Design Archives - gettectonic.com - Page 3
Python-Based Reasoning Engine

Python-Based Reasoning Engine

Introducing a Python-Based Reasoning Engine for Deterministic AI In the age of large language models (LLMs), there’s a growing need for deterministic systems that enforce rules and constraints while reasoning about information. We’ve developed a Python-based reasoning and validation framework that bridges the gap between traditional rule-based logic and modern AI capabilities, inspired by frameworks like Pydantic. This approach is designed for developers and non-technical experts alike, making it easy to build complex rule engines that translate natural language instructions into enforceable code. Our fine-tuned model automates the creation of rules while ensuring human oversight for quality and conflict detection. The result? Faster implementation of rule engines, reduced developer overhead, and flexible extensibility across domains. The Framework at a Glance Our system consists of five core components: To analogize, this framework operates like a game of chess: Our framework supports two primary use cases: Key Features and Benefits Case Studies Validation Engine: Ensuring Compliance A mining company needed to validate employee qualifications based on age, region, and role. Example Data Structure: jsonCopy code{ “employees”: [ { “name”: “Sarah”, “age”: 25, “role”: “Manager”, “documents”: [“safe_handling_at_work”, “heavy_lifting”] }, { “name”: “John”, “age”: 17, “role”: “Laborer”, “documents”: [“heavy_lifting”] } ] } Rules: jsonCopy code{ “rules”: [ { “type”: “min_age”, “parameters”: { “min_age”: 18 } }, { “type”: “dozer_operator”, “parameters”: { “document_type”: “dozer_qualification” } } ] } Outcome:The system flagged violations, such as employees under 18 or missing required qualifications, ensuring compliance with organizational rules. Reasoning Engine: Solving the River Crossing Puzzle The classic river crossing puzzle demonstrates the engine’s reasoning capabilities. Problem Setup:A farmer must ferry a goat, a wolf, and a cabbage across a river, adhering to specific constraints (e.g., the goat cannot be left alone with the cabbage). Steps: Output:The engine generated a solution in 0.0003 seconds, showcasing its efficiency in navigating complex logic. Advanced Features: Dynamic Rule Expansion The system supports real-time rule adjustments. For instance, adding a “wolf cannot be left with a chicken” constraint introduces a conflict. By extending rules (e.g., allowing the farmer to carry two items), the engine dynamically resolves previously unsolvable scenarios. Sample Code Snippet: pythonCopy codeclass CarryingCapacityRule(Rule): def evaluate(self, state): items_moved = sum(1 for item in [‘wolf’, ‘goat’, ‘cabbage’, ‘chicken’] if getattr(state, item) == state.farmer) return items_moved <= 2 def get_description(self): return “Farmer can carry up to two items at a time” Result:The adjusted engine solved the puzzle in three moves, down from seven, while maintaining rule integrity. Collaborative UI for Rule Creation Our user interface empowers domain experts to define rules without writing code. Developers validate these rules, which are then seamlessly integrated into the system. Visual Workflow: Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI Sales Agents Explained

AI Sales Agents Explained

If you were to ask a sales rep why they chose a job in sales, they’d probably tell you something like, “I love helping to people. I’m ambitious and goal-oriented, and no two days are ever the same.” The reality, however, is that a lot of time in sales isn’t spent selling. Recent data suggests that sales reps dedicate only 28% of their time to actual selling, with the rest swallowed up by administrative tasks and non-revenue-generating work. To ease this burden, sales teams are turning to AI sales agents, enabling them to focus more on building relationships and closing deals. Below, we explore the different types of AI sales agents and how businesses are using them to increase productivity, efficiency, and revenue. What is an AI sales agent? AI sales agents are autonomous applications that analyze and learn from sales and customer data to perform tasks with little or no human intervention. These agents can manage a wide range of activities, from top-of-funnel tasks like nurturing leads via email outreach, answering questions, booking meetings, and generating quotes to more integrated sales support like buyer roleplays and coaching. Unlike simple workflow automation, AI agents are capable of learning, enabling them to improve efficiency and act independently based on data and analysis. They often plug directly into existing CRMs, with pre-built capabilities or customizable configurations for specific business needs. Types of AI sales agents There are two primary types of AI sales agents: The ability to autonomously analyze data, create action plans, and execute them sets modern AI sales agents apart from traditional sales tools and bots. Key features of AI sales agents Benefits of AI sales agents Future trends for AI sales agents In the early days, AI in sales served primarily as a co-pilot — summarizing insights and assisting with tasks like forecasting. It often required significant human input and created siloed data challenges. Today, AI agents autonomously augment human teams, empowering them to focus on high-value tasks like building relationships. In the near future, AI sales agents are expected to handle increasingly complex workflows and multi-step processes across diverse channels. Potential advancements include: These developments promise to unlock new possibilities for efficiency, personalization, and customization in sales teams. AI sales agents pushing teams into a new era According to recent data, sales leaders are focusing on improving sales enablement, targeting new markets, and adopting new tools and technologies to drive growth. Challenges like scaling personalized interactions and hitting quotas are top of mind. AI sales agents directly address these needs, transforming sales organizations by enabling teams to offload repetitive work to autonomous systems while maintaining quality and personalization. Who uses AI sales agents? AI sales agents are used by sales teams to manage tasks such as lead qualification, follow-ups, meeting scheduling, and coaching. By handling repetitive activities, these agents free up reps to focus on relationship-building and closing deals, ultimately driving better outcomes for both teams and customers. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agents Set to Break Through in 2025

