Generative AI Archives - gettectonic.com
Agentic AI is Here

On Premise Gen AI

In 2025, enterprises transitioning generative AI (GenAI) into production after years of experimentation are increasingly considering on-premises deployment as a cost-effective alternative to the cloud. Since OpenAI ignited the AI revolution in late 2022, organizations have tested large language models powering GenAI services on platforms like AWS, Microsoft Azure, and Google Cloud. These experiments demonstrated GenAI’s potential to enhance business operations while exposing the substantial costs of cloud usage. To avoid difficult conversations with CFOs about escalating cloud expenses, CIOs are exploring on-premises AI as a financially viable solution. Advances in software from startups and packaged infrastructure from vendors such as HPE and Dell are making private data centers an attractive option for managing costs. A survey conducted by Menlo Ventures in late 2024 found that 47% of U.S. enterprises with at least 50 employees were developing GenAI solutions in-house. Similarly, Informa TechTarget’s Enterprise Strategy Group reported a rise in enterprises considering on-premises and public cloud equally for new applications—from 37% in 2024 to 45% in 2025. This shift is reflected in hardware sales. HPE reported a 16% revenue increase in AI systems, reaching $1.5 billion in Q4 2024. During the same period, Dell recorded a record $3.6 billion in AI server orders, with its sales pipeline expanding by over 50% across various customer segments. “Customers are seeking diverse AI-capable server solutions,” noted David Schmidt, senior director of Dell’s PowerEdge server line. While heavily regulated industries have traditionally relied on on-premises systems to ensure data privacy and security, broader adoption is now driven by the need for cost control. Fortune 2000 companies are leading this trend, opting for private infrastructure over the cloud due to more predictable expenses. “It’s not unusual to see cloud bills exceeding 0,000 or even million per month,” said John Annand, an analyst at Info-Tech Research Group. Global manufacturing giant Jabil primarily uses AWS for GenAI development but emphasizes ongoing cost management. “Does moving to the cloud provide a cost advantage? Sometimes it doesn’t,” said CIO May Yap. Jabil employs a continuous cloud financial optimization process to maximize efficiency. On-Premises AI: Technology and Trends Enterprises now have alternatives to cloud infrastructure, including as-a-service solutions like Dell APEX and HPE GreenLake, which offer flexible pay-per-use pricing for AI servers, storage, and networking tailored for private data centers or colocation facilities. “The high cost of cloud drives organizations to seek more predictable expenses,” said Tiffany Osias, vice president of global colocation services at Equinix. Walmart exemplifies in-house AI development, creating tools like a document summarization app for its benefits help desk and an AI assistant for corporate employees. Startups are also enabling enterprises to build AI applications with turnkey solutions. “About 80% of GenAI requirements can now be addressed with push-button solutions from startups,” said Tim Tully, partner at Menlo Ventures. Companies like Ragie (RAG-as-a-service) and Lamatic.ai (GenAI platform-as-a-service) are driving this innovation. Others, like Squid AI, integrate custom AI agents with existing enterprise infrastructure. Open-source frameworks like LangChain further empower on-premises development, offering tools for creating chatbots, virtual assistants, and intelligent search systems. Its extension, LangGraph, adds functionality for building multi-agent workflows. As enterprises develop AI applications internally, consulting services will play a pivotal role. “Companies offering guidance on effective AI tool usage and aligning them with business outcomes will thrive,” Annand said. This evolution in AI deployment highlights the growing importance of balancing technological innovation with financial sustainability. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI evolves with tools like Agentforce and Atlas

Agentforce Powered Marketing

Maximize Team Productivity and Customer Engagement with Agentforce and AI-Powered Marketing Tools Transform your marketing operations with Agentforce, an advanced AI-powered suite seamlessly integrated into your platform. From building end-to-end campaigns to personalizing touchpoints in real time, Agentforce empowers your team to optimize performance with actionable AI insights. Here’s how: Revolutionize Campaign Management with Agentforce Agent-Driven Campaign Briefs Streamline campaign creation with Agentforce, which uses structured and unstructured data from Data Cloud to create tailored campaign briefs. Define your target segments and key messages effortlessly with the support of AI. AI-Powered Content Creation Leverage Agentforce to generate on-brand content at scale, including email subject lines, body copy, and SMS messages. Every piece of content aligns with your brand guidelines and campaign goals, ensuring consistency and relevance across audiences. Unified SMS Conversations Turn static promotions into dynamic, two-way conversations with Agentforce Unified SMS. Automatically connect customers to AI agents for tasks like appointment scheduling and offer redemption, delivering seamless customer experiences. Supercharge Insights and Actions with Data Cloud Agent-Driven AI Segmentation Create target audience segments in minutes using natural language prompts. With Agentforce and Data Cloud working in harmony, agents translate prompts into precise segment attributes—no technical expertise or SQL required. Integrate or Build Custom AI Models Develop predictive AI models with clicks, not code, or bring in existing models via direct integrations with tools like Amazon SageMaker, Google Vertex AI, or Databricks. Use these models to generate actionable predictions, such as purchase propensity or churn likelihood. Secure, Harmonized Data Foundation Keep your data safe on the Einstein Trust Layer while enabling agents to analyze harmonized, structured, and unstructured data in Data Cloud. This ensures informed decision-making without compromising security. Automate Intelligent Journeys with Marketing Cloud Engagement Journey Optimization Automate personalized campaign variations with predictive AI. Optimize engagement by tailoring content, timing, channels, and frequency dynamically across customer journeys. Generative AI for Content Creation Solve the content bottleneck with generative AI tools that instantly create on-brand copy and visuals grounded in first-party data, campaign insights, and brand guidelines—all while safeguarding trust. Real-Time Messaging Insights Stay proactive with Einstein Messaging Insights, which flags engagement anomalies like sudden drops in click-through rates. These real-time insights enable quick resolutions, preventing performance surprises. Unified WhatsApp Conversations Transform WhatsApp into a dynamic two-way engagement channel. Use a single WhatsApp number to connect marketing and service teams while enabling AI-driven self-service actions like appointment booking and offer redemptions. Scale Lead Generation and Account-Based Marketing Agent-Driven Campaign Creation Accelerate campaign planning with Agentforce, which handles everything from briefs to audience segmentation, content, and journey creation. Ground campaigns in real-time customer data for accurate targeting, all with marketer oversight for approvals. AI Lead and Account Scoring Boost alignment between marketing and sales with Einstein AI Scoring, which identifies top leads and prospects automatically. Improve ABM strategies with automated account rankings based on historical and behavioral data, driving higher conversions. Full-Funnel Attribution Gain end-to-end visibility with AI-powered multi-touch attribution. Use models like Einstein Attribution to measure the impact of each channel, event, or team activity on your pipeline, boosting ROI and campaign efficiency. Personalization on Auto-Pilot with AI Objective-Based AI Recommendations Set business objectives and let AI optimize product and content recommendations to achieve those goals. AI-Automated Offers Combine real-time customer behavior data with AI-driven insights to personalize offers across touchpoints. This results in higher satisfaction and conversion rates tailored to each individual customer. Real-Time Affinity Profiling Use AI to uncover customer affinities, preferences, and intent in real time. Deliver hyper-personalized messaging and offers across your website, app, and other channels for maximum engagement. Optimize Spend, Planning, and Performance with Marketing Cloud Intelligence AI-Powered Data Integration Say goodbye to spreadsheets and manual data maintenance. Automate data unification, KPI standardization, and cross-channel analytics with AI-powered connectors, saving time and boosting campaign effectiveness. AI Campaign Performance Insights Get interactive visualizations and AI-generated insights to adjust campaign spend and offers mid-flight. Use these insights to optimize ROI and maximize in-the-moment opportunities. Predictive Budgeting and Planning Allocate budgets more effectively with predictive AI. Real-time alerts help prevent overages or underspending, ensuring your marketing dollars are used efficiently for maximum return. With Agentforce and AI marketing tools, your team can focus on what matters most—building stronger customer relationships and driving measurable results. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Amazon Q Business

