Knowledge Archives - gettectonic.com
Shift From AI Agents to AI Agent Tool Use

Building Scalable AI Agents

Building Scalable AI Agents: Infrastructure, Planning, and Security The key building blocks of AI agents—planning, tool integration, and memory—demand sophisticated infrastructure to function effectively in production environments. As the technology advances, several critical components have emerged as essential for successful deployments. Development Frameworks & Architecture The ecosystem for AI agent development has matured, with several key frameworks leading the way: While these frameworks offer unique features, successful agents typically share three core architectural components: Despite these strong foundations, production deployments often require customization to address high-scale workloads, security requirements, and system integrations. Planning & Execution Handling complex tasks requires advanced planning and execution flows, typically structured around: An agent’s effectiveness hinges on its ability to: ✅ Generate structured plans by intelligently combining tools and knowledge (e.g., correctly sequencing API calls for a customer refund request).✅ Validate each task step to prevent errors from compounding.✅ Optimize computational costs in long-running operations.✅ Recover from failures through dynamic replanning.✅ Apply multiple validation strategies, from structural verification to runtime testing.✅ Collaborate with other agents when consensus-based decisions improve accuracy. While multi-agent consensus models improve accuracy, they are computationally expensive. Even OpenAI finds that running parallel model instances for consensus-based responses remains cost-prohibitive, with ChatGPT Pro priced at $200/month. Running majority-vote systems for complex tasks can triple or quintuple costs, making single-agent architectures with robust planning and validation more viable for production use. Memory & Retrieval AI agents require advanced memory management to maintain context and learn from experience. Memory systems typically include: 1. Context Window 2. Working Memory (State Maintained During a Task) Key context management techniques: 3. Long-Term Memory & Knowledge Management AI agents rely on structured storage systems for persistent knowledge: Advanced Memory Capabilities Standardization efforts like Anthropic’s Model Context Protocol (MCP) are emerging to streamline memory integration, but challenges remain in balancing computational efficiency, consistency, and real-time retrieval. Security & Execution As AI agents gain autonomy, security and auditability become critical. Production deployments require multiple layers of protection: 1. Tool Access Control 2. Execution Validation 3. Secure Execution Environments 4. API Governance & Access Control 5. Monitoring & Observability 6. Audit Trails These security measures must balance flexibility, reliability, and operational control to ensure trustworthy AI-driven automation. Conclusion Building production-ready AI agents requires a carefully designed infrastructure that balances:✅ Advanced memory systems for context retention.✅ Sophisticated planning capabilities to break down tasks.✅ Secure execution environments with strong access controls. While AI agents offer immense potential, their adoption remains experimental across industries. Organizations must strategically evaluate where AI agents justify their complexity, ensuring that they provide clear, measurable benefits over traditional AI models. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Captivates the World

AI vs Human Intelligence

Artificial Intelligence vs. Human Intelligence: Key Differences Explained Artificial intelligence (AI) often mimics human-like capabilities, but there are fundamental differences between natural human intelligence and artificial systems. While AI has made remarkable strides in replicating certain aspects of human cognition, it operates in ways that are distinct from how humans think, learn, and solve problems. Below, we explore three key areas where AI and human intelligence diverge. Defining Intelligence Human IntelligenceHuman intelligence is often described using terms like smartness, understanding, brainpower, reasoning, sharpness, and wisdom. These concepts reflect the complexity of human cognition, which has been debated for thousands of years. At its core, human intelligence is a biopsychological capacity to acquire, apply, and adapt knowledge and skills. It encompasses not only logical reasoning but also emotional understanding, creativity, and social interaction. Artificial IntelligenceAI refers to machines designed to perform tasks traditionally associated with human intelligence, such as learning, problem-solving, and decision-making. Over the past few decades, AI has advanced rapidly, particularly in areas like machine learning and generative AI. However, AI lacks the depth and breadth of human intelligence, operating instead through algorithms and data processing. Human Intelligence: What Humans Do Better Humans excel in areas that require empathy, judgment, intuition, and creativity. These qualities are deeply rooted in our evolution as social beings. For example: These capabilities make human intelligence uniquely suited for tasks that involve emotional connection, ethical decision-making, and creative thinking. Artificial Intelligence: What AI Does Better AI outperforms humans in several areas, particularly those involving data processing, pattern recognition, and speed: However, AI’s strengths are limited to the data it is trained on and the algorithms it uses, lacking the adaptability and contextual understanding of human intelligence. 3 Key Differences Between AI and Human Intelligence AI and Human Intelligence: Working Together The future lies in human-AI collaboration, where the strengths of both are leveraged to address complex challenges. For example: While some may find the idea of integrating AI into decision-making unsettling, the scale of global challenges—from climate change to healthcare—demands the combined power of human and artificial intelligence. By working together, humans and AI can amplify each other’s strengths while mitigating weaknesses. Conclusion AI and human intelligence are fundamentally different, each excelling in areas where the other falls short. Human intelligence is unparalleled in creativity, empathy, and ethical reasoning, while AI dominates in data processing, pattern recognition, and speed. The key to unlocking the full potential of AI lies in human-AI collaboration, where the unique strengths of both are harnessed to solve the world’s most pressing problems. As we move forward, this partnership will likely become not just beneficial but essential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