AI Agents Set to Break Through in 2025

2025: The Year AI Agents Transform Work and Life Despite years of hype around artificial intelligence, its true disruptive impact has so far been limited. However, industry experts believe that’s about to change in 2025 as autonomous AI agents prepare to enter and reshape nearly every facet of our lives. Since OpenAI’s ChatGPT took the world by storm in late 2022, billions of dollars have been funneled into the AI sector. Big tech and startups alike are racing to harness the transformative potential of the technology. Yet, while millions now interact with AI chatbots daily, turning them into tools that deliver tangible business value has proven challenging. A recent study by Boston Consulting Group revealed that only 26% of companies experimenting with AI have progressed beyond proof of concept to derive measurable value. This lag reflects the limitations of current AI tools, which serve primarily as copilots—capable of assisting but requiring constant oversight and remaining prone to errors. AI Agents Set to Break Through in 2025 The status quo, however, is poised for a radical shift. Autonomous AI agents—capable of independently analyzing information, making decisions, and taking action—are expected to emerge as the industry’s next big breakthrough. “For the first time, technology isn’t just offering tools for humans to do work,” Salesforce CEO Marc Benioff wrote in Time. “It’s providing intelligent, scalable digital labor that performs tasks autonomously. Instead of waiting for human input, agents can analyze information, make decisions, and adapt as they go.” At their core, AI agents leverage the same large language models (LLMs) that power tools like ChatGPT. But these agents take it further, acting as reasoning engines that develop step-by-step strategies to execute tasks. Armed with access to external data sources like customer records or financial databases and equipped with software tools, agents can achieve goals independently. While current LLMs still face reasoning limitations, advancements are on the horizon. New models like OpenAI’s “o1” and DeepSeek’s “R1” are specialized for reasoning, sparking hope that 2025 will see agents grow far more capable. Big Tech and Startups Betting Big Major players are already gearing up for this new era. Startups are also eager to carve out their share of the market. According to Pitchbook, funding deals for agent-focused ventures surged by over 80% in 2024, with the median deal value increasing nearly 50%. Challenges to Overcome Despite the enthusiasm, significant hurdles remain. 2025: A Turning Point Despite these challenges, many experts believe 2025 will mark the mainstream adoption of AI agents. A New World of Work No matter the pace, it’s clear that AI agents will dominate the industry’s focus in 2025. If the technology delivers on its promise, the workplace could undergo a profound transformation, enabling entirely new ways of working and automating tasks that once required human intervention. The question isn’t if agents will redefine the way we work—it’s how fast. By the end of 2025, the shift could be undeniable. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Meta Joins the Race to Reinvent Search with AI

Meta Joins the Race to Reinvent Search with AI

Meta Joins the Race to Reinvent Search with AI Meta, the parent company of Facebook, Instagram, and WhatsApp, is stepping into the evolving AI-driven search landscape. As vendors increasingly embrace generative AI to transform search experiences, Meta aims to challenge Google’s dominance in this space. The company is reportedly developing an AI-powered search engine designed to provide conversational, AI-generated summaries of recent events and news. These summaries would be delivered via Meta’s AI chatbot, supported by a multiyear partnership with Reuters for real-time news insights, according to The Information. AI Search: A Growing Opportunity The push comes as generative AI reshapes search technology across the industry. Google, the long-standing leader, has integrated AI features such as AI Overviews into its search platform, offering users summarized search results, product comparisons, and more. This feature, now available in over 100 countries as of October 2024, signals a shift in traditional search strategies. Similarly, OpenAI, the creator of ChatGPT, has been exploring its own AI search model, SearchGPT, and forging partnerships with media organizations like the Associated Press and Hearst. However, OpenAI faces legal challenges, such as a lawsuit from The New York Times over alleged copyright infringement. Meta’s entry into AI-powered search aligns with a broader trend among tech giants. “It makes sense for Meta to explore this,” said Mark Beccue, an analyst with TechTarget’s Enterprise Strategy Group. He noted that Meta’s approach seems more targeted at consumer engagement than enterprise solutions, particularly appealing to younger audiences who are shifting away from traditional search behaviors. Shifting User Preferences Generational changes in search habits are creating opportunities for new players in the market. Younger users, particularly Gen Z and Gen Alpha, are increasingly turning to platforms like TikTok for lifestyle advice and Amazon for product recommendations, bypassing traditional search engines like Google. “Recent studies show younger generations are no longer using ‘Google’ as a verb,” said Lisa Martin, an analyst with the Futurum Group. “This opens the playing field for competitors like Meta and OpenAI.” Forrester Research corroborates this trend, noting a diversification in search behaviors. “ChatGPT’s popularity has accelerated this shift,” said Nikhil Lai, a Forrester analyst. He added that these changes could challenge Google’s search ad market, with its dominance potentially waning in the years ahead. Meta’s AI Search Potential Meta’s foray into AI search offers an opportunity to enhance user experiences and deepen engagement. Rather than pushing news content into users’ feeds—an approach that has drawn criticism—AI-driven search could empower users to decide what content they see and when they see it. “If implemented thoughtfully, it could transform the user experience and give users more control,” said Martin. This approach could also boost engagement by keeping users within Meta’s ecosystem. The Race for Revenue and Trust While AI-powered search is expected to increase engagement, monetization strategies remain uncertain. Google has yet to monetize its AI Overviews, and OpenAI’s plans for SearchGPT remain unclear. Other vendors, like Perplexity AI, are experimenting with models such as sponsored questions instead of traditional results. Trust remains a critical factor in the evolving search landscape. “Google is still seen as more trustworthy,” Lai noted, with users often returning to Google to verify AI-generated information. Despite the competition, the conversational AI search market lacks a definitive leader. “Google dominated traditional search, but the race for conversational search is far more open-ended,” Lai concluded. Meta’s entry into this competitive space underscores the ongoing evolution of search technology, setting the stage for a reshaped digital landscape driven by AI innovation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
salesforce agentforce ai powered agentic agents