Amazon Q Business

Amazon Q Business: Revolutionizing Enterprise Productivity with Generative AI and Plugins Amazon Q Business is a generative AI-powered assistant that empowers employees by solving problems, generating content, and offering actionable insights from across enterprise data sources. In addition to its robust search capabilities across indexed third-party services, Amazon Q Business enables real-time access to dynamic data like stock prices, vacation balances, and location tracking through its plugins. These plugins also allow employees to perform direct actions—such as prioritizing service tickets—within enterprise applications, all through a single interface. This eliminates the need to toggle between systems, saving valuable time and increasing productivity. This insight delves into how Amazon Q Business plugins seamlessly integrate with enterprise applications through built-in and custom configurations. We’ll explore: Simplifying Enterprise Tasks with Plugins Amazon Q Business enables users to access non-indexed data—such as calendar availability, stock prices, or PTO balances—and execute actions like booking a meeting or submitting PTO using services like Jira, ServiceNow, Salesforce, Fidelity, Vanguard, ADP, Workday, and Google Calendar. This unified approach streamlines workflows and minimizes reliance on multiple apps for task completion. Solution Overview Amazon Q Business connects to over 50 enterprise applications using connectors and plugins: Plugins are categorized into two types: Built-in Plugins Amazon Q Business supports more than 50 actions across applications: Category Application Sample Actions Ticketing ServiceNow Create, update, delete tickets Zendesk Suite Search, create, update tickets Project Management Jira Cloud Read, create, update, delete issues Smartsheet Search and manage sheets and reports CRM Salesforce Manage accounts, opportunities, and cases Communication Microsoft Teams Send private or channel messages Productivity Google Calendar Find events, list calendars Salesforce Plugin Example The Salesforce plugin allows users to: Configuration Steps: Custom Plugins For scenarios not covered by built-in plugins, custom plugins enable seamless integration with proprietary systems. For example: HR Time Off Plugin Example This plugin allows employees to: Setup Steps: End-to-End Use Cases 1. Salesforce Integration Sam, a Customer Success Manager, retrieves high-value opportunities using the Salesforce plugin. She creates a new case directly from the Amazon Q interface, enhancing efficiency by reducing application switching. 2. ServiceNow Ticket Management Sam uses Amazon Q Business to resolve a laptop email sync issue. After referencing indexed IT documentation, she creates a ServiceNow ticket and escalates it directly through the plugin interface. 3. HR System Integration Sam checks her PTO balance and submits a vacation request using the HR Time Off custom plugin, ensuring seamless task completion without switching to another app. Impact on Workflow Efficiency Amazon Q Business plugins simplify workflows by: Conclusion Amazon Q Business plugins represent a transformative step in automating enterprise workflows and enhancing employee productivity. From preconfigured integrations to custom-built solutions, these plugins provide unparalleled flexibility to adapt to diverse business needs. How can Amazon Q Business transform workflows in your organization? Whether through built-in integrations or custom solutions, explore the power of Amazon Q Business plugins to unlock new levels of efficiency. Share your feedback and use cases to inspire innovation across enterprises! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Scope of Generative AI

