Knowledge Archives - gettectonic.com
Salesforce Foundations

Salesforce Foundations

We are excited that Agentforce Service Agents are now live! Agentforce Service Agent is the autonomous conversational AI assistant to help your customers with their service and support needs. What does this mean for Foundations Customers?Salesforce Foundations is required for all customers in order to try or buy Agentforce. Additionally, customers who have Foundations can try Agentforce Agents for free with a limited number of credits to test a use case or deploy a proof of concept. Salesforce Foundations is not a product or add-on. It’s a multi-cloud feature set that will be added to Sales and Service Cloud — no integration needed, with no additional upfront cost for our customers. It includes foundational features from Sales, Service, Marketing, Commerce, and Data Cloud. Salesforce Foundations provides a 360-degree view of your customer relationships across sales, service, marketing, and commerce through integrated applications and unified data. It also boosts productivity with streamlined, visually friendly user interface improvements, that you can turn on or off per your requirements. If you’re a Salesforce Sales Cloud or Service Cloud customer, you’ve become accustomed to the power, convenience, and full-featured functionality of our trusted CRM. Adding the additional functionality and engagement capabilities of a new Salesforce Cloud is exciting, but it’s also a big change for your organization to consider when you’re not sure about the value it brings. So, what if you could use essential features in the most popular Salesforce Clouds and turn them on when you’re ready? Now you can with Salesforce Foundations. Salesforce Foundations is a new, no-cost addition to your existing CRM that equips you to expand your business reach. The suite gives Salesforce customers on Enterprise, Unlimited, and Einstein 1 editions the power of Data Cloud, and access to essential Salesforce sales, service, Agentforce, marketing, and commerce capabilities. This suite is built into your existing CRM, and provides new functionality to give you a more robust 360-degree view of your customers. This chart shows the Salesforce Foundations features you get with your current Sales Cloud or Service Cloud package. You get Sales for Salesforce Foundations You get Service for Salesforce Foundations You get Marketing for Salesforce Foundations You get Commerce for Salesforce Foundations You get Data Cloud for Salesforce Foundations You get Agentforce for Salesforce Foundations If you already have Sales Cloud * Yes Yes Yes Yes Yes If you already have Service Cloud Yes * Yes Yes Yes Yes If you already have Sales & Service Clouds * * Yes Yes Yes Yes *Your current Salesforce product. Benefits of Salesforce Foundations The features you get with Salesforce Foundations open doors to all sorts of new ways your teams can work more efficiently and engage with your customers on a more personal level. The benefits listed below are only a few of the ways Salesforce Foundations can help your business grow and thrive. Check out Discover Salesforce Foundations to see the full list of capabilities included with Salesforce Foundations. With Salesforce Foundations, your organization benefits from: Sales features that help you take care of your entire sales pipeline, from prospecting to closing. You can manage your leads, opportunities, accounts, and contacts in the preconfigured Sales Console. Service features that make it easy to provide proactive, personalized support to your customers through the preconfigured Service Console. Omni-channel case routing makes sure the most qualified agents work each case, Knowledge Management helps agents provide accurate and relevant help articles to customers, and macros help agents complete repetitive tasks with a single click. Agentforce brings the power of conversational AI to your business. Try out an intelligent, trusted, and customizable AI agent and help your users get more done with Salesforce. Agentforce’s autonomous apps use LLMs and context to assist customers and human agents. Marketing features that allow you to join data from disparate sources, better understand and analyze your customers, and choose how to connect with your audiences. You can create customized marketing campaigns powered by Salesforce Flows to send at the right time. Commerce features that help boost sales with a Direct to Customer (D2C) online storefront. You can define customer experiences like search, carts, and checkout. Pay Now lets you generate secure payment links for customers when opportunities close, so you get paid faster. Data Cloud functionality that creates unified profiles by aggregating data from all of your data sources into a single view so you can better understand your customers. Create customer segments to more accurately target campaigns, analyze your customers, and manage consent data. Data Cloud also powers features so you can send online store order confirmation emails and marketing messages. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Amazon Q Business