Marketing Agents for Campaigns

Marketing Agents: The Next Frontier in Campaign Creation and Optimization For years, content creation and distribution have been key challenges for marketers. According to recent research from the Content Marketing Institute, 54% of B2B marketers lack the resources needed to produce high-quality content at scale. Similarly, B2C marketers often struggle to create consistent, repeatable, and scalable processes. On top of these challenges, they must balance resource management to ensure campaigns are efficient, impactful, and engaging enough to stand out from the competition. The solution to these challenges lies in marketing agents, powered by data and AI. These intelligent tools streamline content creation, optimize campaigns, and make marketing processes more efficient. At this year’s Dreamforce, Salesforce introduced Agentforce, a suite of tools designed to create, customize, and deploy marketing agents across the Customer 360 platform. As part of this launch, Agentforce Campaigns is already gaining attention from customers eager to harness its potential. According to Salesforce’s 9th State of Marketing Report, 71% of marketers plan to integrate generative and predictive AI into their workflows within the next 18 months. This insight explores how marketing agents, like those offered in Agentforce, can transform customer engagement while enhancing internal team productivity and collaboration. Redefining Campaign Delivery with Marketing Agents Marketing agents are part of a broader suite of AI-powered virtual assistants that collaborate with humans to streamline workflows and optimize decision-making. These agents analyze data, interpret requests, and execute tasks such as content generation, campaign optimization, and performance analysis. Salesforce’s AI agents are designed to be partners, taking on time-consuming tasks so marketers can focus on high-value, strategic activities. With marketing agents, teams spend less time gathering and managing data and more time delivering personalized, impactful campaigns. A key mindset shift is required to maximize the value of these tools: instead of asking, “How can agents make business as usual more efficient?”, marketers should think, “How can agents transform the way we deliver exceptional customer experiences?” Streamlining Campaign Creation with Agentforce Campaigns 1. Intelligent Recommendations for Focused Action Einstein, Salesforce’s AI engine, analyzes data and provides contextual recommendations to help marketers achieve their goals. Agentforce Campaigns takes this a step further by turning these static recommendations into actionable steps, such as adjusting an audience segment or creating an entirely new campaign. 2. Rapid Campaign Brief Creation Agentforce Campaigns can draft campaign briefs in seconds using natural language prompts. These briefs incorporate organizational goals and marketing guidelines, making them ready for review and sharing within Salesforce. This saves time and ensures alignment from the start. 3. Contextual Content Creation Once a campaign brief is approved, marketing agents can generate campaign content such as emails and landing pages. Agentforce Campaigns automatically drafts subject lines, body copy, and calls to action within branded templates. Content can be refined using natural language commands or manual adjustments to fit the brand’s tone and strategy. 4. Simplified Audience Segmentation Marketers no longer need SQL expertise to build audience segments. With Agentforce Campaigns, they can describe their target audience in natural language, and the AI translates this into the necessary segment attributes. 5. Journey Activation at Scale Marketing agents simplify the process of activating multi-channel campaigns. Using natural language prompts, Agentforce Campaigns can configure a draft journey, complete with personalized content, ready for refinement and deployment. Unlocking New Opportunities with Marketing Agents 6. Unlimited Content Variations Time and budget constraints often limit the number of content variations marketers can produce. Agentforce Campaigns overcomes this limitation by generating multiple personalized content versions in seconds. This allows teams to deliver highly tailored messages for different audience segments without additional effort. 7. Nuanced Segment Exploration Traditional segmentation often depends on data science teams, which may have limited capacity. Marketing agents empower marketers to build their own nuanced segments using natural language. For example, separate churn segments can be created based on engagement scores, location, or purchase history, enabling more precise targeting. 8. A Culture of Testing and Learning Testing often falls by the wayside due to time constraints. Marketing agents make it easy to embed testing into campaigns by automating journey flows, enabling marketers to adopt a culture of continuous experimentation and improvement without increasing workloads. Transforming Marketing with Agentforce By integrating marketing agents into workflows, businesses can improve productivity, enhance personalization, and scale campaigns like never before. Agentforce Campaigns enables marketers to automate routine tasks, explore untapped opportunities, and deliver exceptional customer experiences. Marketers who embrace this shift will not only increase efficiency but also elevate their strategies, creating campaigns that are more targeted, impactful, and scalable. Note: Some features and services mentioned may not yet be available. Customers should base purchase decisions on currently available features. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Gen AI Unleased With Vector Database