The Evolving Role of AI Agents in Key Industries

Legal Services The future of AI in the legal field lies in deeper collaboration between human lawyers and AI systems. AI agents will handle routine document processing, contract analysis, and compliance checks, while legal professionals focus on strategy, negotiation, and final validation. This approach ensures efficiency without compromising accuracy or legal accountability. Finance The financial sector has been an early adopter of AI agents, leveraging them for market analysis, trading, and risk management. 1. Market Analysis & Research 2. Trading & Investment 3. Risk Management Current Limitations: While results are promising, financial AI applications require strict risk management and regulatory oversight. Most firms start with narrowly scoped use cases—such as single-asset trading—before expanding into complex portfolio management. Research & Science AI agents are transforming scientific research by accelerating discovery while maintaining rigorous methodology. A multi-agent approach is proving valuable throughout the research lifecycle: This framework has already shown success in chemistry, where AI agents have identified novel catalysts and reaction pathways. With Google’s Gemini Deep Research, AI-driven knowledge synthesis is expanding beyond specialized fields to broader scientific domains. Challenges & Considerations: The key to success is integrating AI agents into existing research methodologies while preserving scientific rigor. Emerging AI Agent Trends Across industries, three core patterns define the evolution of AI agents: While AI agents hold immense potential, most industries remain in an experimental phase of adoption. Many organizations start with Retrieval-Augmented Generation (RAG) before advancing to fully autonomous agents. The Challenge of Implementation Adopting AI agents requires careful evaluation of their benefits vs. complexity: Organizations must balance innovation, security, and operational efficiency to maximize the impact of AI agents in their industries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
ai arms race

The Two Types of Voice AI

The Two Types of Voice AI: Assistive AI vs. Autonomous AI Voice AI is transforming customer service by automating tasks, enhancing productivity, and improving customer satisfaction. But not all Voice AI functions the same way — there are two primary types: Assistive AI and Autonomous AI. Understanding their unique roles can help businesses deploy the right solution to optimize efficiency, reduce costs, and deliver exceptional customer experiences. Assistive AI: Empowering Service Representatives Assistive AI works alongside human service representatives, enhancing their efficiency by providing real-time guidance and support during live interactions. Rather than replacing human agents, Assistive AI streamlines workflows, surfaces relevant information, and handles routine tasks — allowing service reps to resolve issues faster and more accurately. Here’s how Assistive AI transforms the customer service experience: 🚀 Real-Time Call Guidance As a customer describes their issue, Assistive AI follows the live call transcript, instantly surfacing relevant knowledge articles, past interaction history, and next-best actions for the agent. This eliminates the need for reps to manually search for information, reducing call times and improving resolution accuracy. For example, if a customer calls to reschedule a hotel stay, Assistive AI can immediately: The result? Faster resolutions and happier customers. 📝 Automated Call Summaries Generative AI capabilities allow Assistive AI to automatically summarize calls once they conclude. Instead of requiring agents to manually document case notes, Assistive AI generates: This significantly reduces post-call administrative work and ensures accurate case documentation. 🎯 Next-Best Action Recommendations Assistive AI can analyze customer sentiment and intent during a call. For example: This proactive support helps agents resolve issues faster, reduce churn, and improve overall customer satisfaction. 📊 Supervisor Alerts Based on Sentiment Assistive AI doesn’t just assist agents — it also helps supervisors. If Assistive AI detects a sharp decline in customer sentiment (such as anger, frustration, or confusion), it can: This prevents escalations from spiraling out of control, protecting the customer experience. ✅ Key Benefits of Assistive AI: Assistive AI empowers human agents — making them smarter, faster, and more effective at delivering outstanding customer service. Autonomous AI: Self-Sufficient Customer Service Agents While Assistive AI works alongside human agents, Autonomous AI can independently handle customer interactions without requiring human intervention. Autonomous AI acts as a fully capable, virtual agent capable of resolving complex requests, completing transactions, and delivering personalized service — all in real-time. This next generation of Voice AI is transforming how businesses handle high call volumes, reducing costs while delivering faster, more accurate service. 💬 Conversational, Human-Like Interactions Unlike traditional IVR systems, Autonomous AI engages in natural, human-like conversations without rigid menu trees or button prompts. Customers can speak in their own words, and the AI agent will: For example: This level of automation significantly reduces operational costs and enhances customer satisfaction. 🔄 Task Execution Across Systems Autonomous AI is not just conversational — it’s actionable. It can directly integrate with: This enables Autonomous AI to complete complex tasks like: No hold times. No transfers. Just fast, efficient resolutions. 💡 Smart Escalation for Complex Cases If a task exceeds the AI agent’s capabilities, it can automatically: This seamless handoff ensures high-quality service without frustrating the customer. 🧠 Continuous Learning and Improvement Like Assistive AI, Autonomous AI continuously learns from customer interactions. Over time, it improves its accuracy, expands its task-handling capabilities, and becomes more effective at resolving complex issues — reducing human intervention further. ✅ Key Benefits of Autonomous AI: Autonomous AI transforms customer service by automating high-volume interactions, allowing human agents to focus on high-value, complex cases. The Power of Voice AI: Assistive + Autonomous Working Together The true power of Voice AI lies in combining Assistive AI and Autonomous AI. Together, they create an optimal balance of automation and human support: Additional Business Benefits of Voice AI 📈 Scalability Without Increasing Costs Voice AI allows businesses to handle thousands of customer calls simultaneously without expanding headcount. This ensures consistent, 24/7 support while keeping operational costs low. 💵 Revenue Growth Through Personalization By analyzing customer history and real-time sentiment, Voice AI can offer: This enables businesses to not only resolve issues but also drive revenue growth. 📊 Data-Driven Insights for Continuous Improvement Voice AI captures and analyzes customer interactions to identify: These insights empower businesses to proactively enhance their products, services, and overall customer experience. 🌐 Enhanced Accessibility for Diverse Customers Voice AI also improves accessibility by enabling voice-based interactions for customers with disabilities or language barriers, ensuring an inclusive support experience. The Future of Customer Service is Voice AI The days of clunky IVR systems and long hold times are over. Voice AI — both Assistive and Autonomous — is revolutionizing customer service by enabling: Forward-thinking businesses that embrace Voice AI now will not only enhance customer experiences but also drive operational efficiency, reduce costs, and increase revenue. ✅ Ready to transform your contact center with Voice AI?Discover how Assistive and Autonomous AI can redefine your customer service — improving satisfaction, reducing costs, and unlocking new growth opportunities. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Data Cloud

