforming tasks like analysis, project coordination, and document management into automated, efficient processes. Competing Visions for AI Agents As Google, Anthropic, and Microsoft refine their AI strategies, they’re carving out distinct niches in the AI agent landscape: These approaches highlight the diverse applications of AI agents, from enhancing individual user experiences to transforming business operations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce prompt builder

Salesforce Prompt Builder

Salesforce Prompt Builder: Field Generation Prompt Template What is a Prompt? A prompt is a set of detailed instructions designed to guide a Large Language Model (LLM) in generating relevant and high-quality output. Just like chefs fine-tune their recipes through testing and adjustments, prompt design involves iterating on instructions to ensure that the LLM delivers accurate, actionable results. Effective prompt design involves “grounding” your prompts with specific data, such as business context, product details, and customer information. By tailoring prompts to your particular needs, you help the LLM provide responses that align with your business goals. Like a well-crafted recipe, an effective prompt consists of both ingredients and instructions that work together to produce optimal results. A great prompt offers clear directions to the LLM, ensuring it generates output that meets your expectations. But what does an ideal prompt template look like? Here’s a breakdown: What is a Field Generation Prompt Template? The Field Generation Prompt Template is a tool that integrates AI-powered workflows directly into fields within Lightning record pages. This template allows users to populate fields with summaries or descriptions generated by an LLM, streamlining interactions and enhancing productivity during customer conversations. Let’s explore how to set up a Field Generation Prompt Template by using an example: generating a summary of case comments to help customer service agents efficiently review a case. Steps to Create a Field Generation Prompt Template 1. Create a New Rich Text Field on the Case Object 2. Enable Einstein Setup 3. Create a Prompt Template with the Field Generation Template Type 4. Configure the Prompt Template Workspace Optional: You can also use Flow or Apex to incorporate additional merge fields. 5. Preview the LLM’s Response Example Prompt: Scenario:You are a customer service representative at a company called ENForce.com, and you need a quick summary of a case’s comments. Record Merge Fields: Instructions: vbnetCopy codeFollow these instructions precisely. Do not add information not provided. – Refer to the “contact” as “client” in the summary. – Use clear, concise, and straightforward language in the active voice with a friendly, informal, and informative tone. – Include an introductory sentence and closing sentence, along with several bullet points. – Use a variety of emojis as bullet points to make the list more engaging. – Limit the summary to no more than seven sentences. – Do not include any reference to missing values or incomplete data. 6. Add the “Case Summary” Field to the Lightning Record Page 7. Generate the Summary By following these steps, you can leverage Salesforce’s Prompt Builder to enhance case management processes and improve the efficiency of customer service interactions through AI-assisted summaries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Transforming the Role of Data Science Teams