Knowledge Graphs and Vector Databases

The Role of Knowledge Graphs and Vector Databases in Retrieval-Augmented Generation (RAG) In the dynamic AI landscape, Retrieval-Augmented Generation (RAG) systems are revolutionizing data retrieval by combining artificial intelligence with external data sources to deliver contextual, relevant outputs. Two core technologies driving this innovation are Knowledge Graphs and Vector Databases. While fundamentally different in their design and functionality, these tools complement one another, unlocking new potential for solving complex data problems across industries. Understanding Knowledge Graphs: Connecting the Dots Knowledge Graphs organize data into a network of relationships, creating a structured representation of entities and how they interact. These graphs emphasize understanding and reasoning through data, offering explainable and highly contextual results. How They Work Strengths Limitations Applications Vector Databases: The Power of Similarity In contrast, Vector Databases thrive in handling unstructured data such as text, images, and audio. By representing data as high-dimensional vectors, they excel at identifying similarities, enabling semantic understanding. How They Work Strengths Limitations Applications Combining Knowledge Graphs and Vector Databases: A Hybrid Approach While both technologies excel independently, their combination can amplify RAG systems. Knowledge Graphs bring reasoning and structure, while Vector Databases offer rapid, similarity-based retrieval, creating hybrid systems that are more intelligent and versatile. Example Use Cases Knowledge Graphs vs. Vector Databases: Key Differences Feature Knowledge Graphs Vector Databases Data Type Structured Unstructured Core Strength Relational reasoning Similarity-based retrieval Explainability High Low Scalability Limited for large datasets Efficient for massive datasets Flexibility Schema-dependent Schema-free Challenges in Implementation Future Trends: The Path to Convergence As AI evolves, the distinction between Knowledge Graphs and Vector Databases is beginning to blur. Emerging trends include: This convergence is paving the way for smarter, more adaptive systems that can handle both structured and unstructured data seamlessly. Conclusion Knowledge Graphs and Vector Databases represent two foundational technologies in the realm of Retrieval-Augmented Generation. Knowledge Graphs excel at reasoning through structured relationships, while Vector Databases shine in unstructured data retrieval. By combining their strengths, organizations can create hybrid systems that offer unparalleled insights, efficiency, and scalability. In a world where data continues to grow in complexity, leveraging these complementary tools is essential. Whether building intelligent healthcare systems, enhancing recommendation engines, or powering semantic search, the synergy between Knowledge Graphs and Vector Databases is unlocking the next frontier of AI innovation, transforming how industries harness the power of their data. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Google Prepares AI-Powered Jarvis Agent

Google Prepares AI-Powered Jarvis Agent

Google Prepares AI-Powered Jarvis Agent for Automated Browser Tasks in Chrome Google is reportedly gearing up to launch “Project Jarvis,” an AI-powered browser agent designed to automate tasks directly within the Chrome ecosystem. According to The Information, the tool is expected to roll out in December to select users and will leverage Google’s advanced Gemini 2.0 AI model. Jarvis aims to simplify repetitive online tasks, such as organizing information or booking reservations, offering a seamless and efficient digital assistant embedded within Chrome. This initiative reflects Google’s broader vision to enhance user experiences by automating web-based routines, making its browser a central hub for task automation. Anthropic Expands Desktop Automation with Claude 3.5 Sonnet Anthropic, a key player in the AI landscape, has advanced its Claude 3.5 model with a new “Computer Use” feature, enabling direct interaction with a user’s desktop. This update allows Claude to perform tasks such as typing, clicking, and managing multiple applications, making it a powerful tool for automating workflows like data entry, document management, and customer service. Available through APIs and platforms like Amazon Bedrock and Google Cloud’s Vertex AI, Claude’s new capabilities position it as a versatile solution for businesses seeking desktop-level automation, contrasting Google Jarvis’s browser-specific approach. By interpreting screen elements, Claude’s “Computer Use” mode supports broader applications beyond web tasks, offering businesses an edge in efficiency and scalability. How Google Jarvis Stands Out Unlike Anthropic’s desktop-oriented Claude Sonnet, Google Jarvis focuses on automating tasks within Chrome. Jarvis analyzes screenshots of web pages, interprets user commands, and executes actions like clicks or data entry. While still in development, Jarvis’s design suggests a future where mundane web-based tasks are seamlessly handled by AI. Powered by Google’s Gemini 2.0 language model, Jarvis is tailored for users who prioritize web-specific functions, creating a user-friendly assistant that requires no external software. This aligns with Google’s strategy to deepen integration within its ecosystem, making Chrome a more intuitive and productive environment. Microsoft’s Copilot Agents Lead Business Automation Microsoft, meanwhile, continues to enhance its Copilot AI agents, particularly within Dynamics 365. These specialized agents are designed to automate industry-specific workflows, from lead qualification in sales to financial data reconciliation. Unlike Google Jarvis or Anthropic Claude, Microsoft’s Copilot agents target enterprise users, embedding automation within business applications like Teams, Outlook, and SharePoint. With tools like Copilot Studio, organizations can customize workflows to meet specific needs, offering a level of flexibility that resonates with enterprise clients. Early adopters, including Vodafone and Cognizant, have reported significant productivity gains through these integrations. Microsoft’s efforts position Copilot as a robust partner for day-to-day operations, transforming tasks like analysis, project coordination, and document management into automated, efficient processes. Competing Visions for AI Agents As Google, Anthropic, and Microsoft refine their AI strategies, they’re carving out distinct niches in the AI agent landscape: These approaches highlight the diverse applications of AI agents, from enhancing individual user experiences to transforming business operations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce prompt builder