Maximizing Salesforce Data Cloud

Maximizing Salesforce Data Cloud: Post-Implementation Strategies for Long-Term Success The Fastest-Growing Salesforce Product Salesforce Data Cloud is seeing explosive growth, with a 130% year-over-year increase in paid customers. In just one quarter, it processed an astonishing 2.3 quadrillion records—a 147% jump from the previous year. Businesses leveraging Data Cloud have seen a 165% boost in web engagement, with major brands like The Adecco Group, Aston Martin, and FedEx using it to strengthen customer relationships and drive growth. The Power of Data Cloud: Turning Information into Action What makes Salesforce Data Cloud so impactful is its ability to unify vast amounts of data, creating 360-degree customer profiles and transforming insights into action. But unlocking its full potential doesn’t stop at implementation—it requires ongoing optimization to keep your data clean, your systems efficient, and your AI models accurate. Post-Implementation Best Practices for Salesforce Data Cloud Once your Salesforce Data Cloud is up and running, the next step is ensuring long-term performance and business value. Here’s how to optimize and sustain your Data Cloud investment: 1. Maintain Data Integrity with Ongoing Quality Management 2. Optimize System Performance for Speed and Efficiency 3. Drive User Adoption with Tailored Training 4. Strengthen Data Governance and Compliance 5. Proactively Manage and Optimize Integrations 6. Refine Customer Segmentation for More Personalization 7. Keep AI and Predictive Models Up to Date 8. Measure ROI and Optimize for Business Impact 9. Foster a Data-Driven Culture Through Clear Communication 10. Stay Agile with Continuous Innovation and Community Engagement Conclusion: The Real Value of Data Cloud Begins After Implementation Salesforce Data Cloud is at the heart of next-gen customer engagement, but its true impact lies in how well you maintain and optimize it. Success depends on:✅ Involving key stakeholders in ongoing improvements✅ Enforcing strong data governance for security and accuracy✅ Continuously refining processes to adapt to changing business needs By committing to post-implementation optimization, your organization can stay agile, data-driven, and ahead of the competition—ensuring that Salesforce Data Cloud delivers maximum value now and in the future. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents

AI Agents in Action: Real-World Applications

The true potential of AI agents lies in their practical use across industries. Let’s explore how different sectors are leveraging AI agents to solve real challenges. Software Development The shift from simple code completion to autonomous software development highlights AI’s expanding role in engineering. While GitHub Copilot introduced real-time coding assistance in 2021, today’s AI agents—like Devin—can manage end-to-end development, from setting up environments to deployment. Multi-agent frameworks, such as MetaGPT, showcase how specialized AI agents collaborate effectively: While AI agents lack human limitations, this shift raises fundamental questions about development practices shaped over decades. AI excels at tasks like prototyping and automated testing, but the true opportunity lies in rethinking software development itself—not just making existing processes faster. This transformation is already affecting hiring trends. Salesforce, for example, announced it will not hire new software engineers in 2025, citing a 30% productivity increase from AI-driven development. Meanwhile, Meta CEO Mark Zuckerberg predicts that by 2025, AI will reach the level of mid-level software engineers, capable of generating production-ready code. However, real-world tests highlight limitations. While Devin performs well on isolated tasks like API integrations, it struggles with complex development projects. In one evaluation, Devin successfully completed only 3 out of 20 full-stack tasks. In contrast, developer-driven workflows using tools like Cursor have proven more reliable, suggesting that AI agents are best used as collaborators rather than full replacements. Customer Service The evolution from basic chatbots to sophisticated AI service agents marks one of the most successful AI deployments to date. Research by Sierra shows that modern AI agents can handle complex tasks—such as flight rebookings and multi-step refunds—previously requiring multiple human agents, all while maintaining natural conversation flow. Key capabilities include: However, challenges remain, particularly in handling policy exceptions and emotionally sensitive situations. Many companies address this by limiting AI agents to approved knowledge sources and implementing clear escalation protocols. The most effective approach in production environments has been a hybrid model, where AI agents handle routine tasks and escalate complex cases to human staff. Sales & Marketing AI agents are now playing a critical role in structured sales and marketing workflows, such as lead qualification, meeting scheduling, and campaign analytics. These agents integrate seamlessly with CRM platforms and communication tools while adhering to business rules. For example, Salesforce’s Agentforce processes customer interactions, maintains conversation history, and escalates complex inquiries when necessary. 1. Sales Development 2. Marketing Operations Core capabilities: However, implementing AI in sales and marketing presents challenges: A hybrid approach—where AI manages routine tasks and data-driven decisions while humans focus on relationship-building and strategy—has proven most effective. Legal Services AI agents are also transforming the legal industry by processing complex documents and maintaining compliance across jurisdictions. Systems like Harvey can break down multi-month projects, such as S-1 filings, into structured workflows while ensuring regulatory compliance. Key capabilities: However, AI-assisted legal work faces significant challenges. Validation and liability remain critical concerns—AI-generated outputs require human review, and the legal responsibility for AI-assisted decisions is still unresolved. While AI excels at document processing and legal research, strategic decisions remain firmly in human hands. Final Thoughts Across industries, AI agents are proving their value in automation, efficiency, and data-driven decision-making. However, fully autonomous systems are not yet replacing human expertise—instead, the most successful implementations involve AI-human collaboration, where agents handle repetitive tasks while humans oversee complex decision-making. As AI technology continues to evolve, businesses must strike the right balance between automation, control, and human oversight to maximize its potential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Google and Salesforce Expand Partnership