Exploring Generative AI

Like most employees at most companies, I wear a few different hats around Tectonic. Whether I’m building a data model, creating and scheduing an email campaign, standing up a platform generative AI is always at my fingertips. At my very core, I’m a marketer. Have been for so long I do it without eveven thinking. Or at least, everyuthing I do has a hat tip to its future marketing needs. Today I want to share some of the AI content generators I’ve been using, am looking to use, or just heard about. But before we rip into the insight, here’s a primer. Types of AI Content Generators ChatGPT, a powerful AI chatbot, drew significant attention upon its November 2022 release. While the GPT-3 language model behind it had existed for some time, ChatGPT made this technology accessible to nontechnical users, showcasing how AI can generate content. Over two years later, numerous AI content generators have emerged to cater to diverse use cases. This rapid development raises questions about the technology’s impact on work. Schools are grappling with fears of plagiarism, while others are embracing AI. Legal debates about copyright and digital media authenticity continue. President Joe Biden’s October 2023 executive order addressed AI’s risks and opportunities in areas like education, workforce, and consumer privacy, underscoring generative AI’s transformative potential. What is AI-Generated Content? AI-generated content, also known as generative AI, refers to algorithms that automatically create new content across digital media. These algorithms are trained on extensive datasets and require minimal user input to produce novel outputs. For instance, ChatGPT sets a standard for AI-generated content. Based on GPT-4o, it processes text, images, and audio, offering natural language and multimodal capabilities. Many other generative AI tools operate similarly, leveraging large language models (LLMs) and multimodal frameworks to create diverse outputs. What are the Different Types of AI-Generated Content? AI-generated content spans multiple media types: Despite their varied outputs, most generative AI systems are built on advanced LLMs like GPT-4 and Google Gemini. These multimodal models process and generate content across multiple formats, with enhanced capabilities evolving over time. How Generative AI is Used Generative AI applications span industries: These tools often combine outputs from various media for complex, multifaceted projects. AI Content Generators AI content generators exist across various media. Below are good examples organized by gen ai type: Written Content Generators Image Content Generators Music Content Generators Code Content Generators Other AI Content Generators These tools showcase how AI-powered content generation is revolutionizing industries, making content creation faster and more accessible. I do hope you will comment below on your favorites, other AI tools not showcased above, or anything else AI-related that is on your mind. Written by Tectonic’s Marketing Operations Director, Shannan Hearne. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
From Chatbots to Agentic AI

From Chatbots to Agentic AI

The transition from LLM-powered chatbots to agentic systems, or agentic AI, can be summed up by the old saying: “Less talk, more action.” Keeping up with advancements in AI can be overwhelming, especially when managing an existing business. The speed and complexity of innovation can make it feel like the first day of school all over again. This insight offers a comprehensive look at AI agents, their components, and key characteristics. The introductory section breaks down the elements that form the term “AI agent,” providing a clear definition. After establishing this foundation, we explore the evolution of LLM applications, particularly the shift from traditional chatbots to agentic systems. The goal is to understand why AI agents are becoming increasingly vital in AI development and how they differ from LLM-powered chatbots. By the end of this guide, you will have a deeper understanding of AI agents, their potential applications, and their impact on organizational workflows. For those of you with a technical background who prefer to get hands-on, click here for the best repository for AI developers and builders. What is an AI Agent? Components of AI Agents To understand the term “AI agent,” we need to examine its two main components. First, let’s consider artificial intelligence, or AI. Artificial Intelligence (AI) refers to non-biological intelligence that mimics human cognition to perform tasks traditionally requiring human intellect. Through machine learning and deep learning techniques, algorithms—especially neural networks—learn patterns from data. AI systems are used for tasks such as detection, classification, and prediction, with content generation becoming a prominent domain due to transformer-based models. These systems can match or exceed human performance in specific scenarios. The second component is “agent,” a term commonly used in both technology and human contexts. In computer science, an agent refers to a software entity with environmental awareness, able to perceive and act within its surroundings. A computational agent typically has the ability to: In human contexts, an agent is someone who acts on behalf of another person or organization, making decisions, gathering information, and facilitating interactions. They often play intermediary roles in transactions and decision-making. To define an AI agent, we combine these two perspectives: it is a computational entity with environmental awareness, capable of perceiving inputs, acting with tools, and processing information using foundation models backed by both long-term and short-term memory. Key Components and Characteristics of AI Agents From LLMs to AI Agents Now, let’s take a step back and understand how we arrived at the concept of AI agents, particularly by looking at how LLM applications have evolved. The shift from traditional chatbots to LLM-powered applications has been rapid and transformative. Form Factor Evolution of LLM Applications Traditional Chatbots to LLM-Powered Chatbots Traditional chatbots, which existed before generative AI, were simpler and relied on heuristic responses: “If this, then that.” They followed predefined rules and decision trees to generate responses. These systems had limited interactivity, with the fallback option of “Speak to a human” for complex scenarios. LLM-Powered Chatbots The release of OpenAI’s ChatGPT on November 30, 2022, marked the introduction of LLM-powered chatbots, fundamentally changing the game. These chatbots, like ChatGPT, were built on GPT-3.5, a large language model trained on massive datasets. Unlike traditional chatbots, LLM-powered systems can generate human-like responses, offering a much more flexible and intelligent interaction. However, challenges remained. LLM-powered chatbots struggled with personalization and consistency, often generating plausible but incorrect information—a phenomenon known as “hallucination.” This led to efforts in grounding LLM responses through techniques like retrieval-augmented generation (RAG). RAG Chatbots RAG is a method that combines data retrieval with LLM generation, allowing systems to access real-time or proprietary data, improving accuracy and relevance. This hybrid approach addresses the hallucination problem, ensuring more reliable outputs. LLM-Powered Chatbots to AI Agents As LLMs expanded, their abilities grew more sophisticated, incorporating advanced reasoning, multi-step planning, and the use of external tools (function calling). Tool use refers to an LLM’s ability to invoke specific functions, enabling it to perform more complex tasks. Tool-Augmented LLMs and AI Agents As LLMs became tool-augmented, the emergence of AI agents followed. These agents integrate reasoning, planning, and tool use into an autonomous, goal-driven system that can operate iteratively within a dynamic environment. Unlike traditional chatbot interfaces, AI agents leverage a broader set of tools to interact with various systems and accomplish tasks. Agentic Systems Agentic systems—computational architectures that include AI agents—embody these advanced capabilities. They can autonomously interact with systems, make decisions, and adapt to feedback, forming the foundation for more complex AI applications. Components of an AI Agent AI agents consist of several key components: Characteristics of AI Agents AI agents are defined by the following traits: Conclusion AI agents represent a significant leap from traditional chatbots, offering greater autonomy, complexity, and interactivity. However, the term “AI agent” remains fluid, with no universal industry standard. Instead, it exists on a continuum, with varying degrees of autonomy, adaptability, and proactive behavior defining agentic systems. Value and Impact of AI Agents The key benefits of AI agents lie in their ability to automate manual processes, reduce decision-making burdens, and enhance workflows in enterprise environments. By “agentifying” repetitive tasks, AI agents offer substantial productivity gains and the potential to transform how businesses operate. As AI agents evolve, their applications will only expand, driving new efficiencies and enabling organizations to leverage AI in increasingly sophisticated ways. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Speed to Launch of Agentforce