Salesforce Prompt Builder

Salesforce Prompt Builder: Field Generation Prompt Template What is a Prompt? A prompt is a set of detailed instructions designed to guide a Large Language Model (LLM) in generating relevant and high-quality output. Just like chefs fine-tune their recipes through testing and adjustments, prompt design involves iterating on instructions to ensure that the LLM delivers accurate, actionable results. Effective prompt design involves “grounding” your prompts with specific data, such as business context, product details, and customer information. By tailoring prompts to your particular needs, you help the LLM provide responses that align with your business goals. Like a well-crafted recipe, an effective prompt consists of both ingredients and instructions that work together to produce optimal results. A great prompt offers clear directions to the LLM, ensuring it generates output that meets your expectations. But what does an ideal prompt template look like? Here’s a breakdown: What is a Field Generation Prompt Template? The Field Generation Prompt Template is a tool that integrates AI-powered workflows directly into fields within Lightning record pages. This template allows users to populate fields with summaries or descriptions generated by an LLM, streamlining interactions and enhancing productivity during customer conversations. Let’s explore how to set up a Field Generation Prompt Template by using an example: generating a summary of case comments to help customer service agents efficiently review a case. Steps to Create a Field Generation Prompt Template 1. Create a New Rich Text Field on the Case Object 2. Enable Einstein Setup 3. Create a Prompt Template with the Field Generation Template Type 4. Configure the Prompt Template Workspace Optional: You can also use Flow or Apex to incorporate additional merge fields. 5. Preview the LLM’s Response Example Prompt: Scenario:You are a customer service representative at a company called ENForce.com, and you need a quick summary of a case’s comments. Record Merge Fields: Instructions: vbnetCopy codeFollow these instructions precisely. Do not add information not provided. – Refer to the “contact” as “client” in the summary. – Use clear, concise, and straightforward language in the active voice with a friendly, informal, and informative tone. – Include an introductory sentence and closing sentence, along with several bullet points. – Use a variety of emojis as bullet points to make the list more engaging. – Limit the summary to no more than seven sentences. – Do not include any reference to missing values or incomplete data. 6. Add the “Case Summary” Field to the Lightning Record Page 7. Generate the Summary By following these steps, you can leverage Salesforce’s Prompt Builder to enhance case management processes and improve the efficiency of customer service interactions through AI-assisted summaries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
salesforce agentforce ai powered agentic agents