Google and Salesforce Expand Partnership

Google and Salesforce Expand Partnership to Enhance AI Agent Capabilities Google and Salesforce are deepening their collaboration to provide customers with greater flexibility in AI agent deployment. This expanded partnership will integrate Google Gemini within Salesforce’s Agentforce platform, enabling AI agents to process images, audio, and video with advanced multimodal capabilities. Enhanced AI Functionality with Gemini Through this integration, AI agents will gain access to Gemini’s powerful models, allowing them to handle complex tasks with extended context windows and leverage real-time insights from Google Search via Vertex AI. This collaboration aims to empower businesses with AI solutions that are not limited to a single model provider, offering crucial flexibility in AI customization. Srini Tallapragada, Salesforce’s President and Chief Engineering and Customer Success Officer, emphasized that the integration offers customers the ability to choose the applications and models that best suit their needs. “Salesforce offers a complete enterprise-grade agentic AI platform that makes it easy to deploy new capabilities quickly and realize business value fast. Google Cloud is a pioneer in enterprise agentic AI, offering some of the most powerful models, agents, and AI development tools on the planet. Together, we are creating the best place for businesses to scale with digital labor.” Key Benefits of the Integration The partnership is set to deliver significant advantages for businesses, as outlined in the official announcement: Thomas Kurian, CEO of Google Cloud, highlighted the benefits of this collaboration: “Our mutual customers have asked for seamless integration across Salesforce and Google Cloud. This expanded partnership enables them to accelerate AI transformations with state-of-the-art AI models, agentic AI, and advanced data analytics.” Strengthening Customer Service Integrations The partnership will also enhance the connection between Salesforce Service Cloud and Google Cloud’s Customer Engagement Suite, providing AI-driven improvements to customer support. Key upcoming features include: Expanding AI-Powered Decision-Making Beyond Gemini, Agentforce will integrate Google Search through Vertex AI, leveraging secure connections between Salesforce Data Cloud and Google BigQuery. This will enable AI agents to access real-time information for improved accuracy and decision-making. For example, in supply chain management, AI can track shipments, monitor inventory in Salesforce Commerce Cloud, and anticipate disruptions using real-time data on weather, port congestion, and geopolitical events. Additionally, joint customers will be able to utilize Salesforce’s unified platform—including Agentforce, Data Cloud, and Customer 360—on Google Cloud’s AI-optimized infrastructure. This integration ensures enhanced security through dynamic grounding, zero data retention, and toxicity detection via the Einstein Trust Layer. Businesses will also soon have the option to purchase Salesforce products via the Google Cloud Marketplace. More AI Innovations from Google and Salesforce Google recently announced the development of a personalized AI-powered chatbot that will be integrated into its devices, including smartphones, laptops, and tablets. This tool will automatically answer calls, process requests, and respond on behalf of users. Meanwhile, Salesforce’s Service Assistant—formerly known as Salesforce Service Planner—has launched on Service Cloud. Designed to support live agents, it generates step-by-step plans for resolving customer inquiries by analyzing intent, case history, and customer context. For optimal performance, Salesforce recommends integrating it with Data Cloud and the contact center knowledge base. With this expanded partnership, Google and Salesforce are setting the stage for businesses to leverage cutting-edge AI technology, driving innovation and operational efficiency across industries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Shift From AI Agents to AI Agent Tool Use