Amazon Q Business

Amazon Q Business: Revolutionizing Enterprise Productivity with Generative AI and Plugins Amazon Q Business is a generative AI-powered assistant that empowers employees by solving problems, generating content, and offering actionable insights from across enterprise data sources. In addition to its robust search capabilities across indexed third-party services, Amazon Q Business enables real-time access to dynamic data like stock prices, vacation balances, and location tracking through its plugins. These plugins also allow employees to perform direct actions—such as prioritizing service tickets—within enterprise applications, all through a single interface. This eliminates the need to toggle between systems, saving valuable time and increasing productivity. This insight delves into how Amazon Q Business plugins seamlessly integrate with enterprise applications through built-in and custom configurations. We’ll explore: Simplifying Enterprise Tasks with Plugins Amazon Q Business enables users to access non-indexed data—such as calendar availability, stock prices, or PTO balances—and execute actions like booking a meeting or submitting PTO using services like Jira, ServiceNow, Salesforce, Fidelity, Vanguard, ADP, Workday, and Google Calendar. This unified approach streamlines workflows and minimizes reliance on multiple apps for task completion. Solution Overview Amazon Q Business connects to over 50 enterprise applications using connectors and plugins: Plugins are categorized into two types: Built-in Plugins Amazon Q Business supports more than 50 actions across applications: Category Application Sample Actions Ticketing ServiceNow Create, update, delete tickets Zendesk Suite Search, create, update tickets Project Management Jira Cloud Read, create, update, delete issues Smartsheet Search and manage sheets and reports CRM Salesforce Manage accounts, opportunities, and cases Communication Microsoft Teams Send private or channel messages Productivity Google Calendar Find events, list calendars Salesforce Plugin Example The Salesforce plugin allows users to: Configuration Steps: Custom Plugins For scenarios not covered by built-in plugins, custom plugins enable seamless integration with proprietary systems. For example: HR Time Off Plugin Example This plugin allows employees to: Setup Steps: End-to-End Use Cases 1. Salesforce Integration Sam, a Customer Success Manager, retrieves high-value opportunities using the Salesforce plugin. She creates a new case directly from the Amazon Q interface, enhancing efficiency by reducing application switching. 2. ServiceNow Ticket Management Sam uses Amazon Q Business to resolve a laptop email sync issue. After referencing indexed IT documentation, she creates a ServiceNow ticket and escalates it directly through the plugin interface. 3. HR System Integration Sam checks her PTO balance and submits a vacation request using the HR Time Off custom plugin, ensuring seamless task completion without switching to another app. Impact on Workflow Efficiency Amazon Q Business plugins simplify workflows by: Conclusion Amazon Q Business plugins represent a transformative step in automating enterprise workflows and enhancing employee productivity. From preconfigured integrations to custom-built solutions, these plugins provide unparalleled flexibility to adapt to diverse business needs. How can Amazon Q Business transform workflows in your organization? Whether through built-in integrations or custom solutions, explore the power of Amazon Q Business plugins to unlock new levels of efficiency. Share your feedback and use cases to inspire innovation across enterprises! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Service Cloud or Sales Cloud for Service

4 Reasons to Use Salesforce Service Cloud Over Sales Cloud’s Standard Case Functionality When businesses aim to elevate their customer support operations, Salesforce is often their platform of choice. While Sales Cloud and Service Cloud both help manage customer interactions, their core purposes differ. Sales Cloud focuses on managing the sales pipeline, whereas Service Cloud is specifically designed to optimize customer service and support processes. Here are four compelling reasons to choose Service Cloud for your customer support needs. 1. Advanced Case Management Features Service Cloud offers robust tools to manage customer cases with efficiency, far surpassing the basic case functionality available in Sales Cloud. Key Service Cloud Features: While Sales Cloud does support basic case management, it lacks these advanced features. Attempting to replicate them in Sales Cloud often requires extensive customization and development. 2. Omni-Channel Support for Seamless Customer Communication Modern customer service spans multiple channels, including chat, email, phone, and social media. Service Cloud provides powerful omni-channel capabilities to unify communication across all these touchpoints—something Sales Cloud does not offer. Key Service Cloud Features: Sales Cloud’s functionality centers on sales processes, leaving it without native support for omni-channel routing or social media integrations for customer support. 3. Knowledge Base for Self-Service and Agent Efficiency Service Cloud enables organizations to build and maintain a knowledge base, empowering both customers and agents with quick access to solutions. Key Service Cloud Features: Sales Cloud does not include tools for creating a knowledge base, self-service portals, or case deflection, as it is designed primarily for sales teams. 4. Entitlements and Service Contracts for Enhanced Customer Support Service Cloud provides specialized tools for managing entitlements and service contracts, ensuring customers receive the level of support they’re entitled to. Key Service Cloud Features: Sales Cloud does not offer dedicated features for managing entitlements or service contracts, limiting its utility for businesses focused on structured customer support. Why Service Cloud is the Better Choice for Customer Support While Sales Cloud is a powerful tool for managing sales pipelines, it falls short in addressing the complex needs of modern customer support. Service Cloud provides: If your priority is delivering exceptional customer support and enhancing customer satisfaction, Service Cloud is the clear choice. With its comprehensive features, your support team will be empowered to work more efficiently, resolve issues faster, and provide outstanding service across all channels. Invest in Service Cloud to transform your support operations and create seamless, satisfying experiences for your customers. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
From Chatbots to Agentic AI