Speed to Launch of Agentforce

Agentforce isn’t just another AI platform that requires months of customization. At most customers, they quickly saw its power, launching transformative generative AI experiences in just days—no AI engineers needed. For companies with larger admin teams, the benefits can be even greater. Unlike other platforms, Agentforce places a strong emphasis on data privacy, building on the trust that Salesforce is known for, making these virtual assistants invaluable. We began with employee-facing use cases, saving our team several hours per week. Now, with Agentforce, we’re seeing even more opportunities to drive efficiencies and better serve our customers. “We’re excited to leverage Agentforce to completely overhaul recruitment and enrollment at Unity Environmental University. Instead of traditional forms or chatbots, our students will soon engage with an autonomous recruitment agent directly on our website, offering personalized support throughout the college application process.”– Dr. Melik Khoury, President & CEO, Unity Environmental University “For first-generation college students, the 1:385 coach-to-student ratio makes personalized guidance challenging. By integrating Agentforce into our platform, we’re deploying cutting-edge solutions to better support students. These agents enable our coaches to focus on high-touch, personalized experiences while handling vital tasks like sharing deadlines and answering common questions—24/7.”– Siva Kumari, CEO, College Possible “Agentforce offers organizations a unique opportunity to move beyond incremental improvements and achieve exponential ROI. By automating customer interactions, improving outcomes, and reducing costs, it integrates data, flows, and user interfaces to mitigate risks and accelerate value creation. This agent-based platform approach allows businesses to harness AI’s full potential, revolutionizing customer engagement and paving the way for exponential growth.”– Rebecca Wettemann, CEO and Principal Analyst, Valoir “Autonomous agents powered by Salesforce’s Agentforce are revolutionizing customer experiences by providing fast, accurate, and personalized support around the clock. With advanced AI making decisions and taking actions autonomously, businesses can resolve customer issues more efficiently, fostering deeper interactions and enhancing satisfaction. This innovation enables companies to reallocate human resources to more complex tasks, boosting individual productivity and scaling business growth. Agentforce is setting new standards for seamless sales, service, marketing, and commerce interactions, reinforcing its leadership in customer experience.”– Michael Fauscette, CEO and Chief Analyst, Arion Research LLC “The best way to predict the future is to invent it.” — Alan Kay, Computer Science Pioneer Technology progresses in what biologists call punctuated equilibrium, with new capabilities slowly emerging from labs and tinkerers until a breakthrough shifts the axis of possibility. These pioneering feats create new paradigms, unleashing waves of innovation—much like the Apple Macintosh, the iPhone, and the Salesforce Platform, which revolutionized the enterprise software-as-a-service (SaaS) model and sparked an entire industry. The Age of Agentforce Begins At Dreamforce 2024, Salesforce Futures reflected on the launch of Agentforce, inspired by visions like the Apple Knowledge Navigator. In 2023, we used this inspiration to craft our Salesforce 2030 film, which showcased the collaboration between humans and autonomous AI agents. Now, with Agentforce, we’re witnessing that vision come to life. Agentforce is a suite of customizable AI agents and tools built on the Salesforce Platform, offering an elegant solution to the complexity of AI deployment. It addresses the challenges of integrating data, models, infrastructure, and applications into a unified system. With powerful tools like Agent Builder and Model Builder, organizations can easily create, customize, and deploy AI agents. Salesforce’s Atlas Reasoning Engine empowers these agents to handle both routine and complex tasks autonomously. A New Era of AI Innovation At Dreamforce 2024, over 10,000 attendees raced to build their own agents using the “Agent Builder” experience, turning verbal instructions into fully functioning agents in under 15 minutes. This wasn’t just another chatbot—it’s a new breed of AI that could transform how businesses operate and deliver superior customer experiences. Companies like Saks, OpenTable, and Wiley have quickly embraced this technology. As Mick Costigan and David Berthy of Salesforce Futures explain, “When we see signals like this, it pushes us toward the future. Soon, we’ll see complex, multi-agent systems solving higher-order challenges, both in the enterprise and in consumer devices.” Shaping the Future Agentforce isn’t just a product—it’s a platform for experimentation. With hundreds of thousands of Salesforce customers soon gaining access, the full potential of these tools will unfold in ways we can’t yet imagine. As with every major technological shift, the real magic will lie in how people use it. Every interaction, every agent deployed, and every problem solved will shape the future in unexpected ways. Platform Evolution Adam Evans, Salesforce SVP of Product, notes that Agentforce builds on the company’s transformation over the past four years, following the pattern of Salesforce’s original disruption of enterprise software. Unlike traditional solutions, Agentforce eliminates the need for customers to build their own AI infrastructure, providing a ready-to-use solution. At the core of Agentforce is the Atlas Reasoning Engine, delivering results that are twice as relevant and 33% more accurate than competing solutions. This engine integrates Salesforce Data Cloud, Flow for automation, and the Einstein Trust Layer for governance. Early Customer Results Early Agentforce deployments highlight how organizations are using autonomous agents to enhance, rather than replace, human workers: George Pokorny, Senior VP of Global Customer Success at OpenTable, shared, “Just saving two minutes on a ten-minute call lets our service reps focus on strengthening customer relationships, thanks to seamless integration with Service Cloud, giving us a unified view of diner preferences and history.” Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Agentic AI is Here