AI Agent Dilemma

The AI Agent Dilemma: Hype, Confusion, and Competing Definitions Silicon Valley is all in on AI agents. OpenAI CEO Sam Altman predicts they will “join the workforce” this year. Microsoft CEO Satya Nadella envisions them replacing certain knowledge work. Meanwhile, Salesforce CEO Marc Benioff has set an ambitious goal: making Salesforce the “number one provider of digital labor in the world” through its suite of AI-driven agentic services. But despite the enthusiasm, there’s little consensus on what an AI agent actually is. In recent years, tech leaders have hailed AI agents as transformative—just as AI chatbots like OpenAI’s ChatGPT redefined information retrieval, agents, they claim, will revolutionize work. That may be true. But the problem lies in defining what an “agent” really is. Much like AI buzzwords such as “multimodal,” “AGI,” or even “AI” itself, the term “agent” is becoming so broad that it risks losing all meaning. This ambiguity puts companies like OpenAI, Microsoft, Salesforce, Amazon, and Google in a tricky spot. Each is investing heavily in AI agents, but their definitions—and implementations—differ wildly. An Amazon agent is not the same as a Google agent, leading to confusion and, increasingly, customer frustration. Even industry insiders are growing weary of the term. Ryan Salva, senior director of product at Google and former GitHub Copilot leader, openly criticizes the overuse of “agents.” “I think our industry has stretched the term ‘agent’ to the point where it’s almost nonsensical,” Salva told TechCrunch. “[It is] one of my pet peeves.” A Definition in Flux The struggle to define AI agents isn’t new. Former TechCrunch reporter Ron Miller raised the question last year: What exactly is an AI agent? The challenge is that every company building them has a different answer. That confusion only deepened this past week. OpenAI published a blog post defining agents as “automated systems that can independently accomplish tasks on behalf of users.” Yet in its developer documentation, it described agents as “LLMs equipped with instructions and tools.” Adding to the inconsistency, OpenAI’s API product marketing lead, Leher Pathak, stated on X (formerly Twitter) that she sees “assistants” and “agents” as interchangeable—further muddying the waters. Microsoft attempts to make a distinction, describing agents as “the new apps” for an AI-powered world, while reserving “assistant” for more general task helpers like email drafting tools. Anthropic takes a broader approach, stating that agents can be “fully autonomous systems that operate independently over extended periods” or simply “prescriptive implementations that follow predefined workflows.” Salesforce, meanwhile, has perhaps the widest-ranging definition, describing agents as AI-driven systems that can “understand and respond to customer inquiries without human intervention.” It categorizes them into six types, from “simple reflex agents” to “utility-based agents.” Why the Confusion? The nebulous nature of AI agents is part of the problem. These systems are still evolving, and major players like OpenAI, Google, and Perplexity have only just begun rolling out their first versions—each with vastly different capabilities. But history also plays a role. Rich Villars, GVP of worldwide research at IDC, points out that tech companies have “a long history” of using flexible definitions for emerging technologies. “They care more about what they are trying to accomplish on a technical level,” Villars told TechCrunch, “especially in fast-evolving markets.” Marketing is another culprit. Andrew Ng, founder of DeepLearning.ai, argues that the term “agent” once had a clear technical meaning—until marketers and a few major companies co-opted it. The Double-Edged Sword of Ambiguity The lack of a standardized definition presents both opportunities and challenges. Jim Rowan, head of AI at Deloitte, notes that while the ambiguity allows companies to tailor agents to specific needs, it also leads to “misaligned expectations” and difficulty in measuring value and ROI. “Without a standardized definition, at least within an organization, it becomes challenging to benchmark performance and ensure consistent outcomes,” Rowan explains. “This can result in varied interpretations of what AI agents should deliver, potentially complicating project goals and results.” While a clearer framework for AI agents would help businesses maximize their investments, history suggests that the industry is unlikely to agree on a single definition—just as it never fully defined “AI” itself. For now, AI agents remain both a promising innovation and a marketing-driven enigma. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Data Cloud and Integration

It is Time to Implement Data Cloud

With Salesforce Data Cloud you can: With incomplete data your 360-degree customer view is limited and often leads to multiple sales reps working on the same lead. Slow access to the right leads at the right time leads to missed opportunties and delayed closings. If your team cannot trust the data due to siloes and inaccuracies, they avoid using it. It is Time to Implement Data Cloud. Unified Connect and harmonize data from all your Salesforce applications and external data systems. Then activate your data with insights and automation across every customer touchpoint. Powerful With Data Cloud and Agentforce, you can create the most intelligent agents possible, giving them access to the exact data they need to deliver any employee or customer experience. Secure Securely connect your data to any large language model (LLM) without sacrificing data governance and security thanks to the Einstein 1 trust layer. Open Data Cloud is fully open and extensible – bring your own data lake or model to reduce complexity and leverage what’s already been built. Plus, share out to popular destinations like Snowflake, Google Ads, or Meta Ads. Salesforce Data Cloud is the only hyperscale data engine native to Salesforce. It is more than a CDP. It goes beyond a data lake. You can do more with Data Cloud. Your Agentforce journey begins with Data Cloud. Agents need the right data to work. With Data Cloud, you can create the most intelligent agents possible, giving them access to the exact data they need to deliver any employee or customer experience. Use any data in your organization with Agentforce in a safe and secure manner thanks to the Einstein 1 Trust Layer. Datablazers are Salesforce community members who are passionate about driving business growth with data and AI powered by Data Cloud. Sign up to join a growing group of members to learn, connect, and grow with Data Cloud. Join today. The path to AI success begins and ends with quality data. Business, IT, and analytics decision makers with high data maturity were 2x more likely than low-maturity leaders to have the quality data needed to use AI effectively, according to our State of Data and Analytics report. “What’s data maturity?” you might wonder. Hang tight, we’ll explain in chapter 1 of this guide. Data-leading companies also experience: Your data strategy isn’t just important, it’s critical in getting you to the head of the market with new AI technology by your side. That’s why this Salesforce guide is based on recent industry findings and provides best practices to help your company get the most from your data. Tectonic will be sharing a focus on the 360 degree customer view with Salesforce Data Cloud in our insights. Stay tuned. It is Time to Implement Data Cloud Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Generative AI in Marketing