From Chatbots to Agentic AI

The transition from LLM-powered chatbots to agentic systems, or agentic AI, can be summed up by the old saying: “Less talk, more action.” Keeping up with advancements in AI can be overwhelming, especially when managing an existing business. The speed and complexity of innovation can make it feel like the first day of school all over again. This insight offers a comprehensive look at AI agents, their components, and key characteristics. The introductory section breaks down the elements that form the term “AI agent,” providing a clear definition. After establishing this foundation, we explore the evolution of LLM applications, particularly the shift from traditional chatbots to agentic systems. The goal is to understand why AI agents are becoming increasingly vital in AI development and how they differ from LLM-powered chatbots. By the end of this guide, you will have a deeper understanding of AI agents, their potential applications, and their impact on organizational workflows. For those of you with a technical background who prefer to get hands-on, click here for the best repository for AI developers and builders. What is an AI Agent? Components of AI Agents To understand the term “AI agent,” we need to examine its two main components. First, let’s consider artificial intelligence, or AI. Artificial Intelligence (AI) refers to non-biological intelligence that mimics human cognition to perform tasks traditionally requiring human intellect. Through machine learning and deep learning techniques, algorithms—especially neural networks—learn patterns from data. AI systems are used for tasks such as detection, classification, and prediction, with content generation becoming a prominent domain due to transformer-based models. These systems can match or exceed human performance in specific scenarios. The second component is “agent,” a term commonly used in both technology and human contexts. In computer science, an agent refers to a software entity with environmental awareness, able to perceive and act within its surroundings. A computational agent typically has the ability to: In human contexts, an agent is someone who acts on behalf of another person or organization, making decisions, gathering information, and facilitating interactions. They often play intermediary roles in transactions and decision-making. To define an AI agent, we combine these two perspectives: it is a computational entity with environmental awareness, capable of perceiving inputs, acting with tools, and processing information using foundation models backed by both long-term and short-term memory. Key Components and Characteristics of AI Agents From LLMs to AI Agents Now, let’s take a step back and understand how we arrived at the concept of AI agents, particularly by looking at how LLM applications have evolved. The shift from traditional chatbots to LLM-powered applications has been rapid and transformative. Form Factor Evolution of LLM Applications Traditional Chatbots to LLM-Powered Chatbots Traditional chatbots, which existed before generative AI, were simpler and relied on heuristic responses: “If this, then that.” They followed predefined rules and decision trees to generate responses. These systems had limited interactivity, with the fallback option of “Speak to a human” for complex scenarios. LLM-Powered Chatbots The release of OpenAI’s ChatGPT on November 30, 2022, marked the introduction of LLM-powered chatbots, fundamentally changing the game. These chatbots, like ChatGPT, were built on GPT-3.5, a large language model trained on massive datasets. Unlike traditional chatbots, LLM-powered systems can generate human-like responses, offering a much more flexible and intelligent interaction. However, challenges remained. LLM-powered chatbots struggled with personalization and consistency, often generating plausible but incorrect information—a phenomenon known as “hallucination.” This led to efforts in grounding LLM responses through techniques like retrieval-augmented generation (RAG). RAG Chatbots RAG is a method that combines data retrieval with LLM generation, allowing systems to access real-time or proprietary data, improving accuracy and relevance. This hybrid approach addresses the hallucination problem, ensuring more reliable outputs. LLM-Powered Chatbots to AI Agents As LLMs expanded, their abilities grew more sophisticated, incorporating advanced reasoning, multi-step planning, and the use of external tools (function calling). Tool use refers to an LLM’s ability to invoke specific functions, enabling it to perform more complex tasks. Tool-Augmented LLMs and AI Agents As LLMs became tool-augmented, the emergence of AI agents followed. These agents integrate reasoning, planning, and tool use into an autonomous, goal-driven system that can operate iteratively within a dynamic environment. Unlike traditional chatbot interfaces, AI agents leverage a broader set of tools to interact with various systems and accomplish tasks. Agentic Systems Agentic systems—computational architectures that include AI agents—embody these advanced capabilities. They can autonomously interact with systems, make decisions, and adapt to feedback, forming the foundation for more complex AI applications. Components of an AI Agent AI agents consist of several key components: Characteristics of AI Agents AI agents are defined by the following traits: Conclusion AI agents represent a significant leap from traditional chatbots, offering greater autonomy, complexity, and interactivity. However, the term “AI agent” remains fluid, with no universal industry standard. Instead, it exists on a continuum, with varying degrees of autonomy, adaptability, and proactive behavior defining agentic systems. Value and Impact of AI Agents The key benefits of AI agents lie in their ability to automate manual processes, reduce decision-making burdens, and enhance workflows in enterprise environments. By “agentifying” repetitive tasks, AI agents offer substantial productivity gains and the potential to transform how businesses operate. As AI agents evolve, their applications will only expand, driving new efficiencies and enabling organizations to leverage AI in increasingly sophisticated ways. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Speed to Launch of Agentforce