Agentic AI Revolution

The Agentic AI Revolution: Lead, Follow, or Get Out of the Way The era of agentic AI is here, and the message is clear—if you’re not leading the charge, you’re falling behind. Companies like Wiley and OpenTable are reshaping their industries with autonomous AI agents that don’t just assist but also analyze, strategize, and execute tasks with unparalleled efficiency. As these organizations demonstrate, the key to AI success lies in rewriting the rules of your industry rather than playing catch-up. Rewriting Industry Standards with Agentic AI Wiley: The education giant leveraged Agentforce, a digital labor platform for deploying autonomous AI agents, to transform its customer service operations. By onboarding representatives 50% faster and improving case resolution by 40%, Wiley streamlined its processes in just a few weeks. AI agents now handle registration and payment inquiries, directing students to resources and reducing the workload on human representatives. OpenTable: As the go-to reservation platform for 1.7 billion diners annually, OpenTable deploys AI agents to manage reservation changes and loyalty points. This allows employees to focus on customer relationships. Even a two-minute efficiency gain per interaction translates to massive operational savings. Salesforce Help Site: With over 60 million annual visits, the Salesforce Help site integrated Agentforce to resolve 83% of queries without human involvement. In just weeks, Agentforce doubled its capacity, handling over 32,000 automated conversations. These examples showcase a new era of digital labor where AI agents orchestrate high-value, multistep tasks, working tirelessly to deliver results. Far from replacing humans, they supercharge productivity and innovation, enabling companies to do more than ever before. How to Empower Your Workforce with AI Empowering your workforce for the next wave of AI doesn’t require months of preparation or millions of dollars. You don’t need to build or train your own large language model (LLM). Instead, integrating AI with existing data, automation, and workflows is the key to success, as demonstrated by leaders like Wiley and OpenTable. Here’s how to get started: 1. Real-Time Data Access AI thrives on real-time, high-quality data. Platforms like Salesforce Data Cloud unify structured and unstructured data, connecting it seamlessly to the LLM. Techniques such as retrieval-augmented generation (RAG) and semantic search ensure AI agents can access the most relevant data for any task. 2. Advanced Reasoning AI agents aren’t just about answering queries—they execute complex, multistep tasks. For example, they can process returns, reorder items, and even flag anomalies. Powered by reasoning engines, these agents draw data from systems like CRM, refine plans, and adapt dynamically until the task is completed correctly. 3. Built-In Security AI agents must operate within clear guardrails, knowing their limits and handing tasks off to humans when necessary. Strong permissions and security protocols are essential to ensure data protection and prevent unauthorized actions. 4. Action-Oriented Workflows Generative AI’s real value lies in action. By integrating tools like Salesforce Flow for task automation and MuleSoft APIs for system connectivity, AI agents can execute business workflows such as fraud detection, customer outreach, and case management. 5. Human-AI Collaboration The future of work isn’t AI replacing humans—it’s AI and humans working together. While agents handle data-intensive and repetitive tasks, humans bring strategic thinking, empathy, and creativity. This synergy leads to smarter decisions and redefines workflows across industries. Why Training Your Own LLM May Not Be the Answer Many companies assume training a proprietary LLM will give them a competitive edge. In reality, this process is costly, time-intensive, and requires constant updates to remain accurate. An LLM trained on static data quickly becomes outdated, much like a GPS that fails after the first detour. Instead, companies are turning to out-of-the-box AI solutions that integrate seamlessly with their existing systems. These tools offer the flexibility to scale quickly and adapt in real time, enabling businesses to stay competitive without the heavy lift of building from scratch. Scaling AI for the Future Many organizations remain stuck in pilot phases with AI due to data quality issues and a limited understanding of use cases. Companies like Wiley and OpenTable, however, have cracked the code: integrating prebuilt AI systems with robust data flows, automation, and workflows. By embracing agentic AI, forward-thinking organizations are creating digital labor forces that unlock new efficiencies, enhance customer experiences, and position themselves for long-term success. The trillion-dollar AI opportunity awaits—will you lead or trail behind? Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI is revolutionizing BI by transforming it from a retrospective tool into a proactive, real-time decision-making engine.

AI in Business Intelligence

AI in Business Intelligence: Applications, Benefits, and Challenges AI is rapidly transforming business intelligence (BI) by enhancing analytics capabilities and streamlining processes. This shift is reshaping how organizations leverage data for decision-making. Here’s an in-depth look at how AI complements BI, its advantages, and the challenges it introduces. The Evolution of Business Intelligence with AI BI has traditionally focused on aggregating historical and current data to provide insights into business operations—a process known as descriptive analytics. However, many decision-makers seek more: insights into future trends (predictive analytics) and actionable recommendations (prescriptive analytics). AI bridges this gap. With advanced tools like natural language processing (NLP) and machine learning (ML), AI enables businesses to move beyond static dashboards to dynamic, real-time insights. It also simplifies complex analytics, making data more accessible to business users and fostering more informed, proactive decision-making. Key Benefits of AI in Business Intelligence AI brings significant benefits to BI, including: Real-World Applications of AI in BI AI’s integration into BI goes beyond internal efficiency, delivering external value by enhancing customer experiences and driving business growth. Notable applications include: Challenges of AI in Business Intelligence Despite its potential, integrating AI into BI comes with challenges: Best Practices for AI-Driven BI To successfully integrate AI with BI, organizations should: Future Trends in AI and BI AI is expected to augment rather than replace BI, enhancing its capabilities while keeping human expertise central. Emerging trends include: Conclusion AI is revolutionizing BI by transforming it from a retrospective tool into a proactive, real-time decision-making engine. While challenges remain, thoughtful implementation and adherence to best practices can help organizations unlock AI’s full potential in BI. By integrating AI into existing BI workflows, businesses can drive innovation, improve decision-making, and create more agile and data-driven operations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More