Generative AI in Marketing

Generative Artificial Intelligence (GenAI) continues to reshape industries, providing product managers (PMs) across domains with opportunities to embrace AI-focused innovation and enhance their technical expertise. Over the past few years, GenAI has gained immense popularity. AI-enabled products have proliferated across industries like a rapidly expanding field of dandelions, fueled by abundant venture capital investment. From a product management perspective, AI offers numerous ways to improve productivity and deepen strategic domain knowledge. However, the fundamentals of product management remain paramount. This discussion underscores why foundational PM practices continue to be indispensable, even in the evolving landscape of GenAI, and how these core skills can elevate PMs navigating this dynamic field. Why PM Fundamentals Matter, AI or Not Three core reasons highlight the enduring importance of PM fundamentals and actionable methods for excelling in the rapidly expanding GenAI space. 1. Product Development is Inherently Complex While novice PMs might assume product development is straightforward, the reality reveals a web of interconnected and dynamic elements. These may include team dependencies, sales and marketing coordination, internal tooling managed by global teams, data telemetry updates, and countless other tasks influencing outcomes. A skilled product manager identifies and orchestrates these moving pieces, ensuring product growth and delivery. This ability is often more impactful than deep technical AI expertise (though having both is advantageous). The complexity of modern product development is further amplified by the rapid pace of technological change. Incorporating AI tools such as GitHub Copilot can accelerate workflows but demands a strong product culture to ensure smooth integration. PMs must focus on fundamentals like understanding user needs, defining clear problems, and delivering value to avoid chasing fleeting AI trends instead of solving customer problems. While AI can automate certain tasks, it is limited by costs, specificity, and nuance. A PM with strong foundational knowledge can effectively manage these limitations and identify areas for automation or improvement, such as: 2. Interpersonal Skills Are Irreplaceable As AI product development grows more complex, interpersonal skills become increasingly critical. PMs work with diverse teams, including developers, designers, data scientists, marketing professionals, and executives. While AI can assist in specific tasks, strong human connections are essential for success. Key interpersonal abilities for PMs include: Stakeholder management remains a cornerstone of effective product management. PMs must build trust and tailor their communication to various audiences—a skill AI cannot replicate. 3. Understanding Vertical Use Cases is Essential Vertical use cases focus on niche, specific tasks within a broader context. In the GenAI ecosystem, this specificity is exemplified by AI agents designed for narrow applications. For instance, Microsoft Copilot includes a summarization agent that excels at analyzing Word documents. The vertical AI market has experienced explosive growth, valued at .1 billion in 2024 and projected to reach .1 billion by 2030. PMs are crucial in identifying and validating these vertical use cases. For example, the team at Planview developed the AI Assistant “Planview Copilot” by hypothesizing specific use cases and iteratively validating them through customer feedback and data analysis. This approach required continuous application of fundamental PM practices, including discovery, prioritization, and feedback internalization. PMs must be adept at discovering vertical use cases and crafting strategies to deliver meaningful solutions. Key steps include: Conclusion Foundational product management practices remain critical, even as AI transforms industries. These core skills ensure that PMs can navigate the challenges of GenAI, enabling organizations to accelerate customer value in work efficiency, time savings, and quality of life. By maintaining strong fundamentals, PMs can lead their teams to thrive in an AI-driven future. AI Agents on Madison Avenue: The New Frontier in Advertising AI agents, hailed as the next big advancement in artificial intelligence, are making their presence felt in the world of advertising. Startups like Adaly and Anthrologic are introducing personalized AI tools designed to boost productivity for advertisers, offering automation for tasks that are often time-consuming and tedious. Retail brands such as Anthropologie are already adopting this technology to streamline their operations. How AI Agents WorkIn simple terms, AI agents operate like advanced AI chatbots. They can handle tasks such as generating reports, optimizing media budgets, or analyzing data. According to Tyler Pietz, CEO and founder of Anthrologic, “They can basically do anything that a human can do on a computer.” Big players like Salesforce, Microsoft, Anthropic, Google, and Perplexity are also championing AI agents. Perplexity’s CEO, Aravind Srinivas, recently suggested that businesses will soon compete for the attention of AI agents rather than human customers. “Brands need to get comfortable doing this,” he remarked to The Economic Times. AI Agents Tailored for Advertisers Both Adaly and Anthrologic have developed AI software specifically trained for advertising tasks. Built on large language models like ChatGPT, these platforms respond to voice and text prompts. Advertisers can train these AI systems on internal data to automate tasks like identifying data discrepancies or analyzing economic impacts on regional ad budgets. Pietz noted that an AI agent can be set up in about a month and take on grunt work like scouring spreadsheets for specific figures. “Marketers still log into 15 different platforms daily,” said Kyle Csik, co-founder of Adaly. “When brands in-house talent, they often hire people to manage systems rather than think strategically. AI agents can take on repetitive tasks, leaving room for higher-level work.” Both Pietz and Csik bring agency experience to their ventures, having crossed paths at MediaMonks. Industry Response: Collaboration, Not Replacement The targets for these tools differ: Adaly focuses on independent agencies and brands, while Anthrologic is honing in on larger brands. Meanwhile, major holding companies like Omnicom and Dentsu are building their own AI agents. Omnicom, on the verge of merging with IPG, has developed internal AI solutions, while Dentsu has partnered with Microsoft to create tools like Dentsu DALL-E and Dentsu-GPT. Havas is also developing its own AI agent, according to Chief Activation Officer Mike Bregman. Bregman believes AI tools won’t immediately threaten agency jobs. “Agencies have a lot of specialization that machines can’t replace today,” he said. “They can streamline processes, but