Transforming the Role of Data Science Teams

GenAI: Transforming the Role of Data Science Teams Challenges, Opportunities, and the Evolving Responsibilities of Data Scientists Generative AI (GenAI) is revolutionizing the AI landscape, offering faster development cycles, reduced technical overhead, and enabling groundbreaking use cases that once seemed unattainable. However, it also introduces new challenges, including the risks of hallucinations and reliance on third-party APIs. For Data Scientists and Machine Learning (ML) teams, this shift directly impacts their roles. GenAI-driven projects, often powered by external providers like OpenAI, Anthropic, or Meta, blur traditional lines. AI solutions are increasingly accessible to non-technical teams, but this accessibility raises fundamental questions about the role and responsibilities of data science teams in ensuring effective, ethical, and future-proof AI systems. Let’s explore how this evolution is reshaping the field. Expanding Possibilities Without Losing Focus While GenAI unlocks opportunities to solve a broader range of challenges, not every problem warrants an AI solution. Data Scientists remain vital in assessing when and where AI is appropriate, selecting the right approaches—whether GenAI, traditional ML, or hybrid solutions—and designing reliable systems. Although GenAI broadens the toolkit, two factors shape its application: For example, incorporating features that enable user oversight of AI outputs may prove more strategic than attempting full automation with extensive fine-tuning. Differentiation will not come from simply using LLMs, which are widely accessible, but from the unique value and functionality they enable. Traditional ML Is Far from Dead—It’s Evolving with GenAI While GenAI is transformative, traditional ML continues to play a critical role. Many use cases, especially those unrelated to text or images, are best addressed with ML. GenAI often complements traditional ML, enabling faster prototyping, enhanced experimentation, and hybrid systems that blend the strengths of both approaches. For instance, traditional ML workflows—requiring extensive data preparation, training, and maintenance—contrast with GenAI’s simplified process: prompt engineering, offline evaluation, and API integration. This allows rapid proof of concept for new ideas. Once proven, teams can refine solutions using traditional ML to optimize costs or latency, or transition to Small Language Models (SMLs) for greater control and performance. Hybrid systems are increasingly common. For example, DoorDash combines LLMs with ML models for product classification. LLMs handle cases the ML model cannot classify confidently, retraining the ML system with new insights—a powerful feedback loop. GenAI Solves New Problems—But Still Needs Expertise The AI landscape is shifting from bespoke in-house models to fewer, large multi-task models provided by external vendors. While this simplifies some aspects of AI implementation, it requires teams to remain vigilant about GenAI’s probabilistic nature and inherent risks. Key challenges unique to GenAI include: Data Scientists must ensure robust evaluations, including statistical and model-based metrics, before deployment. Monitoring tools like Datadog now offer LLM-specific observability, enabling teams to track system performance in real-world environments. Teams must also address ethical concerns, applying frameworks like ComplAI to benchmark models and incorporating guardrails to align outputs with organizational and societal values. Building AI Literacy Across Organizations AI literacy is becoming a critical competency for organizations. Beyond technical implementation, competitive advantage now depends on how effectively the entire workforce understands and leverages AI. Data Scientists are uniquely positioned to champion this literacy by leading initiatives such as internal training, workshops, and hackathons. These efforts can: The New Role of Data Scientists: A Strategic Pivot The role of Data Scientists is not diminishing but evolving. Their expertise remains essential to ensure AI solutions are reliable, ethical, and impactful. Key responsibilities now include: By adapting to this new landscape, Data Scientists will continue to play a pivotal role in guiding organizations to harness AI effectively and responsibly. GenAI is not replacing them; it’s expanding their impact. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Autonomous Agents on the Agentforce Platform

Leveraging Agentforce

At Dreamforce 2024, Salesforce customers showcased the power of Agentforce by creating over 10,000 autonomous agents, each designed to address specific business challenges. The message was clear: “If you can describe it, Agentforce can do it.” By leveraging Agentforce, customers are able to create a flexible, on-demand digital workforce that operates without limitations, making it easy to build and deploy agents using familiar Salesforce tools and language. Why This Matters: Recent Salesforce research reveals that U.S. consumers often spend up to nine hours interacting with customer service to resolve a single issue. Moreover, 67% of consumers are frustrated when their issues aren’t resolved immediately and may abandon one-third of customer service interactions. This presents a massive opportunity to enhance the customer experience with AI-powered agents. “Piloting Agentforce made a noticeable difference during our busiest period — back-to-school season. We saw a 40% increase in case resolution, surpassing the performance of our old bot. Agentforce helps manage routine tasks, allowing our service teams to focus on more complex cases.” – Kevin Quigley, Director of Process Improvement, Wiley What’s New: Several new solutions are now available to all customers: Going Deeper: Agentforce is fully integrated into the Salesforce Platform, combining powerful data, AI, and the Salesforce Customer 360 ecosystem. This integration unlocks infinite agent capacity and proactive actions across all roles and channels, with full context on every customer interaction. Industry-Specific Examples: Agentforce’s flexibility allows it to serve various industries with tailored solutions: Customer & Analyst Quotes: “Agentforce is enhancing Saks’ ability to provide personalized customer support, automating routine tasks like order tracking, which allows our teams to focus on delivering a high-touch experience.” – Mike Hite, Chief Technology Officer, Saks Global “With Agentforce, OpenTable is automating routine tasks, saving time for our reps to focus on strengthening customer relationships and providing exceptional service to diners and restaurants worldwide.” – George Pokorny, Senior VP of Global Customer Success, OpenTable “By integrating Agentforce with Data Cloud and MuleSoft, we’re unlocking the full potential of our data, driving faster decisions and reimagining how we serve clients.” – Caroline Basyn, Chief Digital & IT Officer, The Adecco Group “Agentforce will revolutionize ezCater’s food management services, blending AI and human interaction to ensure seamless, personalized experiences for every customer.” – Erin DeCesare, CTO, ezCater Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Agentforce Testing Tool