2024 The Year of Generative AI

Was 2024 the Year Generative AI Delivered? Here’s What Happened Industry experts hailed 2024 as the year generative AI would take center stage. Operational use cases were emerging, technology was simplifying access, and general artificial intelligence felt imminent. So, how much of that actually came true? Well… sort of. As the year wraps up, some predictions have hit their mark, while others — like general AI — remain firmly in development. Let’s break down the trends, insights from investor Tomasz Tunguz, and what’s ahead for 2025. 1. A World Without Reason Three years into our AI evolution, businesses are finding value, but not universally. Tomasz Tunguz categorizes AI’s current capabilities into: While prediction and search have gained traction, reasoning models still struggle. Why? Model accuracy. Tunguz notes that unless a model has repeatedly seen a specific pattern, it falters. For example, an AI generating an FP&A chart might succeed — but introduce a twist, like usage-based billing, and it’s lost. For now, copilots and modestly accurate search reign supreme. 2. Process Over Tooling A tool’s value lies in how well it fits into established processes. As data teams adopt AI, they’re realizing that production-ready AI demands robust processes, not just shiny tools. Take data quality — a critical pillar for AI success. Sampling a few dbt tests or point solutions won’t cut it anymore. Teams need comprehensive solutions that deliver immediate value. In 2025, expect a shift toward end-to-end platforms that simplify incident management, enhance data quality ownership, and enable domain-level solutions. The tools that integrate seamlessly and address these priorities will shape AI’s future. 3. AI: Cost Cutter, Not Revenue Generator For now, AI’s primary business value lies in cost reduction, not revenue generation. Tools like AI-driven SDRs can increase sales pipelines, but often at the cost of quality. Instead, companies are leveraging AI to cut costs in areas like labor. Examples include Klarna reducing two-thirds of its workforce and Microsoft boosting engineering productivity by 50-75%. Cost reduction works best in scenarios with repetitive tasks, hiring challenges, or labor shortages. Meanwhile, specialized services like EvenUp, which automates legal demand letters, show potential for revenue-focused AI use cases. 4. A Slower but Smarter Adoption Curve While 2023 saw a wave of experimentation with AI, 2024 marked a period of reflection. Early adopters have faced challenges with implementation, ROI, and rapidly changing tech. According to Tunguz, this “dress rehearsal” phase has informed organizations about what works and what doesn’t. Heading into 2025, expect a more calculated wave of AI adoption, with leaders focusing on tools that deliver measurable value — and faster. 5. Small Models for Big Gains In enterprise AI, small, fine-tuned models are gaining favor over massive, general-purpose ones. Why? Small models are cheaper to run and often outperform their larger counterparts when fine-tuned for specific tasks. For example, training an 8-billion-parameter model on 10,000 support tickets can yield better results than a general model trained on a broad corpus. Legal and cost challenges surrounding large proprietary models further push enterprises toward smaller, open-source solutions, especially in highly regulated industries. 6. Blurring Lines Between Analysts and Engineers The demand for data and AI solutions is driving a shift in responsibilities. AI-enabled pipelines are lowering barriers to entry, making self-serve data workflows more accessible. This trend could consolidate analytical and engineering roles, streamlining collaboration and boosting productivity in 2025. 7. Synthetic Data: A Necessary Stopgap With finite real-world training data, synthetic datasets are emerging as a stopgap solution. Tools like Tonic and Gretel create synthetic data for AI training, particularly in regulated industries. However, synthetic data has limits. Over time, relying too heavily on it could degrade model performance, akin to a diet lacking fresh nutrients. The challenge will be finding a balance between real and synthetic data as AI advances. 8. The Rise of the Unstructured Data Stack Unstructured data — long underutilized — is poised to become a cornerstone of enterprise AI. Only about half of unstructured data is analyzed today, but as AI adoption grows, this figure will rise. Organizations are exploring tools and strategies to harness unstructured data for training and analytics, unlocking its untapped potential. 2025 will likely see the emergence of a robust “unstructured data stack” designed to drive business value from this vast, underutilized resource. 9. Agentic AI: Not Ready for Prime Time While AI copilots have proven useful, multi-step AI agents still face significant challenges. Due to compounding accuracy issues (e.g., 90% accuracy over three steps drops to ~50%), these agents are not yet ready for production use. For now, agentic AI remains more of a conversation piece than a practical tool. 10. Data Pipelines Are Growing, But Quality Isn’t As enterprises scale their AI efforts, the number of data pipelines is exploding. Smaller, fine-tuned models are being deployed at scale, often requiring hundreds of millions of pipelines. However, this rapid growth introduces data quality risks. Without robust quality management practices, teams risk inconsistent outputs, bottlenecks, and missed opportunities. Looking Ahead to 2025 As AI evolves, enterprises will face growing pains, but the opportunities are undeniable. From streamlining processes to leveraging unstructured data, 2025 promises advancements that will redefine how organizations approach AI and data strategy. The real challenge? Turning potential into measurable, lasting impact. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
ThoughtSpot AI agent Spotter enables conversational BI