Agentforce 2.0 Unveiled

Salesforce Unveils Agentforce 2.0: Transforming Workflows with Enhanced AI Reasoning and Data Integration Salesforce has launched Agentforce 2.0, the next-generation version of its digital labor platform, offering enterprises new pre-built skills, advanced workflow integrations, and enhanced AI reasoning capabilities. Designed to create a “limitless workforce,” Agentforce 2.0 equips businesses with AI agents capable of executing complex tasks across any department, system, or workflow with improved precision and efficiency. Key Enhancements in Agentforce 2.0 1. Expanded Pre-Built Skills and IntegrationsAgentforce 2.0 introduces a robust library of pre-built agent skills compatible with Salesforce CRM, Slack, Tableau, and partner-developed tools on the AppExchange. Additionally, integrations with MuleSoft allow businesses to extend Agentforce capabilities across any system or workflow. 2. Advanced AI Reasoning and RetrievalPowered by Salesforce’s upgraded Atlas Reasoning Engine and retrieval-augmented generation (RAG) technology, the platform now handles deeply nuanced queries and multi-step tasks, leveraging enriched context from Data Cloud. 3. Enhanced Agent BuilderAgentforce’s updated Agent Builder can interpret natural language instructions—such as “onboard new team members”—to auto-generate agents and workflows. It also pulls from the expanded skill library to streamline agent creation, saving time and improving customizability. 4. Slack IntegrationSlack Actions are now embedded into Agentforce, enabling AI agents to interact directly within Slack. For example, agents can send direct messages summarizing project updates or modify Slack Canvas documents in response to customer feedback. Industry Impact and Adoption Marc Benioff, Chair and CEO of Salesforce, highlighted the transformative potential of Agentforce 2.0:“This launch takes our digital labor platform to the next level, blending AI, data, apps, and automation to reshape how businesses operate. Agentforce 2.0 empowers organizations to build a limitless workforce, delivering unprecedented levels of intelligence, customization, and efficiency.” Leading enterprises like Accenture, The Adecco Group, IBM, Finnair, and Indeed are already leveraging Agentforce to augment operations. A Growing Market for Digital Labor The release of Agentforce 2.0 responds to surging demand for agentic AI, with Salesforce closing 200 platform deals within a week and adding thousands more to its pipeline. According to CEO Marc Benioff, Salesforce plans to expand its salesforce by 2,000 workers to support adoption. “Digital labor is the new horizon for businesses,” Benioff remarked. “The way we architect, run, and staff our organizations is undergoing a fundamental transformation.” Challenges and Opportunities While the platform promises significant productivity gains, analysts warn of potential governance and security concerns. By 2028, Gartner predicts AI agent misuse could account for 25% of enterprise breaches. Salesforce emphasizes the importance of robust security measures to support adoption and mitigate risks. With over 80% of executives planning to deploy AI agents within three years (according to Capgemini), Agentforce 2.0 positions Salesforce as a leader in the evolving digital workforce space. Agentforce 2.0 is now available globally, with early adopters reporting improved scalability, efficiency, and customer satisfaction. For more information, visit the Salesforce Agentforce product page. About SalesforceSalesforce is a global leader in customer relationship management (CRM), enabling companies to connect with customers in new and innovative ways. With cutting-edge AI, data, and automation solutions, Salesforce empowers businesses to drive productivity, efficiency, and growth. For more details, visit www.salesforce.com. About TectonicWe are a niche, high quality, service-oriented US based technology services provider.We specialize in helping companies take advantage of the cross section between CRM, marketing, the use of data and analytics to shape behaviors and drive desired financial performance results. We have industry leading delivery capabilities addressing some of the most complex technology services, integrations and Salesforce implementation. Our delivery teams have over 200 certifications across a wide variety of technology services and products, including products, services and solutions serving sales, services, marketing, communities, customers, clients, operations, call centers, loyalty programs, just to name a few. In addition, we have highly skilled, cost effective off-shore delivery capabilities that allow us to provide our services at competitive, value added pricing levels. Please reach out and let us see how we can help you and your company. Tectonic is your Salesforce implementation partner. For more details, visit www.gettectonic.com. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI and UX Design

AI and UX Design

This insight comprehensively covers how AI is transforming UX design, presenting both opportunities and challenges while emphasizing the importance of maintaining a human-centric approach. Here’s a polished and slightly condensed version, retaining the core points for better clarity and engagement: AI in UX Design: Transforming Experiences in 2024 and Beyond In 2024, artificial intelligence (AI) is redefining user experience (UX) design and research. From streamlining processes to elevating personalization, UX professionals are integrating AI into their workflows to create experiences that are more intuitive and efficient. This insight explores how AI is reshaping UX and how designers can leverage it while preserving the human touch. How AI is Revolutionizing UX Design 1. Advanced AI Technologies in UXAI technologies like machine learning (ML), natural language processing (NLP), and computer vision are empowering designers with tools to understand user behavior better, build conversational interfaces, and create accessible, adaptable designs. These innovations provide deeper insights into user preferences and help refine interfaces to align with evolving needs. 2. Automating Routine Design TasksAI is taking over repetitive tasks such as rapid prototyping, A/B testing, and user data analysis, allowing designers to focus on creative, strategic challenges. For example: 3. Enhanced PersonalizationAI-driven systems offer dynamic content delivery, adaptive interfaces, and predictive behavior modeling to craft uniquely tailored experiences. These enhancements not only engage users but also foster loyalty by addressing individual preferences in real time. Balancing AI and Human-Centric Design While AI accelerates UX processes, maintaining a human-centered approach is essential. Successful integration requires: Best Practices for AI-Driven UX Design Ethical Considerations in AI-Enhanced UX Ethics remain at the forefront of AI in UX. Key concerns include: Learning from Case Studies These examples highlight how thoughtful AI integration can transform UX into a seamless, user-friendly journey. Preparing for Future Trends Looking ahead to 2025 and beyond, AI will continue to introduce innovations like emotional recognition and generative design, enabling even more intuitive user experiences. However, challenges such as data privacy concerns and high implementation costs will persist. UX professionals must adapt by blending AI-driven insights with human creativity, ensuring that designs remain empathetic and accessible. Conclusion AI is revolutionizing UX design, offering tools to enhance efficiency, personalization, and user engagement. The key to success lies in using AI as a complement to creativity rather than a replacement. By balancing automation with human-centered principles and committing to ethical practices, businesses can harness AI to create transformative, user-focused designs that truly resonate. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Transforming the Role of Data Science Teams