Agentforce Testing Tool

Salesforce Unveils Agentforce Testing Center: A Breakthrough in AI Agent Lifecycle Management Salesforce, the global leader in AI-powered CRM solutions, has announced the Agentforce Testing Center, a first-of-its-kind platform for managing the lifecycle of autonomous AI agents. This innovative solution enables organizations to test AI agents at scale, leveraging synthetic data in secure environments, while ensuring accurate performance and robust monitoring. Designed to meet the unique demands of deploying intelligent AI agents, the Agentforce Testing Center introduces new tools to test, prototype, and optimize AI agents without disrupting live production systems. Core Features of the Agentforce Testing Center Why It Matters Autonomous AI agents represent a paradigm shift in enterprise software, capable of reasoning, retrieving data, and acting on behalf of users. However, ensuring their reliability and trustworthiness requires a robust testing framework that eliminates risks to live systems. The Agentforce Testing Center addresses these challenges by combining: “Agentforce is helping businesses create a limitless workforce,” said Adam Evans, EVP and GM for Salesforce AI Platform. “To deliver this value quickly, CIOs need advanced tools for testing and monitoring autonomous systems. Agentforce Testing Center provides the necessary framework for secure, repeatable deployment.” Customer and Analyst Perspectives Shree Reddy, CIO, PenFed:“With nearly 3 million members, PenFed is dedicated to providing personalized, efficient service. Using Data Cloud Sandboxes, we’re able to test and refine AI agents, ensuring they deliver fast, accurate support that aligns with our members’ financial goals.” Keith Kirkpatrick, Research Director, The Futurum Group:“To instill trust in AI, businesses must rigorously test autonomous agents. Salesforce’s Testing Center enables confidence by simulating hundreds of interaction scenarios, helping organizations deploy AI agents securely and effectively.” Availability A Competitive Edge in AI Lifecycle Management Salesforce’s Agentforce Testing Center sets a new industry standard for testing and deploying AI agents at scale. By providing a secure, scalable, and transparent solution, Salesforce enables businesses to embrace an “agent-first” approach with confidence. As enterprises continue adopting AI, tools like the Agentforce Testing Center will play a critical role in accelerating innovation while maintaining trust and reliability. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Empowering LLMs with a Robust Agent Framework

