Galileo Archives - gettectonic.com
ai trust layer

Gen AI Trust Layers

Addressing the Generative AI Production Gap with Trust Layers Despite the growing excitement around generative AI, only a small percentage of projects have successfully moved into production. A key barrier is the persistent concern over large language models (LLMs) generating hallucinations—responses that are inconsistent or completely disconnected from reality. To address these issues, organizations are increasingly adopting AI trust layers to enhance reliability and mitigate risk. Understanding the Challenge Generative AI models, like LLMs, are powerful tools trained on vast amounts of unstructured data, enabling them to answer questions and complete tasks based on text, documents, recordings, images, and videos. This capability has revolutionized the creation of chatbots, co-pilots, and even semi-autonomous agents. However, these models are inherently non-deterministic, meaning they don’t always produce consistent outputs. This lack of predictability leads to the infamous phenomenon of hallucination—what the National Institute of Standards and Technology (NIST) terms “confabulation.” While hallucination is a byproduct of how generative models function, its risks in mission-critical applications cannot be ignored. Implementing AI Trust Layers To address these challenges, organizations are turning to AI trust layers—frameworks designed to monitor and control generative AI behavior. These trust layers vary in implementation: Galileo: Building AI Trust from the Ground Up Galileo, founded in 2021 by Yash Sheth, Atindriyo Sanyal, and Vikram Chatterji, has emerged as a leader in developing AI trust solutions. Drawing on his decade of experience at Google building LLMs for speech recognition, Sheth recognized early on that non-deterministic AI systems needed robust trust frameworks to achieve widespread adoption in enterprise settings. The Need for Trust in Mission-Critical AI “Sheth explained: ‘Generative AI doesn’t give you the same answer every time. To mitigate risk in mission-critical tasks, you need a trust framework to ensure these models behave as expected in production.’ Enterprises, which prioritize privacy, security, and reputation, require this level of assurance before deploying LLMs at scale. Galileo’s Approach to Trust Layers Galileo’s AI trust layer is built on its proprietary foundation model, which evaluates the behavior of target LLMs. This approach is bolstered by metrics and real-time guardrails to block undesirable outcomes, such as hallucinations, data leaks, or harmful outputs. Key Products in Galileo’s Suite Sheth described the underlying technology: “Our evaluation foundation models are dependable, reliable, and scalable. They run continuously in production, ensuring bad outcomes are blocked in real time.” By combining these components, Galileo provides enterprises with a trust layer that gives them confidence in their generative AI applications, mirroring the reliability of traditional software systems. From Research to Real-World Impact Unlike vendors who quickly adapted traditional machine learning frameworks for generative AI, Galileo spent two years conducting research and developing its Generative AI Studio, launched in August 2023. This thorough approach has started to pay off: A Crucial Moment for AI Trust Layers As enterprises prepare to move generative AI experiments into production, trust layers are becoming essential. These frameworks address lingering concerns about the unpredictable nature of LLMs, allowing organizations to scale AI while minimizing risk. Sheth emphasized the stakes: “When mission-critical software starts becoming infused with AI, trust layers will define whether we progress or regress to the stone ages of software. That’s what’s holding back proof-of-concepts from reaching production.” With Galileo’s innovative approach, enterprises now have a path to unlock the full potential of generative AI—responsibly, securely, and at scale. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Generative AI Energy Consumption Rises