Speed to Launch of Agentforce

Agentforce isn’t just another AI platform that requires months of customization. At most customers, they quickly saw its power, launching transformative generative AI experiences in just days—no AI engineers needed. For companies with larger admin teams, the benefits can be even greater. Unlike other platforms, Agentforce places a strong emphasis on data privacy, building on the trust that Salesforce is known for, making these virtual assistants invaluable. We began with employee-facing use cases, saving our team several hours per week. Now, with Agentforce, we’re seeing even more opportunities to drive efficiencies and better serve our customers. “We’re excited to leverage Agentforce to completely overhaul recruitment and enrollment at Unity Environmental University. Instead of traditional forms or chatbots, our students will soon engage with an autonomous recruitment agent directly on our website, offering personalized support throughout the college application process.”– Dr. Melik Khoury, President & CEO, Unity Environmental University “For first-generation college students, the 1:385 coach-to-student ratio makes personalized guidance challenging. By integrating Agentforce into our platform, we’re deploying cutting-edge solutions to better support students. These agents enable our coaches to focus on high-touch, personalized experiences while handling vital tasks like sharing deadlines and answering common questions—24/7.”– Siva Kumari, CEO, College Possible “Agentforce offers organizations a unique opportunity to move beyond incremental improvements and achieve exponential ROI. By automating customer interactions, improving outcomes, and reducing costs, it integrates data, flows, and user interfaces to mitigate risks and accelerate value creation. This agent-based platform approach allows businesses to harness AI’s full potential, revolutionizing customer engagement and paving the way for exponential growth.”– Rebecca Wettemann, CEO and Principal Analyst, Valoir “Autonomous agents powered by Salesforce’s Agentforce are revolutionizing customer experiences by providing fast, accurate, and personalized support around the clock. With advanced AI making decisions and taking actions autonomously, businesses can resolve customer issues more efficiently, fostering deeper interactions and enhancing satisfaction. This innovation enables companies to reallocate human resources to more complex tasks, boosting individual productivity and scaling business growth. Agentforce is setting new standards for seamless sales, service, marketing, and commerce interactions, reinforcing its leadership in customer experience.”– Michael Fauscette, CEO and Chief Analyst, Arion Research LLC “The best way to predict the future is to invent it.” — Alan Kay, Computer Science Pioneer Technology progresses in what biologists call punctuated equilibrium, with new capabilities slowly emerging from labs and tinkerers until a breakthrough shifts the axis of possibility. These pioneering feats create new paradigms, unleashing waves of innovation—much like the Apple Macintosh, the iPhone, and the Salesforce Platform, which revolutionized the enterprise software-as-a-service (SaaS) model and sparked an entire industry. The Age of Agentforce Begins At Dreamforce 2024, Salesforce Futures reflected on the launch of Agentforce, inspired by visions like the Apple Knowledge Navigator. In 2023, we used this inspiration to craft our Salesforce 2030 film, which showcased the collaboration between humans and autonomous AI agents. Now, with Agentforce, we’re witnessing that vision come to life. Agentforce is a suite of customizable AI agents and tools built on the Salesforce Platform, offering an elegant solution to the complexity of AI deployment. It addresses the challenges of integrating data, models, infrastructure, and applications into a unified system. With powerful tools like Agent Builder and Model Builder, organizations can easily create, customize, and deploy AI agents. Salesforce’s Atlas Reasoning Engine empowers these agents to handle both routine and complex tasks autonomously. A New Era of AI Innovation At Dreamforce 2024, over 10,000 attendees raced to build their own agents using the “Agent Builder” experience, turning verbal instructions into fully functioning agents in under 15 minutes. This wasn’t just another chatbot—it’s a new breed of AI that could transform how businesses operate and deliver superior customer experiences. Companies like Saks, OpenTable, and Wiley have quickly embraced this technology. As Mick Costigan and David Berthy of Salesforce Futures explain, “When we see signals like this, it pushes us toward the future. Soon, we’ll see complex, multi-agent systems solving higher-order challenges, both in the enterprise and in consumer devices.” Shaping the Future Agentforce isn’t just a product—it’s a platform for experimentation. With hundreds of thousands of Salesforce customers soon gaining access, the full potential of these tools will unfold in ways we can’t yet imagine. As with every major technological shift, the real magic will lie in how people use it. Every interaction, every agent deployed, and every problem solved will shape the future in unexpected ways. Platform Evolution Adam Evans, Salesforce SVP of Product, notes that Agentforce builds on the company’s transformation over the past four years, following the pattern of Salesforce’s original disruption of enterprise software. Unlike traditional solutions, Agentforce eliminates the need for customers to build their own AI infrastructure, providing a ready-to-use solution. At the core of Agentforce is the Atlas Reasoning Engine, delivering results that are twice as relevant and 33% more accurate than competing solutions. This engine integrates Salesforce Data Cloud, Flow for automation, and the Einstein Trust Layer for governance. Early Customer Results Early Agentforce deployments highlight how organizations are using autonomous agents to enhance, rather than replace, human workers: George Pokorny, Senior VP of Global Customer Success at OpenTable, shared, “Just saving two minutes on a ten-minute call lets our service reps focus on strengthening customer relationships, thanks to seamless integration with Service Cloud, giving us a unified view of diner preferences and history.” Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Why Build a General-Purpose Agent?

A general-purpose LLM agent serves as an excellent starting point for prototyping use cases and establishing the foundation for a custom agentic architecture tailored to your needs. What is an LLM Agent? An LLM (Large Language Model) agent is a program where execution logic is governed by the underlying model. Unlike approaches such as few-shot prompting or fixed workflows, LLM agents adapt dynamically. They can determine which tools to use (e.g., web search or code execution), how to use them, and iterate based on results. This adaptability enables handling diverse tasks with minimal configuration. Agentic Architectures Explained:Agentic systems range from the reliability of fixed workflows to the flexibility of autonomous agents. For instance: Your architecture choice will depend on the desired balance between reliability and flexibility for your use case. Building a General-Purpose LLM Agent Step 1: Select the Right LLM Choosing the right model is critical for performance. Evaluate based on: Model Recommendations (as of now): For simpler use cases, smaller models running locally can also be effective, but with limited functionality. Step 2: Define the Agent’s Control Logic The system prompt differentiates an LLM agent from a standalone model. This prompt contains rules, instructions, and structures that guide the agent’s behavior. Common Agentic Patterns: Starting with ReAct or Plan-then-Execute patterns is recommended for general-purpose agents. Step 3: Define the Agent’s Core Instructions To optimize the agent’s behavior, clearly define its features and constraints in the system prompt: Example Instructions: Step 4: Define and Optimize Core Tools Tools expand an agent’s capabilities. Common tools include: For each tool, define: Example: Implementing an Arxiv API tool for scientific queries. Step 5: Memory Handling Strategy Since LLMs have limited memory (context window), a strategy is necessary to manage past interactions. Common approaches include: For personalization, long-term memory can store user preferences or critical information. Step 6: Parse the Agent’s Output To make raw LLM outputs actionable, implement a parser to convert outputs into a structured format like JSON. Structured outputs simplify execution and ensure consistency. Step 7: Orchestrate the Agent’s Workflow Define orchestration logic to handle the agent’s next steps after receiving an output: Example Orchestration Code: pythonCopy codedef orchestrator(llm_agent, llm_output, tools, user_query): while True: action = llm_output.get(“action”) if action == “tool_call”: tool_name = llm_output.get(“tool_name”) tool_params = llm_output.get(“tool_params”, {}) if tool_name in tools: try: tool_result = tools[tool_name](**tool_params) llm_output = llm_agent({“tool_output”: tool_result}) except Exception as e: return f”Error executing tool ‘{tool_name}’: {str(e)}” else: return f”Error: Tool ‘{tool_name}’ not found.” elif action == “return_answer”: return llm_output.get(“answer”, “No answer provided.”) else: return “Error: Unrecognized action type from LLM output.” This orchestration ensures seamless interaction between tools, memory, and user queries. When to Consider Multi-Agent Systems A single-agent setup works well for prototyping but may hit limits with complex workflows or extensive toolsets. Multi-agent architectures can: Starting with a single agent helps refine workflows, identify bottlenecks, and scale effectively. By following these steps, you’ll have a versatile system capable of handling diverse use cases, from competitive analysis to automating workflows. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI-Powered Smarter Media