PydanticAI: Empowering LLMs with a Robust Agent Framework As the Generative AI landscape evolves at a historic pace, AI agents and multi-agent systems are expected to dominate 2025. Industry leaders like AWS, OpenAI, and Microsoft are racing to release frameworks, but among these, PydanticAI stands out for its unique integration of the powerful Pydantic library with large language models (LLMs). Why Pydantic Matters Pydantic, a Python library, simplifies data validation and parsing, making it indispensable for handling external inputs such as JSON, user data, or API responses. By automating data checks (e.g., type validation and format enforcement), Pydantic ensures data integrity while reducing errors and development effort. For instance, instead of manually validating fields like age or email, Pydantic allows you to define models that automatically enforce structure and constraints. Consider the following example: pythonCopy codefrom pydantic import BaseModel, EmailStr class User(BaseModel): name: str age: int email: EmailStr user_data = {“name”: “Alice”, “age”: 25, “email”: “[email protected]”} user = User(**user_data) print(user.name) # Alice print(user.age) # 25 print(user.email) # [email protected] If invalid data is provided (e.g., age as a string), Pydantic throws a detailed error, making debugging straightforward. What Makes PydanticAI Special Building on Pydantic’s strengths, PydanticAI brings structured, type-safe responses to LLM-based AI agents. Here are its standout features: Building an AI Agent with PydanticAI Below is an example of creating a PydanticAI-powered bank support agent. The agent interacts with customer data, evaluates risks, and provides structured advice. Installation bashCopy codepip install ‘pydantic-ai-slim[openai,vertexai,logfire]’ Example: Bank Support Agent pythonCopy codefrom dataclasses import dataclass from pydantic import BaseModel, Field from pydantic_ai import Agent, RunContext from bank_database import DatabaseConn @dataclass class SupportDependencies: customer_id: int db: DatabaseConn class SupportResult(BaseModel): support_advice: str = Field(description=”Advice for the customer”) block_card: bool = Field(description=”Whether to block the customer’s card”) risk: int = Field(description=”Risk level of the query”, ge=0, le=10) support_agent = Agent( ‘openai:gpt-4o’, deps_type=SupportDependencies, result_type=SupportResult, system_prompt=( “You are a support agent in our bank. Provide support to customers and assess risk levels.” ), ) @support_agent.system_prompt async def add_customer_name(ctx: RunContext[SupportDependencies]) -> str: customer_name = await ctx.deps.db.customer_name(id=ctx.deps.customer_id) return f”The customer’s name is {customer_name!r}” @support_agent.tool async def customer_balance(ctx: RunContext[SupportDependencies], include_pending: bool) -> float: return await ctx.deps.db.customer_balance( id=ctx.deps.customer_id, include_pending=include_pending ) async def main(): deps = SupportDependencies(customer_id=123, db=DatabaseConn()) result = await support_agent.run(‘What is my balance?’, deps=deps) print(result.data) result = await support_agent.run(‘I just lost my card!’, deps=deps) print(result.data) Key Concepts Why PydanticAI Matters PydanticAI simplifies the development of production-ready AI agents by bridging the gap between unstructured LLM outputs and structured, validated data. Its ability to handle complex workflows with type safety and its seamless integration with modern AI tools make it an essential framework for developers. As we move toward a future dominated by multi-agent AI systems, PydanticAI is poised to be a cornerstone in building reliable, scalable, and secure AI-driven applications. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More

Real-World Insights and Applications

Salesforce’s Agentforce empowers businesses to create and deploy custom AI agents tailored to their unique needs. Built on a foundation of flexibility, the platform leverages both Salesforce’s proprietary AI models and third-party models like those from OpenAI, Anthropic, Amazon, and Google. This versatility enables businesses to automate a wide range of tasks, from generating detailed sales reports to summarizing Slack conversations. AI in Action: Real-World Insights and Applications The “CXO AI Playbook” by Business Insider explores how organizations across industries and sizes are adopting AI. Featured companies reveal their challenges, the decision-makers driving AI initiatives, and their strategic goals for the future. Salesforce’s approach with Agentforce aligns with this vision, offering advanced tools to address dynamic business needs and improve operational efficiency. Building on Salesforce’s Legacy of Innovation Salesforce has long been a leader in AI integration. It introduced Einstein in 2016 to handle scripted tasks like predictive analytics. As AI capabilities evolved, Salesforce launched Einstein GPT and later Einstein Copilot, which expanded into decision-making and natural language processing. By early 2024, these advancements culminated in Agentforce—a platform designed to provide customizable, prebuilt AI agents for diverse applications. “We recognized that our customers wanted to extend our AI capabilities or create their own custom agents,” said Tyler Carlson, Salesforce’s VP of Business Development. A Powerful Ecosystem: Agentforce’s Core Features Agentforce is powered by the Atlas Reasoning Engine, Salesforce’s proprietary technology that employs ReAct prompting to enable AI agents to break down problems, refine their responses, and deliver more accurate outcomes. The engine integrates seamlessly with Salesforce’s own large language models (LLMs) and external models, ensuring adaptability and precision. Agentforce also emphasizes strict data privacy and security. For example, data shared with external LLMs is subject to limited retention policies and content filtering to ensure compliance and safety. Key Applications and Use Cases Businesses can leverage tools like Agentbuilder to design and scale AI agents with specific functionalities, such as: Seamless Integration with Slack Currently in beta, Agentforce’s Slack integration brings AI automation directly to the workplace. This allows employee-facing agents to execute tasks and answer queries within the communication tool. “Slack is valuable for employee-facing agents because it makes their capabilities easily accessible,” Carlson explained. Measurable Impact: Driving Success with Agentforce Salesforce measures the success of Agentforce by tracking client outcomes. Early adopters report significant results, such as a 90% resolution rate for customer inquiries managed by AI agents. As adoption grows, Salesforce envisions a robust ecosystem of partners, AI skills, and agent capabilities. “By next year, we foresee thousands of agent skills and topics available to clients, driving broader adoption across our CRM systems and Slack,” Carlson shared. Salesforce’s Agentforce represents the next generation of intelligent business automation, combining advanced AI with seamless integrations to deliver meaningful, measurable outcomes at scale. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Power of Historical Data in AI Performance