Generative AI Tools

Generative AI Tools: A Comprehensive Overview of Emerging Capabilities The widespread adoption of generative AI services like ChatGPT has sparked immense interest in leveraging these tools for practical enterprise applications. Today, nearly every enterprise app integrates generative AI capabilities to enhance functionality and efficiency. A broad range of AI, data science, and machine learning tools now support generative AI use cases. These tools assist in managing the AI lifecycle, governing data, and addressing security and privacy concerns. While such capabilities also aid in traditional AI development, this discussion focuses on tools specifically designed for generative AI. Not all generative AI relies on large language models (LLMs). Emerging techniques generate images, videos, audio, synthetic data, and translations using methods such as generative adversarial networks (GANs), diffusion models, variational autoencoders, and multimodal approaches. Here is an in-depth look at the top categories of generative AI tools, their capabilities, and notable implementations. It’s worth noting that many leading vendors are expanding their offerings to support multiple categories through acquisitions or integrated platforms. Enterprises may want to explore comprehensive platforms when planning their generative AI strategies. 1. Foundation Models and Services Generative AI tools increasingly simplify the development and responsible use of LLMs, initially pioneered through transformer-based approaches by Google researchers in 2017. 2. Cloud Generative AI Platforms Major cloud providers offer generative AI platforms to streamline development and deployment. These include: 3. Use Case Optimization Tools Foundation models often require optimization for specific tasks. Enterprises use tools such as: 4. Quality Assurance and Hallucination Mitigation Hallucination detection tools address the tendency of generative models to produce inaccurate or misleading information. Leading tools include: 5. Prompt Engineering Tools Prompt engineering tools optimize interactions with LLMs and streamline testing for bias, toxicity, and accuracy. Examples include: 6. Data Aggregation Tools Generative AI tools have evolved to handle larger data contexts efficiently: 7. Agentic and Autonomous AI Tools Developers are creating tools to automate interactions across foundation models and services, paving the way for autonomous AI. Notable examples include: 8. Generative AI Cost Optimization Tools These tools aim to balance performance, accuracy, and cost effectively. Martian’s Model Router is an early example, while traditional cloud cost optimization platforms are expected to expand into this area. Generative AI tools are rapidly transforming enterprise applications, with foundational, cloud-based, and domain-specific solutions leading the way. By addressing challenges like accuracy, hallucination, and cost, these tools unlock new potential across industries and use cases, enabling enterprises to stay ahead in the AI-driven landscape. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Thoughts on Workday With Illuminate

Thoughts on Workday With Illuminate

Workday Expands AI Across HR and Finance Platforms with ‘Illuminate’ Workday is significantly enhancing its AI capabilities within its HR and finance platforms through a new set of updates called Illuminate. These updates aim to improve automation and increase productivity by embedding AI more broadly across various HR processes. From routine tasks like content generation to complex problem-solving, Workday’s AI now identifies inefficiencies in HR workflows and offers recommendations for improvement. Thoughts on Workday With Illuminate follow. A key feature of Illuminate is a series of AI agents designed to assist in areas such as succession planning. These agents can suggest internal candidates that HR teams might overlook, helping organizations identify potential leaders within their workforce. During a press briefing ahead of the Workday Rising conference, TechTarget asked if the AI agent used in succession planning could fully capture the intricacies of the employee experience and assess leadership potential. David Somers, Chief Product Officer at Workday, acknowledged the sensitivity of succession planning but emphasized that AI is used to augment—not replace—human decision-making. The agents provide recommendations, while the final hiring decisions still involve talent acquisition professionals and interview panels. Workday’s updates include tools for a wide range of tasks, from content summarization to more advanced capabilities such as detecting bottlenecks in onboarding processes and suggesting optimizations. “These AI agents will streamline common business workflows, boosting productivity and freeing up users to focus on strategic, meaningful work,” Somers explained. While AI has long been part of Workday’s offerings, generative AI is now driving rapid transformation in HR practices. Workday’s Illuminate platform combines data with contextual insights, offering features like compensation data tailored to a company’s specific information. Users can access these AI capabilities through Workday Assistant, a generative AI chatbot that integrates with Microsoft Teams and Slack. This tool will be generally available early next year, making it easier for teams to interact with Workday’s AI-powered systems. HR industry expert Josh Bersin sees Workday’s Illuminate as part of a broader trend of AI agents in the HR space, similar to SAP’s Joule. He believes Workday’s new AI agents will be a major focus for the company, though building out all the necessary Workday transactions into these tools will take time. Bersin does not foresee trust issues among Workday users regarding Illuminate, noting that the platform isn’t open to non-Workday data, which limits concerns around data security. Bersin’s own AI assistant, Galileo, is also expected to integrate with Workday’s platform in the future, further enhancing its capabilities. rativAccording to recent Gartner surveys from March and June, the majority of HR leaders are adopting AI in their organizations. Only 15% of respondents indicated they had no plans to incorporate generative AI into their HR processes, signaling widespread acceptance of AI tools like those Workday is rolling out with Illuminate. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com