AI Transforming Precision Medicine

How AI-Driven Data Curation is Transforming Precision Medicine Precision medicine—a healthcare approach that personalizes disease prevention and treatment based on insights into a patient’s genes, environment, and behavior—holds incredible promise. However, its success depends on high-quality, curated data from sources like electronic health records (EHRs). This reliance creates significant challenges for healthcare providers and researchers. Can artificial intelligence (AI) help address these hurdles? AI-enabled data curation is already making strides in advancing precision medicine, particularly in oncology. By analyzing vast datasets, including structured and unstructured information, AI is helping healthcare organizations accelerate research and improve patient outcomes. Data Curation Challenges in Precision Medicine Real-world data (RWD) is a key driver of precision medicine, but processing this data is fraught with challenges. According to Dr. C.K. Wang, Chief Medical Officer at COTA, Inc., EHRs provide unprecedented access to detailed patient information, enabling deeper insights into care patterns. However, much of this data resides in unstructured formats, such as clinicians’ notes, making it difficult to extract and analyze. “To transform this unstructured data into actionable insights, significant human expertise and resources are required,” Wang explained. While AI tools like COTA’s CAILIN, which uses advanced search capabilities, streamline this process, human involvement remains essential. Wang emphasized that even with the rapid advancements in AI, healthcare data curation requires expert oversight to ensure quality and reliability. “The adage ‘junk in, junk out’ applies here—without high-quality training data, AI cannot generate meaningful insights,” he noted. PHI and COTA: A Collaborative Approach to AI-Driven Curation To overcome these challenges, Precision Health Informatics (PHI), a subsidiary of Texas Oncology, partnered with COTA to enhance their data curation capabilities. The collaboration aims to integrate structured and unstructured data, including clinician notes and patient-reported outcomes, into a unified resource for precision medicine. PHI’s database, which represents 1.6 million patient journeys, provides a rich resource for hypothesis-driven studies and clinical trial enrichment. However, much of this data was siloed or unstructured, requiring advanced tools and expert intervention. Lori Brisbin, Chief Operating Officer at PHI, highlighted the importance of partnering with a data analytics leader. “COTA’s strong clinical knowledge in oncology allowed them to identify data gaps and recommend improvements,” she said. This partnership is yielding significant results, including a high data attrition rate of 87%—far surpassing the industry average of 50% for similar projects. The Role of AI in Cancer Care AI tools like CAILIN are helping PHI and COTA refine data curation processes by: Brisbin likened the role of AI to sorting images: “If you’re looking for German shepherds, AI will narrow the search but might include similar images, like wolves or huskies. Experts are still needed to validate and refine the results.” Building the Foundation for Better Outcomes The integration of high-quality RWD into analytics efforts is reshaping precision medicine. While clinical trial data offers valuable insights, it often lacks the variability seen in real-world scenarios. Adding RWD to these datasets helps expand the scope of research and ensure broader applicability. For instance, cancer care guidelines developed with RWD can account for diverse patient populations and treatment approaches. COTA’s work with PHI underscores the value of collaborative data curation, with AI streamlining processes and human experts ensuring accuracy. The Future of AI in Precision Medicine As healthcare organizations invest in data-driven innovation, AI will play an increasingly pivotal role in enabling precision medicine. However, challenges remain. Wang noted that gaps in EHR data, such as missing survival metrics, can undermine oncological outcomes research. Advances in interoperability and external data sources will be key to addressing these issues. “The foundation of our partnership is built on leveraging data insights to enhance care quality and improve operational efficiency,” Wang said. Through AI-powered tools and meaningful partnerships, precision medicine is poised to deliver transformative results, empowering providers to offer tailored treatments that improve patient outcomes at scale. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
New Service Cloud Tools