Power of Historical Data in AI Performance

Salesforce’s Agentforce is brimming with potential, but unlocking its full capabilities requires more than just real-time data—it demands access to rich, historical datasets. Agentforce thrives on robust time-series data to recognize patterns, track trends, and deliver accurate predictions. While Salesforce excels at capturing real-time data, significant gaps exist when it comes to historical insights. Without this essential context, AI initiatives risk falling short, generating outputs that fail to account for long-term trends and evolving customer behavior. The Power of Historical Data in AI Performance Comprehensive historical data provides the depth and context that AI models like Agentforce need to excel. By incorporating this data, businesses can enable smarter predictions, uncover hidden patterns, and drive more meaningful insights—giving them a decisive edge in competitive markets. Introducing Own Discover: Unlocking Historical Data To bridge the historical data gap, Salesforce has introduced Own Discover—a secure, scalable data service designed to make historical Salesforce data readily accessible for AI models. This groundbreaking tool empowers admins to harness the full value of their organization’s historical data, fueling platforms like Agentforce to accelerate AI-driven innovation. Key Benefits of Own Discover Elevating Agentforce with Historical Data For Salesforce admins, historical data has become essential, not optional, for maximizing AI success. By integrating tools like Own Discover, admins can provide Agentforce with the datasets it needs to deliver reliable, actionable insights. This not only improves AI performance but also positions admins as strategic enablers of their company’s AI-driven transformation. With Own Discover, Salesforce makes historical data a strategic asset—unlocking the full potential of Agentforce and empowering businesses to embrace AI with confidence. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Shift From AI Agents to AI Agent Tool Use