Transforming the Role of Data Science Teams

GenAI: Transforming the Role of Data Science Teams Challenges, Opportunities, and the Evolving Responsibilities of Data Scientists Generative AI (GenAI) is revolutionizing the AI landscape, offering faster development cycles, reduced technical overhead, and enabling groundbreaking use cases that once seemed unattainable. However, it also introduces new challenges, including the risks of hallucinations and reliance on third-party APIs. For Data Scientists and Machine Learning (ML) teams, this shift directly impacts their roles. GenAI-driven projects, often powered by external providers like OpenAI, Anthropic, or Meta, blur traditional lines. AI solutions are increasingly accessible to non-technical teams, but this accessibility raises fundamental questions about the role and responsibilities of data science teams in ensuring effective, ethical, and future-proof AI systems. Let’s explore how this evolution is reshaping the field. Expanding Possibilities Without Losing Focus While GenAI unlocks opportunities to solve a broader range of challenges, not every problem warrants an AI solution. Data Scientists remain vital in assessing when and where AI is appropriate, selecting the right approaches—whether GenAI, traditional ML, or hybrid solutions—and designing reliable systems. Although GenAI broadens the toolkit, two factors shape its application: For example, incorporating features that enable user oversight of AI outputs may prove more strategic than attempting full automation with extensive fine-tuning. Differentiation will not come from simply using LLMs, which are widely accessible, but from the unique value and functionality they enable. Traditional ML Is Far from Dead—It’s Evolving with GenAI While GenAI is transformative, traditional ML continues to play a critical role. Many use cases, especially those unrelated to text or images, are best addressed with ML. GenAI often complements traditional ML, enabling faster prototyping, enhanced experimentation, and hybrid systems that blend the strengths of both approaches. For instance, traditional ML workflows—requiring extensive data preparation, training, and maintenance—contrast with GenAI’s simplified process: prompt engineering, offline evaluation, and API integration. This allows rapid proof of concept for new ideas. Once proven, teams can refine solutions using traditional ML to optimize costs or latency, or transition to Small Language Models (SMLs) for greater control and performance. Hybrid systems are increasingly common. For example, DoorDash combines LLMs with ML models for product classification. LLMs handle cases the ML model cannot classify confidently, retraining the ML system with new insights—a powerful feedback loop. GenAI Solves New Problems—But Still Needs Expertise The AI landscape is shifting from bespoke in-house models to fewer, large multi-task models provided by external vendors. While this simplifies some aspects of AI implementation, it requires teams to remain vigilant about GenAI’s probabilistic nature and inherent risks. Key challenges unique to GenAI include: Data Scientists must ensure robust evaluations, including statistical and model-based metrics, before deployment. Monitoring tools like Datadog now offer LLM-specific observability, enabling teams to track system performance in real-world environments. Teams must also address ethical concerns, applying frameworks like ComplAI to benchmark models and incorporating guardrails to align outputs with organizational and societal values. Building AI Literacy Across Organizations AI literacy is becoming a critical competency for organizations. Beyond technical implementation, competitive advantage now depends on how effectively the entire workforce understands and leverages AI. Data Scientists are uniquely positioned to champion this literacy by leading initiatives such as internal training, workshops, and hackathons. These efforts can: The New Role of Data Scientists: A Strategic Pivot The role of Data Scientists is not diminishing but evolving. Their expertise remains essential to ensure AI solutions are reliable, ethical, and impactful. Key responsibilities now include: By adapting to this new landscape, Data Scientists will continue to play a pivotal role in guiding organizations to harness AI effectively and responsibly. GenAI is not replacing them; it’s expanding their impact. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
google agentspace

Google Agentspace

Google Agentspace: Boosting Productivity with AI-Powered Agents Google has unveiled Agentspace, a cutting-edge tool designed to revolutionize workplace productivity by combining the power of AI agents, Google Gemini 2.0, and its advanced search capabilities. This tool aims to streamline workflows, enhance information discovery, and empower enterprises to unlock the full potential of their data. What is Google Agentspace? Google Agentspace is an enterprise-focused productivity platform that simplifies complex tasks involving planning, research, and content generation. By integrating AI-powered tools like NotebookLM Plus, it enables employees to uncover insights, interact with unstructured and structured data, and make informed decisions—all in one centralized platform. Key features include: Core Benefits of Google Agentspace 1. Streamlined Information Discovery Employees often waste hours sifting through fragmented data in emails, documents, and spreadsheets. Agentspace serves as a centralized knowledge hub, offering conversational assistance, proactive suggestions, and actionable insights from both unstructured and structured data sources. With pre-built connectors for tools like Google Drive, Jira, Microsoft SharePoint, and ServiceNow, Agentspace ensures seamless integration with existing systems, providing employees with relevant information faster. 2. Enhanced Multimodal Capabilities Agentspace leverages Google’s search expertise and Gemini 2.0 to provide advanced reasoning capabilities. Employees can query in multiple formats (text, audio, video), translate information into different languages, and generate audio summaries, enhancing productivity and accessibility. 3. Task Automation Across Departments Agentspace empowers teams across various functions to automate repetitive tasks, such as: 4. Scalable AI for Enterprises Agentspace offers a low-code visual tool for creating custom AI agents tailored to specific business needs. These agents can automate multi-step workflows, conduct in-depth research, and assist with data-driven content generation, enabling enterprises to scale AI adoption effortlessly. Security and Responsible AI Google Agentspace is built on Google Cloud’s secure-by-design infrastructure, ensuring that enterprises can deploy AI tools with confidence. Key Security Features Google is also addressing responsible AI concerns with tools for evaluation, content moderation, and bias mitigation, ensuring ethical and explainable AI use in the workplace. Use Cases Google Agentspace provides solutions tailored to various enterprise needs: Challenges and Future Directions Despite its potential, Agentspace faces hurdles such as employee training and adoption. Organizations must ensure that employees understand how to incorporate the tool into their daily workflows effectively. Moreover, Google’s approach to responsible AI will be closely scrutinized. Addressing issues like explainability, bias prevention, and robust data infrastructure will be crucial for building trust and driving adoption. Early Access and the Road Ahead Google is offering early access to Agentspace, allowing enterprises to explore its potential and provide feedback. As AI continues to reshape the workplace, tools like Agentspace position Google as a leader in productivity-enhancing solutions for businesses. For enterprises looking to harness AI to unlock creativity, improve decision-making, and automate workflows, Agentspace is the next step in digital transformation. Sign up for early access today to bring the future of work to your organization. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Autonomous Agents on the Agentforce Platform