Service Cloud for HR

Salesforce has expanded its Service Cloud capabilities to include a new HR-focused solution, Employee Service, designed to streamline employee support and enhance productivity. Employee Service introduces a dedicated HR service console paired with an employee portal. This portal acts as a centralized hub for staff to access HR resources, offering instant answers via Generative AI (GenAI), direct communication with HR specialists across multiple channels, and self-service options for tasks like requesting paid time off (PTO). For HR teams, the service console consolidates employee data, case details, and a company’s knowledge base into a unified workspace. It leverages AI-driven tools to resolve cases faster, automate routine tasks, and deliver seamless employee experiences. Salesforce’s Agentforce customers can integrate AI agents into Employee Service to further automate processes, saving time and reducing repetitive workloads. In a LinkedIn announcement, Kishan Chetan, EVP and GM for Service Cloud, highlighted the solution’s potential: “This new solution unifies employee data, case details, and a company’s corporate knowledge base all in one workspace that gives HR teams a 360-degree view of each employee and the ability to manage employee support cases with built-in AI and productivity tools. HR teams can efficiently resolve employee issues using Agentforce to quickly search, respond, summarize, and close cases, extending teams to get work done faster.” Salesforce’s broader goal is to eliminate the reliance on fragmented HR tools and reduce the need for employees to navigate disparate platforms like email, internal systems, and collaboration tools to complete HR-related tasks. By doing so, Salesforce aims to simplify HR processes, minimize manual effort, and enhance overall productivity. Early adopters of Employee Service are already reporting significant results. According to Sherin Sunny, Sr. Director of Product Management at Salesforce, customers have observed a 31% increase in employee productivity. This aligns with broader trends: Recognizing the need for a unified HR ecosystem, Salesforce includes a prebuilt MuleSoft integration with Workday and configurable connectors to other Human Capital Management (HCM) systems. These integrations establish a centralized HR data foundation, reducing inefficiencies caused by siloed tools. Looking ahead, Beth Schultz, VP of Research & Principal Analyst at Metrigy, emphasized the importance of integrating Employee Service with Slack, Salesforce’s collaboration platform: “We’ll be particularly watching how Salesforce’s multifaceted plans for bringing [Employee Service] into Slack play out as Slack evolves into a fully connected, collaborative workspace.” Slack itself is undergoing a transformation, with Salesforce Co-Founder Patrick Harris returning to revamp the platform as a core part of the Salesforce ecosystem. Meanwhile, Salesforce continues to expand Service Cloud’s offerings beyond Employee Service. Recent developments include a revamped CCaaS (Contact Center as a Service) integration program and a new product discovery tool. Still, Agentforce remains a key focus for Salesforce’s marketing efforts, showcasing its potential to redefine how businesses deploy autonomous AI agents across use cases like HR and beyond. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Tectonic Salesforce Implementation Partner

Choosing a 2025 Salesforce Solutions Partner

Salesforce has revolutionized how companies manage customer relationships, offering a powerful CRM platform that drives efficiency, productivity, and sales growth. However, fully unlocking its potential requires more than just subscribing to the platform. Successful deployment, seamless integration, and tailored customization are critical to maximizing Salesforce’s benefits. That’s where selecting the right Salesforce Cloud Solutions Partner becomes crucial. This guide will walk you through the key factors to consider when choosing a Salesforce implementation partner to ensure a successful deployment and seamless integration tailored to your business needs. Why You Need a Salesforce Cloud Solutions Partner The Salesforce ecosystem is vast and complex, offering a range of tools, services, and integrations that can be overwhelming without the right guidance. From pricing options to technical aspects of Salesforce Sales Cloud, implementation, and integrations, the right partner can simplify the process. A skilled Salesforce Cloud Solutions Partner can: Choosing the right partner can significantly impact your Salesforce journey, ensuring a smooth transition and long-term success. Key Factors to Consider When Choosing a Partner 1. Assess Expertise and Experience Salesforce implementation requires technical proficiency and industry-specific expertise. Look for a partner who: Additionally, ensure the partner is skilled in services you may require, such as Salesforce Outlook Integration or trial configurations. 2. Evaluate Customization Capabilities Every business is unique, and your Salesforce CRM must reflect that. A capable partner will tailor the platform to your needs, including: Customization ensures your Salesforce environment fits your business like a glove, optimizing operations and delivering maximum ROI. 3. Look for a Holistic Approach to Integration Salesforce excels at integrating with various platforms to streamline workflows. Choose a partner who offers: A well-integrated system simplifies operations, enhances productivity, and positions your business for scalable success. 4. Ensure Support and Training Salesforce implementation is only the beginning; ongoing support and training are critical to success. Your partner should offer: Continuous support ensures your team fully leverages Salesforce, adapting to new features and growing with the platform. 5. Prioritize Pricing Transparency Salesforce offers flexible pricing plans, but implementation costs can vary. Ensure your partner provides: Pricing transparency helps you plan effectively and avoid surprises during your Salesforce journey. Conclusion Selecting the right Salesforce Cloud Solutions Partner is a critical decision that can profoundly impact your business’s efficiency and growth. By focusing on expertise, customization, integration, and support, you can ensure a smooth Salesforce implementation that maximizes your investment. A trusted partner doesn’t just implement Salesforce; they become an integral part of your success, helping you scale confidently and adapt to future challenges. For tailored guidance on selecting the ideal Salesforce partner or learning more about best practices for Salesforce CRM implementation, explore our detailed insights and resources. Make an informed choice and set your organization up for long-term success with Salesforce. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Meta Joins the Race to Reinvent Search with AI