Shift From AI Agents to AI Agent Tool Use

The focus of AI development is evolving—from creating autonomous AI Agents to expanding the tools they use, significantly boosting their capabilities and flexibility. Tool access, described and utilized through natural language, is now a critical factor in the functionality and reach of these agents, enabling them to tackle increasingly complex tasks. The Role of Tools in AI Agent Effectiveness AI Agents thrive in user-specific environments like desktops, where rich context enables them to perform tasks more effectively. Instead of just scaling model power, leading AI companies such as OpenAI and Anthropic are pivoting toward tool-enabled frameworks, allowing agents to interact directly with computer GUI navigation for multi-step workflows. This shift positions tools as essential components of AI ecosystems, bridging the gap between raw computational power and actionable user outcomes. OpenAI’s “Operator” and the Future of Autonomous Agents OpenAI is set to release Operator, an AI Agent designed to autonomously perform tasks such as coding and travel booking on a user’s computer. Available as a research preview in January, Operator is part of a broader industry trend toward Agentic Tools that enable seamless, multi-step task execution with minimal user oversight. This approach reflects a shift toward real-time AI capabilities, moving beyond model-centric enhancements to unlock practical, task-driven use cases for AI Agents. Anthropic’s Desktop AI Agent Anthropic is also advancing the field with a reference implementation for computer use, enabling rapid deployment of AI-powered desktop agents. This implementation allows users to leverage Claude, Anthropic’s AI model, in a virtual machine environment with powerful tools for GUI interaction, command-line operations, and file management. Key Features This system provides a controlled yet versatile environment for AI Agents to operate in a safe, flexible, and efficient manner. Technical Implementation To deploy Anthropic’s computer-use demo: bashCopy codeexport ANTHROPIC_API_KEY=%your_api_key% docker run \ -e ANTHROPIC_API_KEY=<Your Anthropic API Key Goes Here> \ -v $HOME/.anthropic:/home/computeruse/.anthropic \ -p 5900:5900 \ -p 8501:8501 \ -p 6080:6080 \ -p 8080:8080 \ -it ghcr.io/anthropics/anthropic-quickstarts:computer-use-demo-latest Tools Overview Each session starts fresh but maintains state within the session, enabling smooth task execution. The Bigger Picture AI Agents are no longer defined solely by their autonomous capabilities. Instead, their success now hinges on how effectively they utilize tools to extend their reach and flexibility. Whether it’s through GUI navigation, command-line interactions, or file management, tool access is transforming the way AI Agents deliver value to users. By focusing on tools rather than just AI model power, companies like OpenAI and Anthropic are building the foundation for a new era of AI-driven productivity. Expect to see more advancements in Agentic Tool design, as the emphasis shifts from autonomy to capability. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
ai arms race

AI Arms Race

AI Arms Race: Providers Catching Up to Payers in Claims Review The healthcare sector is in the midst of an escalating AI arms race as providers adopt the same artificial intelligence technologies payers are leveraging for claims review. Insurers currently lead this race, using AI to streamline processes such as prior authorizations, but experts predict providers will soon narrow the gap. Insurers’ AI Advantage Leading payers, including UnitedHealth, Humana, and Cigna, have integrated algorithmic decision tools to assess claims and determine coverage eligibility. These technologies allow insurers to flag services that fall outside plan criteria, ostensibly increasing efficiency. This trend is expanding, as evidenced by Blue Shield of California’s announcement of a partnership with Salesforce to pilot claims automation technology in early 2025. The nonprofit insurer claims this initiative will reduce prior authorization decision times from weeks or days to mere seconds, benefiting providers and patients alike. However, provider experiences paint a more contentious picture. Reports from lawmakers and healthcare executives suggest AI-driven claims processes lead to a surge in denials. For example, Providence CFO Greg Hoffman revealed that AI adoption by payers resulted in a 50% increase in underpayments and initial denials over two years, forcing providers to significantly increase manual interventions to resolve claims. A Battle for Balance The imbalance in AI adoption has prompted providers to take action. Experts like Jeffrey Cribbs, a vice president analyst at Gartner, see this as a forced “arms race” in which both sides are continually refining their tools. While payers focus on flagging potential exceptions, providers are working to develop systems for more efficient claims submissions and dispute resolution. Providence’s strategy includes outsourcing revenue cycle management to R1, a 10-year partnership designed to quickly address rising claims denials. Hoffman explained that building equivalent AI systems internally would take years, making partnerships essential for staying competitive in the short term. Collaboration Among Providers On the provider side, executives like Sara Vaezy, EVP and Chief Strategy Officer at Providence, emphasize the need for collaboration. She advocates for coalitions to share data and establish AI standards, which would allow providers to compete more effectively. Panelists at HLTH echoed this sentiment. Amit Phull, Chief Physician Experience Officer at Doximity, argued that AI could eventually “level the playing field” for providers by reducing the time required for claims documentation. Deloitte principal consultant Bill Fera added that AI would allow providers to quickly analyze policies and determine whether a patient qualifies for coverage under plan terms. The Road Ahead Despite the current disparity, experts believe AI will eventually equalize the claims review process. Providers are beginning to invest in tools that will help them handle vast amounts of data efficiently, offering clarity in disputes and cutting down documentation time. “It’s still early innings,” Phull said, “but the technology is going to go a long way toward leveling that playing field.” For now, however, insurers maintain the upper hand. As providers navigate the complexities of AI adoption, partnerships and collaboration may prove critical in ensuring they remain competitive in this rapidly evolving landscape. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Simplify Data Management with Salesforce Schema Builder