Leveraging Agentforce

At Dreamforce 2024, Salesforce customers showcased the power of Agentforce by creating over 10,000 autonomous agents, each designed to address specific business challenges. The message was clear: “If you can describe it, Agentforce can do it.” By leveraging Agentforce, customers are able to create a flexible, on-demand digital workforce that operates without limitations, making it easy to build and deploy agents using familiar Salesforce tools and language. Why This Matters: Recent Salesforce research reveals that U.S. consumers often spend up to nine hours interacting with customer service to resolve a single issue. Moreover, 67% of consumers are frustrated when their issues aren’t resolved immediately and may abandon one-third of customer service interactions. This presents a massive opportunity to enhance the customer experience with AI-powered agents. “Piloting Agentforce made a noticeable difference during our busiest period — back-to-school season. We saw a 40% increase in case resolution, surpassing the performance of our old bot. Agentforce helps manage routine tasks, allowing our service teams to focus on more complex cases.” – Kevin Quigley, Director of Process Improvement, Wiley What’s New: Several new solutions are now available to all customers: Going Deeper: Agentforce is fully integrated into the Salesforce Platform, combining powerful data, AI, and the Salesforce Customer 360 ecosystem. This integration unlocks infinite agent capacity and proactive actions across all roles and channels, with full context on every customer interaction. Industry-Specific Examples: Agentforce’s flexibility allows it to serve various industries with tailored solutions: Customer & Analyst Quotes: “Agentforce is enhancing Saks’ ability to provide personalized customer support, automating routine tasks like order tracking, which allows our teams to focus on delivering a high-touch experience.” – Mike Hite, Chief Technology Officer, Saks Global “With Agentforce, OpenTable is automating routine tasks, saving time for our reps to focus on strengthening customer relationships and providing exceptional service to diners and restaurants worldwide.” – George Pokorny, Senior VP of Global Customer Success, OpenTable “By integrating Agentforce with Data Cloud and MuleSoft, we’re unlocking the full potential of our data, driving faster decisions and reimagining how we serve clients.” – Caroline Basyn, Chief Digital & IT Officer, The Adecco Group “Agentforce will revolutionize ezCater’s food management services, blending AI and human interaction to ensure seamless, personalized experiences for every customer.” – Erin DeCesare, CTO, ezCater Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Agentforce Testing Tool

Agentforce Testing Tool

Salesforce Unveils Agentforce Testing Center: A Breakthrough in AI Agent Lifecycle Management Salesforce, the global leader in AI-powered CRM solutions, has announced the Agentforce Testing Center, a first-of-its-kind platform for managing the lifecycle of autonomous AI agents. This innovative solution enables organizations to test AI agents at scale, leveraging synthetic data in secure environments, while ensuring accurate performance and robust monitoring. Designed to meet the unique demands of deploying intelligent AI agents, the Agentforce Testing Center introduces new tools to test, prototype, and optimize AI agents without disrupting live production systems. Core Features of the Agentforce Testing Center Why It Matters Autonomous AI agents represent a paradigm shift in enterprise software, capable of reasoning, retrieving data, and acting on behalf of users. However, ensuring their reliability and trustworthiness requires a robust testing framework that eliminates risks to live systems. The Agentforce Testing Center addresses these challenges by combining: “Agentforce is helping businesses create a limitless workforce,” said Adam Evans, EVP and GM for Salesforce AI Platform. “To deliver this value quickly, CIOs need advanced tools for testing and monitoring autonomous systems. Agentforce Testing Center provides the necessary framework for secure, repeatable deployment.” Customer and Analyst Perspectives Shree Reddy, CIO, PenFed:“With nearly 3 million members, PenFed is dedicated to providing personalized, efficient service. Using Data Cloud Sandboxes, we’re able to test and refine AI agents, ensuring they deliver fast, accurate support that aligns with our members’ financial goals.” Keith Kirkpatrick, Research Director, The Futurum Group:“To instill trust in AI, businesses must rigorously test autonomous agents. Salesforce’s Testing Center enables confidence by simulating hundreds of interaction scenarios, helping organizations deploy AI agents securely and effectively.” Availability A Competitive Edge in AI Lifecycle Management Salesforce’s Agentforce Testing Center sets a new industry standard for testing and deploying AI agents at scale. By providing a secure, scalable, and transparent solution, Salesforce enables businesses to embrace an “agent-first” approach with confidence. As enterprises continue adopting AI, tools like the Agentforce Testing Center will play a critical role in accelerating innovation while maintaining trust and reliability. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com