Read More
The Coalition for Sustainable AI

The Coalition for Sustainable AI

The Coalition for Sustainable AI: Aligning AI Development with Environmental Responsibility The rapid rise of artificial intelligence (AI) presents both groundbreaking opportunities and significant environmental challenges. Recognizing the need for responsible AI development, France, the United Nations Environment Programme (UNEP), and the International Telecommunication Union (ITU) have established the Coalition for Sustainable AI—a global, multi-stakeholder initiative dedicated to ensuring AI supports sustainability rather than exacerbating environmental harm. A Shared Vision for Sustainable AI The Coalition for Sustainable AI, launched at the Paris AI Action Summit 2025, brings together public and private sector leaders to align AI advancements with environmental goals. The initiative seeks to: Why This Coalition Matters As AI infrastructure becomes as fundamental as water, energy, and transport, its environmental implications must be addressed proactively. AI technologies have the potential to redefine entire industries—just as the Industrial Revolution once did—while offering unprecedented capabilities to tackle climate change, optimize resource management, and enhance environmental decision-making. By bringing together a diverse network of stakeholders, the Coalition recognizes that the digital and AI revolution and the environmental crisis are two defining challenges of our time. Mission and Leadership The Coalition operates under two core principles: Founding Leaders: Driving Global Collaboration The Coalition’s role extends beyond advocacy. It serves as a platform to: This initiative will also maintain momentum through major global forums such as AI Summits, COP conferences, and other international policy discussions, ensuring AI remains at the forefront of sustainability efforts. Industry Leaders Join the Movement The Coalition for Sustainable AI has already attracted a diverse group of corporations, research institutions, NGOs, investors, and public sector organizations committed to this mission. Corporate Members Include: Salesforce, Nvidia, IBM, Hugging Face, Capgemini, Thales, Schneider Electric, Philips, TotalEnergies, Baidu, Orange, L’Oréal Groupe, Mistral AI, AMD, Dassault Systèmes, and more. Research Institutions and NGOs: Stockholm Environment Institute, Mila, Vrije Universiteit Amsterdam, Università di Pavia, Climate Change AI, The Shift Project, Royal Academy of Engineering, and others. Investors and Public Sector Representatives: Ardian, Crédit Agricole, Eurazeo, Mirova, BPI France, the Republic of Serbia’s Ministry of Science, and more. Salesforce’s Commitment to AI Sustainability Boris Gamazaychikov, Head of AI Sustainability at Salesforce, emphasized the importance of this initiative, stating: “I’m proud that Salesforce is one of the initial members, and I hope that many more join on this critical journey. Thanks to the French Government, UNEP, and ITU for organizing this important initiative.” Looking Ahead: The Future of Sustainable AI The Coalition for Sustainable AI marks a critical step toward ensuring that AI serves as a force for climate action, biodiversity preservation, and sustainable development. As AI continues to reshape the global economy, initiatives like this will help balance technological progress with environmental responsibility. With momentum building and more organizations joining the effort, the Coalition aims to drive lasting impact—paving the way for a future where AI and sustainability go hand in hand. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Rise of AI Agents: 2024 and Beyond

The Rise of AI Agents: 2024 and Beyond

In 2024, we witnessed major breakthroughs in AI agents. OpenAI’s o1 and o3 models demonstrated the ability to deconstruct complex tasks, while Claude 3.5 showcased AI’s capacity to interact with computers like humans—navigating interfaces and running software. These advancements, alongside improvements in memory and learning systems, are pushing AI beyond simple chat interactions into the realm of autonomous systems. AI agents are already making an impact in specialized fields, including legal analysis, scientific research, and technical support. While they excel in structured environments with defined rules, they still struggle with unpredictable scenarios and open-ended challenges. Their success rates drop significantly when handling exceptions or adapting to dynamic conditions. The field is evolving from conversational AI to intelligent systems capable of reasoning and independent action. Each step forward demands greater computational power and introduces new technical challenges. This article explores how AI agents function, their current capabilities, and the infrastructure required to ensure their reliability. What is an AI Agent? An AI agent is a system designed to reason through problems, plan solutions, and execute tasks using external tools. Unlike traditional AI models that simply respond to prompts, agents possess: Understanding the shift from passive responders to autonomous agents is key to grasping the opportunities and challenges ahead. Let’s explore the breakthroughs that have fueled this transformation. 2024’s Key Breakthroughs OpenAI o3’s High Score on the ARC-AGI Benchmark Three pivotal advancements in 2024 set the stage for autonomous AI agents: AI Agents in Action These capabilities are already yielding practical applications. As Reid Hoffman observed, we are seeing the emergence of specialized AI agents that extend human capabilities across various industries: Recent research from Sierra highlights the rapid maturation of these systems. AI agents are transitioning from experimental prototypes to real-world deployment, capable of handling complex business rules while engaging in natural conversations. The Road Ahead: Key Questions As AI agents continue to evolve, three critical questions for us all emerge: The next wave of AI innovation will be defined by how well we address these challenges. By building robust systems that balance autonomy with oversight, we can unlock the full potential of AI agents in the years ahead. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
salesforce service assistant

Salesforce Service Assistant

Salesforce Service Assistant is an AI-powered tool that helps service representatives resolve cases faster. It’s available on Service Cloud and is designed to save time for agents. How it works Benefits Helps agents resolve cases faster, Saves time for service representatives, Grounded in the organization’s knowledge base and data, and Adheres to company policies. Additional information Alongside agent guidance, the Service Assistant provides two other notable features. The first enables agents to create conversation summaries with “just a click” after using the solution to complete a case. The second allows agents to request that the assistant auto-crafts a new knowledge article when its guidance proved insufficient, based on how they resolved the query. Thanks to this second feature, the Service Assistant may get better with time, aiding agent proficiency, customer satisfaction, and – ultimately – average handling time (AHT). However, despite this capability, Salesforce has pledged to advance the solution further. Indeed, during a recent webinar, Kevin Qi, Associate Product Manager at Salesforce, teased what will come in June. Pointing to Service Cloud’s Summer ‘25 release wave, Qi said: The next phase of Service Assistant involves actionable plans. So, not only will it help guide the service rep, but it’ll also take actions to automate various steps, so it can look up orders, check eligibilities, and more to help speed up the efficiency of tackling that case. Beyond the summer, Salesforce plans to have the Assistant blend modalities, guiding customer conversations across channels to further streamline the interaction. “The Service Assistant will become even more adaptive, support more channels, including messaging and voice, being able to adapt to changes in case context,” concluded Qi. The Latest AI Solutions on Service Cloud Alongside the Service Assistant, Salesforce has released several other AI and Agentforce capabilities, embedded across Service Cloud. Qi picked out the “Freeform Instructions in Service Email Assistant” feature for special reference. “If the agent doesn’t have a template already made for a particular instance, they can type – in natural language – the sort of email they’d want to generate and have Agentforce create that email in the flow of work,” he said. That capability may prove highly beneficial in helping agents piece their thoughts together when resolving a tricky case. After all, they can note some key points – in natural language – and the feature will create a coherent customer response. Alongside this comes a solution to quickly summarize case activity for wrap-up in beta. Yet, most new features focus on improving the knowledge that feeds into AI solutions, like the Service Assistant. For starters, there’s a flow orchestrator in beta that helps contact center leaders build a process for approving new knowledge articles and updates. Additionally, there’s an “Update Knowledge Content with AI” feature. This ingests prompts and – as it says on the tin – updates the tone, style, and length of particular knowledge articles. Last comes the “Knowledge Sync to Data Cloud” tool that pulls contact center knowledge into the Salesforce customer data platform (CDP). Not only does this democratize service insights, but it also supports contact centers in grounding the Service Assistant and other AI agents. Both of these final knowledge capabilities are now generally available. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
salesforce end to end