Meta Joins the Race to Reinvent Search with AI

Meta Joins the Race to Reinvent Search with AI Meta, the parent company of Facebook, Instagram, and WhatsApp, is stepping into the evolving AI-driven search landscape. As vendors increasingly embrace generative AI to transform search experiences, Meta aims to challenge Google’s dominance in this space. The company is reportedly developing an AI-powered search engine designed to provide conversational, AI-generated summaries of recent events and news. These summaries would be delivered via Meta’s AI chatbot, supported by a multiyear partnership with Reuters for real-time news insights, according to The Information. AI Search: A Growing Opportunity The push comes as generative AI reshapes search technology across the industry. Google, the long-standing leader, has integrated AI features such as AI Overviews into its search platform, offering users summarized search results, product comparisons, and more. This feature, now available in over 100 countries as of October 2024, signals a shift in traditional search strategies. Similarly, OpenAI, the creator of ChatGPT, has been exploring its own AI search model, SearchGPT, and forging partnerships with media organizations like the Associated Press and Hearst. However, OpenAI faces legal challenges, such as a lawsuit from The New York Times over alleged copyright infringement. Meta’s entry into AI-powered search aligns with a broader trend among tech giants. “It makes sense for Meta to explore this,” said Mark Beccue, an analyst with TechTarget’s Enterprise Strategy Group. He noted that Meta’s approach seems more targeted at consumer engagement than enterprise solutions, particularly appealing to younger audiences who are shifting away from traditional search behaviors. Shifting User Preferences Generational changes in search habits are creating opportunities for new players in the market. Younger users, particularly Gen Z and Gen Alpha, are increasingly turning to platforms like TikTok for lifestyle advice and Amazon for product recommendations, bypassing traditional search engines like Google. “Recent studies show younger generations are no longer using ‘Google’ as a verb,” said Lisa Martin, an analyst with the Futurum Group. “This opens the playing field for competitors like Meta and OpenAI.” Forrester Research corroborates this trend, noting a diversification in search behaviors. “ChatGPT’s popularity has accelerated this shift,” said Nikhil Lai, a Forrester analyst. He added that these changes could challenge Google’s search ad market, with its dominance potentially waning in the years ahead. Meta’s AI Search Potential Meta’s foray into AI search offers an opportunity to enhance user experiences and deepen engagement. Rather than pushing news content into users’ feeds—an approach that has drawn criticism—AI-driven search could empower users to decide what content they see and when they see it. “If implemented thoughtfully, it could transform the user experience and give users more control,” said Martin. This approach could also boost engagement by keeping users within Meta’s ecosystem. The Race for Revenue and Trust While AI-powered search is expected to increase engagement, monetization strategies remain uncertain. Google has yet to monetize its AI Overviews, and OpenAI’s plans for SearchGPT remain unclear. Other vendors, like Perplexity AI, are experimenting with models such as sponsored questions instead of traditional results. Trust remains a critical factor in the evolving search landscape. “Google is still seen as more trustworthy,” Lai noted, with users often returning to Google to verify AI-generated information. Despite the competition, the conversational AI search market lacks a definitive leader. “Google dominated traditional search, but the race for conversational search is far more open-ended,” Lai concluded. Meta’s entry into this competitive space underscores the ongoing evolution of search technology, setting the stage for a reshaped digital landscape driven by AI innovation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Gen AI Unleased With Vector Database

Knowledge Graphs and Vector Databases

The Role of Knowledge Graphs and Vector Databases in Retrieval-Augmented Generation (RAG) In the dynamic AI landscape, Retrieval-Augmented Generation (RAG) systems are revolutionizing data retrieval by combining artificial intelligence with external data sources to deliver contextual, relevant outputs. Two core technologies driving this innovation are Knowledge Graphs and Vector Databases. While fundamentally different in their design and functionality, these tools complement one another, unlocking new potential for solving complex data problems across industries. Understanding Knowledge Graphs: Connecting the Dots Knowledge Graphs organize data into a network of relationships, creating a structured representation of entities and how they interact. These graphs emphasize understanding and reasoning through data, offering explainable and highly contextual results. How They Work Strengths Limitations Applications Vector Databases: The Power of Similarity In contrast, Vector Databases thrive in handling unstructured data such as text, images, and audio. By representing data as high-dimensional vectors, they excel at identifying similarities, enabling semantic understanding. How They Work Strengths Limitations Applications Combining Knowledge Graphs and Vector Databases: A Hybrid Approach While both technologies excel independently, their combination can amplify RAG systems. Knowledge Graphs bring reasoning and structure, while Vector Databases offer rapid, similarity-based retrieval, creating hybrid systems that are more intelligent and versatile. Example Use Cases Knowledge Graphs vs. Vector Databases: Key Differences Feature Knowledge Graphs Vector Databases Data Type Structured Unstructured Core Strength Relational reasoning Similarity-based retrieval Explainability High Low Scalability Limited for large datasets Efficient for massive datasets Flexibility Schema-dependent Schema-free Challenges in Implementation Future Trends: The Path to Convergence As AI evolves, the distinction between Knowledge Graphs and Vector Databases is beginning to blur. Emerging trends include: This convergence is paving the way for smarter, more adaptive systems that can handle both structured and unstructured data seamlessly. Conclusion Knowledge Graphs and Vector Databases represent two foundational technologies in the realm of Retrieval-Augmented Generation. Knowledge Graphs excel at reasoning through structured relationships, while Vector Databases shine in unstructured data retrieval. By combining their strengths, organizations can create hybrid systems that offer unparalleled insights, efficiency, and scalability. In a world where data continues to grow in complexity, leveraging these complementary tools is essential. Whether building intelligent healthcare systems, enhancing recommendation engines, or powering semantic search, the synergy between Knowledge Graphs and Vector Databases is unlocking the next frontier of AI innovation, transforming how industries harness the power of their data. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
google agentspace