ThoughtSpot AI agent Spotter enables conversational BI

ThoughtSpot Unveils Spotter: A Generative AI-Powered Data Agent ThoughtSpot, a leading analytics vendor, has launched Spotter, an advanced generative AI-powered agent designed to revolutionize how users interact with data. Spotter enables conversational data exploration, contextual understanding, and autonomous analysis, making it a significant leap forward in the analytics landscape. Spotter’s Role in ThoughtSpot’s Evolution Spotter replaces Sage, ThoughtSpot’s earlier generative AI-powered interface, which debuted in March 2023. Despite moving from private to public preview and gaining new capabilities, Sage never reached general availability. Spotter is now generally available for ThoughtSpot Analytics, while its embedded version is in beta testing. Unlike earlier AI tools that focused on question-and-answer interactions, such as Sage and Microsoft’s copilots, Spotter takes the concept further by integrating contextual awareness and autonomous decision-making. Spotter doesn’t just respond to queries; it suggests follow-up questions, identifies anomalies, and provides proactive insights, functioning more like a virtual analyst than a reactive chatbot. Key Features of Spotter Spotter is built to enhance productivity and insight generation through the following capabilities: Generative AI’s Growing Impact on BI ThoughtSpot has long aimed to make analytics accessible to non-technical users through natural language search. However, previous NLP tools often required users to learn specific vocabularies, limiting widespread adoption. Generative AI bridges this gap. By leveraging extensive vocabularies and LLM technology, tools like Spotter enable users of all skill levels to access and analyze data effortlessly. Spotter stands out with its ability to deliver proactive insights, identify trends, and adapt to user behavior, enhancing the decision-making process. Expert Perspectives on Spotter Donald Farmer, founder of TreeHive Strategy, highlighted Spotter’s autonomy as a game-changer: “Spotter is a big move forward for ThoughtSpot and AI. The natural language interface is more conversational, but the key advantage is its autonomous analysis, which identifies trends and insights without users needing to ask.” Mike Leone, an analyst at TechTarget’s Enterprise Strategy Group, emphasized Spotter’s ability to adapt to users: “Spotter’s ability to deliver personalized and contextually relevant responses is critical for organizations pursuing generative AI initiatives. This goes a long way in delivering unique value across a business.” Farmer also pointed to Spotter’s embedded capabilities, noting its growing appeal as an embedded analytics solution integrated with productivity tools like Salesforce and ServiceNow. Competitive Positioning Spotter aligns ThoughtSpot with other vendors embracing agentic AI in analytics. Google recently introduced Conversational Analytics in Looker, and Salesforce’s Tableau platform now includes Tableau Agent. ThoughtSpot’s approach builds on its core strength in search-based analytics while expanding into generative AI-driven capabilities. Leone observed: “ThoughtSpot is right in line with the market in delivering an agentic experience and is laying the groundwork for broader AI functionality over time.” A Step Toward the Future of Analytics With Spotter, ThoughtSpot is redefining the role of AI in business intelligence. The tool combines conversational ease, proactive insights, and seamless integration, empowering users to make data-driven decisions more efficiently. As generative AI continues to evolve, tools like Spotter demonstrate how businesses can unlock the full potential of their data. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
being ai-driven

The Impact of AI on Jobs

The Impact of AI on Jobs: A Historical and Transformative Perspective For centuries, people have feared losing jobs to technological advancements. From the introduction of the printing press in 1440 to the widespread adoption of assembly lines in manufacturing, history has followed a familiar pattern: a wave of panic followed by a surge of innovation. Today, with AI in the spotlight, headlines warn of job-stealing robots. Yet, AI is not here to take jobs; it’s revealing new ones—and at an unprecedented pace. A Paradigm Shift: AI as a Job Creator Contrary to popular belief, AI is reshaping the job market for the better. Rather than replacing workers, it amplifies human potential, pushing society toward work that is creative, strategic, and uniquely human. Instead of asking, “Will AI take my job?” the better question is, “What new opportunities can AI unlock?” The answers are exciting and transformative. Lessons from the Past Technological disruption is far from new. The printing press, the weaving loom, and even the internet all provoked fears of mass unemployment. Yet, each time, these innovations sparked transformation rather than devastation. Consider the ATM, introduced in the 1960s. Initially, bank tellers feared redundancy. However, rather than replacing tellers, ATMs automated routine tasks, freeing human workers to focus on customer service and financial advising. In fact, the number of bank tellers increased in the decades following ATM adoption. AI follows the same trajectory. By handling repetitive tasks like sorting emails or managing schedules, AI frees workers to focus on areas requiring emotional intelligence, creativity, and problem-solving. AI: A Partner, Not a Competitor AI excels in areas that humans struggle with, such as processing vast datasets, recognizing patterns, and executing repetitive tasks with precision. However, it lacks empathy, context, and abstract thinking—traits that remain uniquely human. For example, IBM Watson can analyze millions of medical journals to suggest treatment options. Yet, a doctor’s role remains indispensable, as patients need empathy, understanding, and a human touch. Similarly, legal AI tools like CaseText can streamline research, but building persuasive arguments and negotiating terms require skills no algorithm can match. Rather than replacing professionals, AI enhances their productivity, enabling them to focus on higher-value tasks. The Birth of Entirely New Industries AI is not only reshaping existing jobs but also creating new roles and industries. The rise of generative AI has introduced positions like prompt engineers, who design effective queries to maximize AI’s output. Similarly, the need for unbiased algorithms has created the field of data ethics, where specialists ensure AI systems prioritize equity and fairness. These roles underscore an important reality: AI doesn’t eliminate opportunities—it redefines them. Addressing Ethical Challenges AI’s reliance on data is both its strength and its vulnerability. Algorithms trained on biased data can perpetuate harmful stereotypes, as seen in Amazon’s failed hiring algorithm, which penalized women. This challenge has given rise to data ethicists tasked with auditing algorithms and designing fair systems, further showcasing how AI disruption creates new fields and opportunities. Augmentation Over Replacement Fear of AI stems from misunderstanding its role. Machines are adept at repetitive and analytical tasks, but they lack the nuanced understanding required for roles in fields like art, music, and medicine. AI tools such as Adobe Sensei or AIVA enhance creativity, allowing artists and musicians to experiment, iterate, and push boundaries. Just as the printing press democratized writing rather than ending it, AI empowers workers to focus on what makes us uniquely human. A Future Worth Working Toward AI represents a profound shift in how society views work. It is not a destroyer of jobs but a catalyst for transformation. By automating inefficiencies and reinforcing human strengths, AI unlocks opportunities yet to be imagined. Rather than fearing the rise of AI, embracing its potential can lead to a future where work is more meaningful, creative, and impactful—an evolution worth striving for. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
New Service Cloud Tools