Salesforce and Google Announcement

Salesforce (NYSE:CRM) has entered into a deal with Google (NASDAQ:GOOGL) to offer its customer relations management software, Agentforce artificial intelligence assistants, and Data Cloud offerings through Google Cloud, the companies announced today. Google and Salesforce already have many of the same clients, and this new deal will allow for more product integration between Google Workspace and Salesforce’s customer relationship management and AI offerings. Salesforce already uses Amazon (AMZN) Web Services for much of its cloud computing. “Our mutual customers have asked us to be able to work more seamlessly across Salesforce and Google Cloud, and this expanded partnership will help them accelerate their AI transformations with agentic AI, state-of-the-art AI models, data analytics, and more,” said Thomas Kurian, CEO of Google Cloud. The deal is expected to total $2.5B over the next seven years, according to a report by Bloomberg. Salesforce and Google today announced a major expansion of their strategic partnership, delivering choice in the models and capabilities businesses use to build and deploy AI-powered agents. In today’s constantly evolving AI landscape, innovations like autonomous agents are emerging so quickly that businesses struggle to keep pace. This expanded partnership provides crucial flexibility, empowering customers to develop tailored AI solutions that meet their specific needs, rather than being locked into a single model provider. Google Cloud is at the forefront of enterprise AI innovation with millions of developers building with Google’s cutting-edge Gemini models and on Google Cloud’s AI-optimized infrastructure. This expanded partnership will empower Salesforce customers to build Agentforce agents using Gemini and to deploy Salesforce on Google Cloud. This is an expansion of the existing partnership that allows customers to use data from Data Cloud and Google BigQuery bi-directionally via zero-copy technology—further equipping customers with the data, AI, trust, and actions they need to bring autonomous agents into their businesses. Additionally, this integration empowers Agentforce agents with the ability to reference up-to-the-minute data, news, current events, and credible citations, substantially enhancing their contextual awareness and ability to deliver accurate, evidence-backed responses. For example, in supply chain management and logistics, an agent built with Agentforce could track shipments and monitor inventory levels in Salesforce Commerce Cloud and proactively identify potential disruptions using real-time data from Google Search, including weather conditions, port congestion, and geopolitical events. Availability is expected in the coming months. AI: Unlocking the Power of Choice and Flexibility with Gemini and Agentforce Businesses need the freedom to choose the best models for their needs rather than be locked into one vendor. In 2025, Google’s Gemini models will also be available for prompt building and reasoning directly within Agentforce. With Gemini and Agentforce, businesses will benefit from: For example, an insurance customer can submit a claim with photos of the damage and an audio voicemail from a witness. Agentforce, using Gemini, can then help the insurance provider deliver better customer experiences by processing all these inputs, assessing the claim’s validity, and even using text-to-speech to contact the customer with a resolution, streamlining the traditionally lengthy claims process. Availability is expected this year. Trust: Salesforce Platform deployed on Google Cloud Customers will be able to use Salesforce’s unified platform (Agentforce, Data Cloud, Customer 360) on Google Cloud’s highly secure, AI-optimized infrastructure, benefiting from features like dynamic grounding, zero data retention, and toxicity detection provided by the Einstein Trust Layer. Once Salesforce products are available on Google Cloud, customers will also have the ability to procure Salesforce offerings through the Google Cloud Marketplace, opening up new possibilities for global businesses to optimize their investments across Salesforce and Google Cloud and benefiting thousands of existing joint customers. Action: Enhanced Employee Productivity and Customer Service with AI-Powered Integrations Millions use Salesforce and Google Cloud daily. This partnership prioritizes choice and flexibility, enabling seamless cross-platform work. New and deeper connections between platforms like Salesforce Service Cloud and Google Cloud’s Customer Engagement Suite, as well as Slack and Google Workspace, will empower AI agents and service representatives with unified data access, streamlined workflows, and advanced AI capabilities, regardless of platform. Salesforce and Google Cloud are deeply integrating their customer service platforms—Salesforce Service Cloud and Google Cloud’s Customer Engagement Suite—to create a seamless and intelligent support experience. Expected later this year, this unified approach empowers AI agents in Service Cloud with: Salesforce and Google Cloud are also exploring deeper integrations between Slack and Google Workspace, boosting productivity and creating a more cohesive digital workspace for teams and organizations. The companies are currently exploring use cases such as: Expanding Partnership Capabilities and Integrations This partnership goes beyond core product integrations to deliver a more connected and intelligent data foundation for businesses. Expected availability throughout 2025: This landmark partnership between Salesforce and Google represents a strategic paradigm shift in enterprise AI deployment, emphasizing infrastructure innovation, AI capability enhancement, and enterprise value. The integration of Google Search grounding provides a unique competitive advantage, offering real-time, factual responses backed by the world’s most comprehensive search engine. The companies are committed to ongoing innovation and deeper collaboration to empower businesses with even more powerful solutions. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com