Google Agentspace

Google Agentspace: Boosting Productivity with AI-Powered Agents Google has unveiled Agentspace, a cutting-edge tool designed to revolutionize workplace productivity by combining the power of AI agents, Google Gemini 2.0, and its advanced search capabilities. This tool aims to streamline workflows, enhance information discovery, and empower enterprises to unlock the full potential of their data. What is Google Agentspace? Google Agentspace is an enterprise-focused productivity platform that simplifies complex tasks involving planning, research, and content generation. By integrating AI-powered tools like NotebookLM Plus, it enables employees to uncover insights, interact with unstructured and structured data, and make informed decisions—all in one centralized platform. Key features include: Core Benefits of Google Agentspace 1. Streamlined Information Discovery Employees often waste hours sifting through fragmented data in emails, documents, and spreadsheets. Agentspace serves as a centralized knowledge hub, offering conversational assistance, proactive suggestions, and actionable insights from both unstructured and structured data sources. With pre-built connectors for tools like Google Drive, Jira, Microsoft SharePoint, and ServiceNow, Agentspace ensures seamless integration with existing systems, providing employees with relevant information faster. 2. Enhanced Multimodal Capabilities Agentspace leverages Google’s search expertise and Gemini 2.0 to provide advanced reasoning capabilities. Employees can query in multiple formats (text, audio, video), translate information into different languages, and generate audio summaries, enhancing productivity and accessibility. 3. Task Automation Across Departments Agentspace empowers teams across various functions to automate repetitive tasks, such as: 4. Scalable AI for Enterprises Agentspace offers a low-code visual tool for creating custom AI agents tailored to specific business needs. These agents can automate multi-step workflows, conduct in-depth research, and assist with data-driven content generation, enabling enterprises to scale AI adoption effortlessly. Security and Responsible AI Google Agentspace is built on Google Cloud’s secure-by-design infrastructure, ensuring that enterprises can deploy AI tools with confidence. Key Security Features Google is also addressing responsible AI concerns with tools for evaluation, content moderation, and bias mitigation, ensuring ethical and explainable AI use in the workplace. Use Cases Google Agentspace provides solutions tailored to various enterprise needs: Challenges and Future Directions Despite its potential, Agentspace faces hurdles such as employee training and adoption. Organizations must ensure that employees understand how to incorporate the tool into their daily workflows effectively. Moreover, Google’s approach to responsible AI will be closely scrutinized. Addressing issues like explainability, bias prevention, and robust data infrastructure will be crucial for building trust and driving adoption. Early Access and the Road Ahead Google is offering early access to Agentspace, allowing enterprises to explore its potential and provide feedback. As AI continues to reshape the workplace, tools like Agentspace position Google as a leader in productivity-enhancing solutions for businesses. For enterprises looking to harness AI to unlock creativity, improve decision-making, and automate workflows, Agentspace is the next step in digital transformation. Sign up for early access today to bring the future of work to your organization. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Real-World Insights and Applications

Salesforce’s Agentforce empowers businesses to create and deploy custom AI agents tailored to their unique needs. Built on a foundation of flexibility, the platform leverages both Salesforce’s proprietary AI models and third-party models like those from OpenAI, Anthropic, Amazon, and Google. This versatility enables businesses to automate a wide range of tasks, from generating detailed sales reports to summarizing Slack conversations. AI in Action: Real-World Insights and Applications The “CXO AI Playbook” by Business Insider explores how organizations across industries and sizes are adopting AI. Featured companies reveal their challenges, the decision-makers driving AI initiatives, and their strategic goals for the future. Salesforce’s approach with Agentforce aligns with this vision, offering advanced tools to address dynamic business needs and improve operational efficiency. Building on Salesforce’s Legacy of Innovation Salesforce has long been a leader in AI integration. It introduced Einstein in 2016 to handle scripted tasks like predictive analytics. As AI capabilities evolved, Salesforce launched Einstein GPT and later Einstein Copilot, which expanded into decision-making and natural language processing. By early 2024, these advancements culminated in Agentforce—a platform designed to provide customizable, prebuilt AI agents for diverse applications. “We recognized that our customers wanted to extend our AI capabilities or create their own custom agents,” said Tyler Carlson, Salesforce’s VP of Business Development. A Powerful Ecosystem: Agentforce’s Core Features Agentforce is powered by the Atlas Reasoning Engine, Salesforce’s proprietary technology that employs ReAct prompting to enable AI agents to break down problems, refine their responses, and deliver more accurate outcomes. The engine integrates seamlessly with Salesforce’s own large language models (LLMs) and external models, ensuring adaptability and precision. Agentforce also emphasizes strict data privacy and security. For example, data shared with external LLMs is subject to limited retention policies and content filtering to ensure compliance and safety. Key Applications and Use Cases Businesses can leverage tools like Agentbuilder to design and scale AI agents with specific functionalities, such as: Seamless Integration with Slack Currently in beta, Agentforce’s Slack integration brings AI automation directly to the workplace. This allows employee-facing agents to execute tasks and answer queries within the communication tool. “Slack is valuable for employee-facing agents because it makes their capabilities easily accessible,” Carlson explained. Measurable Impact: Driving Success with Agentforce Salesforce measures the success of Agentforce by tracking client outcomes. Early adopters report significant results, such as a 90% resolution rate for customer inquiries managed by AI agents. As adoption grows, Salesforce envisions a robust ecosystem of partners, AI skills, and agent capabilities. “By next year, we foresee thousands of agent skills and topics available to clients, driving broader adoption across our CRM systems and Slack,” Carlson shared. Salesforce’s Agentforce represents the next generation of intelligent business automation, combining advanced AI with seamless integrations to deliver meaningful, measurable outcomes at scale. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com