Service Cloud for HR

Salesforce has expanded its Service Cloud capabilities to include a new HR-focused solution, Employee Service, designed to streamline employee support and enhance productivity. Employee Service introduces a dedicated HR service console paired with an employee portal. This portal acts as a centralized hub for staff to access HR resources, offering instant answers via Generative AI (GenAI), direct communication with HR specialists across multiple channels, and self-service options for tasks like requesting paid time off (PTO). For HR teams, the service console consolidates employee data, case details, and a company’s knowledge base into a unified workspace. It leverages AI-driven tools to resolve cases faster, automate routine tasks, and deliver seamless employee experiences. Salesforce’s Agentforce customers can integrate AI agents into Employee Service to further automate processes, saving time and reducing repetitive workloads. In a LinkedIn announcement, Kishan Chetan, EVP and GM for Service Cloud, highlighted the solution’s potential: “This new solution unifies employee data, case details, and a company’s corporate knowledge base all in one workspace that gives HR teams a 360-degree view of each employee and the ability to manage employee support cases with built-in AI and productivity tools. HR teams can efficiently resolve employee issues using Agentforce to quickly search, respond, summarize, and close cases, extending teams to get work done faster.” Salesforce’s broader goal is to eliminate the reliance on fragmented HR tools and reduce the need for employees to navigate disparate platforms like email, internal systems, and collaboration tools to complete HR-related tasks. By doing so, Salesforce aims to simplify HR processes, minimize manual effort, and enhance overall productivity. Early adopters of Employee Service are already reporting significant results. According to Sherin Sunny, Sr. Director of Product Management at Salesforce, customers have observed a 31% increase in employee productivity. This aligns with broader trends: Recognizing the need for a unified HR ecosystem, Salesforce includes a prebuilt MuleSoft integration with Workday and configurable connectors to other Human Capital Management (HCM) systems. These integrations establish a centralized HR data foundation, reducing inefficiencies caused by siloed tools. Looking ahead, Beth Schultz, VP of Research & Principal Analyst at Metrigy, emphasized the importance of integrating Employee Service with Slack, Salesforce’s collaboration platform: “We’ll be particularly watching how Salesforce’s multifaceted plans for bringing [Employee Service] into Slack play out as Slack evolves into a fully connected, collaborative workspace.” Slack itself is undergoing a transformation, with Salesforce Co-Founder Patrick Harris returning to revamp the platform as a core part of the Salesforce ecosystem. Meanwhile, Salesforce continues to expand Service Cloud’s offerings beyond Employee Service. Recent developments include a revamped CCaaS (Contact Center as a Service) integration program and a new product discovery tool. Still, Agentforce remains a key focus for Salesforce’s marketing efforts, showcasing its potential to redefine how businesses deploy autonomous AI agents across use cases like HR and beyond. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Standards in Healthcare Cybersecurity

Deploying Large Language Models in Healthcare

Study Identifies Cost-Effective Strategies for Deploying Large Language Models in Healthcare Efficient deployment of large language models (LLMs) at scale in healthcare can streamline clinical workflows and reduce costs by up to 17 times without compromising reliability, according to a study published in NPJ Digital Medicine by researchers at the Icahn School of Medicine at Mount Sinai. The research highlights the potential of LLMs to enhance clinical operations while addressing the financial and computational hurdles healthcare organizations face in scaling these technologies. To investigate solutions, the team evaluated 10 LLMs of varying sizes and capacities using real-world patient data. The models were tested on chained queries and increasingly complex clinical notes, with outputs assessed for accuracy, formatting quality, and adherence to clinical instructions. “Our study was driven by the need to identify practical ways to cut costs while maintaining performance, enabling health systems to confidently adopt LLMs at scale,” said Dr. Eyal Klang, director of the Generative AI Research Program at Icahn Mount Sinai. “We aimed to stress-test these models, evaluating their ability to manage multiple tasks simultaneously and identifying strategies to balance performance and affordability.” The team conducted over 300,000 experiments, finding that high-capacity models like Meta’s Llama-3-70B and GPT-4 Turbo 128k performed best, maintaining high accuracy and low failure rates. However, performance began to degrade as task volume and complexity increased, particularly beyond 50 tasks involving large prompts. The study further revealed that grouping tasks—such as identifying patients for preventive screenings, analyzing medication safety, and matching patients for clinical trials—enabled LLMs to handle up to 50 simultaneous tasks without significant accuracy loss. This strategy also led to dramatic cost savings, with API costs reduced by up to 17-fold, offering a pathway for health systems to save millions annually. “Understanding where these models reach their cognitive limits is critical for ensuring reliability and operational stability,” said Dr. Girish N. Nadkarni, co-senior author and director of The Charles Bronfman Institute of Personalized Medicine. “Our findings pave the way for the integration of generative AI in hospitals while accounting for real-world constraints.” Beyond cost efficiency, the study underscores the potential of LLMs to automate key tasks, conserve resources, and free up healthcare providers to focus more on patient care. “This research highlights how AI can transform healthcare operations. Grouping tasks not only cuts costs but also optimizes resources that can be redirected toward improving patient outcomes,” said Dr. David L. Reich, co-author and chief clinical officer of the Mount Sinai Health System. The research team plans to explore how LLMs perform in live clinical environments and assess emerging models to determine whether advancements in AI technology can expand their cognitive thresholds. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Alphabet Soup of Cloud Terminology As with any technology, the cloud brings its own alphabet soup of terms. This insight will hopefully help you navigate Read more

Read More
gettectonic.com