Simplify Data Management with Salesforce Schema Builder and Tectonic Gone are the days of manually checking and cross-referencing data! Spending hours—or even involving multiple team members—to ensure data accuracy before presenting it to key stakeholders is a thing of the past. Today, Salesforce admins and developers are turning to built-in tools like Schema Builder to streamline data management. This intuitive graphical interface makes it easier to view, edit, and understand data models with confidence. Imagine effortlessly showing stakeholders or new teammates how data flows through your systems. With Schema Builder, you can achieve this and so much more. This powerful Salesforce tool enables you to: Let’s dive into what makes Schema Builder such a game-changer for admins and developers alike! What is Schema Builder in Salesforce? Schema Builder empowers Salesforce admins to easily edit or visualize data models in alignment with business goals. Whether you’re designing new objects, building relationships, or troubleshooting existing models, Schema Builder provides a dedicated space for managing complex data architectures. How to Access Schema Builder Schema Builder is a built-in Salesforce tool and is simple to access: That’s it—you’re ready to begin! Top Features of Schema Builder Schema Builder is an essential tool for managing Salesforce objects and relationships. Here are two standout features that make it invaluable for administrators: 1. Design Flexibility Schema Builder allows admins to easily add components to a schema, such as: This flexibility enables admins to tailor schemas to meet unique business needs, ensuring data is organized for optimal usability. 2. Simplified Object Creation Creating custom objects to store business data is a common task for Salesforce admins. With Schema Builder, these objects can be created quickly and efficiently, saving time and effort. How Does Schema Builder Work? Schema Builder provides an intuitive drag-and-drop interface that simplifies the process of visualizing and editing your Salesforce data model. One of the tool’s greatest advantages is its ability to present your data model without altering the underlying objects and relationships. For example, if you need to onboard a new hire or explain your data architecture to stakeholders, Schema Builder serves as the perfect visual aid. Impact Analysis with Schema Builder Beyond data visualization, Schema Builder supports impact analysis, helping businesses avoid costly mistakes when making changes to their Salesforce setup. For example, Schema Builder can display all object fields within your Salesforce org, giving you a comprehensive view of potential impacts before making adjustments. This feature ensures that workload changes, process updates, and business decisions are based on accurate and complete information. Pros and Cons of Salesforce Schema Builder While Schema Builder offers many benefits, it’s important to be aware of its limitations. Advantages Disadvantages Available in both Salesforce Classic and Lightning. Real-time data modifications can deploy errors if changes aren’t carefully reviewed. Usable by anyone with Customize Application permission. Limited visibility into dependencies between linked fields. Provides real-time updates for Salesforce changes. Potential risk of unintentional changes to critical fields, impacting other departments. Visualizes relationships between Salesforce objects and fields. Drag-and-drop user interface simplifies schema design. Conclusion: Make the Most of Schema Builder with Tectonic At Tectonic, we understand that Salesforce’s tools and technology are constantly evolving. Schema Builder is a prime example of how Salesforce enables admins to: Want to learn more about Salesforce tools that can help your business scale? Let us know! We specialize in helping organizations streamline their Salesforce solutions with innovative tools and strategies. Take Salesforce to the Next Level with Tectonic If you’re ready to extend Salesforce’s capabilities without writing a single line of code, look no further than Tectonic. Our no-code platform integrates seamlessly with Salesforce, empowering your teams to: With Tectonic, you can accelerate project timelines, reduce development costs, and bring processes to market faster—all while improving efficiency and scalability. Contact us today to learn more about how Tectonic can help your organization unlock the full potential of Salesforce. Let’s transform your data workflows into a competitive advantage! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com